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Abstract

In this technical note, I settle the computational complexity
of nonwastefulness and stability in student-project-resource
matching-allocation problems, a model that was first pro-
posed by (Yamaguchi and Yokoo 2017). I show that comput-
ing a nonwasteful matching is complete for class FPNP[poly]
and computing a stable matching is complete for class ΣP2 .
These results involve the creation of two fundamental prob-
lems: PARETOPARTITION, shown complete for FPNP[poly],
and ∀∃-4-PARTITION, shown complete for ΣP2 . Both are
number problems that are hard in the strong sense.

Model
Definition 1 (Student-Project-Resource (SPR) Instance).
An SPR instance is a tuple (S, P,R,X,%S ,%P , TR, qR).

• S = {s1, . . . , sn} is a set of students.
• P = {p1, . . . , pm} is a set of projects.
• R = {r1, . . . , rk} is a set of resources.
• X ⊆ S × P is a finite set of contracts.
• %S= (%s)s∈S are students’ preferences over projects.
• %P= (%p)p∈P are projects’ preferences over students.
• Resource r fits projects Tr ⊆ P , and TR = (Tr)r∈R.
• Resource r has capacity qr ∈ N>0, and qR = (qr)r∈R.

A contract x = (s, p) ∈ X means that student s is matched
to project p. For each student s ∈ S, strict order �s rep-
resents her preference over set P ∪ {∅}. For each project
p ∈ P , weak order %p represents its preference over set
S ∪ {∅}. Preferences %p extend to 2S in a non-specified
manner that is both responsive and separable: For every pair
of students s, s′ ∈ S and subset S′ ⊆ S \ {s, s′},

s %p s
′ ⇔ S′ ∪ {s} %p S′ ∪ {s′}.

For each s ∈ S and S′ ⊆ S\{s}, s %p ∅ ⇔ S′∪{s} %p S′.
Contract (s, p) is acceptable for student s if p %s ∅ holds.
Contract (s, p) is acceptable for project p if s %p ∅ holds.
Without loss of generality, we assume that every contract
(s, p) ∈ X is acceptable for student s and project p. (Any
contract which is non-acceptable for either side is discarded
from set X .) y

Given preference %, let ∼ (resp. �) be its symmetric
(resp. asymmetric) part. Given subset of contracts Y ⊆ X ,
student s and project p, set Ys denotes {(s, p) ∈ Y | p ∈ P}
and set Yp denotes {(s, p) ∈ Y | s ∈ S}. Preferences nat-
urally extend over contracts. When no misunderstanding is
possible, we omit the subscript and just write � or %.
Definition 2 (Matching). A (many students to one project)
matching is a subset of contracts Y ⊆ X such that for every
student s, |Ys| ≤ 1. We can then abuse shorthand Y in a
functional manner:
• Student s is mapped to project Y (s) ∈ P ∪ {∅}.
• Project p hires students Y (p) ⊆ S. y
Definition 3 (Feasibility). Matching Y ⊆ X is feasible if
there exists an allocation function µ : R → P that maps
each resource r to one compatible project µ(r) ∈ Tr, and
that satisfies for every project p ∈ P that:1

|Yp| ≤
∑

r∈µ−1(p)

qr.

A feasible matching (Y, µ) is a couple of a matching and an
allocation as above. Let qµ(p) =

∑
r∈µ−1(p) qr be the total

of capacities allocated to project p. y
Definition 4 (Nonwastefulness). For feasible matching
(Y, µ), a contract (s, p) ∈ X \ Y is an improving pair if
and only if:
• student s has preference p �s Y (s),
• project p has preference s �p ∅,
• and matching (Y \ Ys) ∪ {(s, p)} is feasible.
A feasible matching (Y, µ) is nonwasteful if it admits no
improving pair. y
Definition 5 (Fairness). For feasible matching (Y, µ), con-
tract (s, p) ∈ X \ Y is an envious pair if and only if:
• student s has preference p �s Y (s),
• there is a student s′ ∈ Y (p) such that p prefers s �p s′,
• and matching Y \ (Ys ∪ Ys′) ∪ {(s, p)} is feasible.2

A feasible matching (Y, µ) is fair if it has no envious pair.y
1To handle the case where p /∈ µ(R) and then µ−1(p) = ∅, we

assume the standard convention that an empty sum equals zero.
2Since matching Y is made feasible by µ, matching Y \ (Ys ∪

Ys′) ∪ {(s, p)} is also feasible by same allocation µ.



Definition 6 (Stability). A feasible matching (Y, µ) is stable
if it is nonwasteful and fair. That is, it admits no improving
pair and no envious pair. y

We assume that following concepts are common knowl-
edge: decision problem, function problem, length function,
complexity classes P, XP, NP, coNP, FPNP, NPNP, coNPNP,
complementation, reduction, hardness and completeness.
An SPR instance has length function Θ(nm+mk).
Definition 7. We study the following sequence of problems.
• SPR/FA:

Given an SPR (instance) and a matching, is it feasible?
• SPR/NW/VERIF:

Given an SPR and a feasible matching, is it nonwasteful?
• SPR/NW/FIND:

Given an SPR, find a nonwasteful matching.
• SPR/STABLE/VERIF:

Given an SPR and a feasible matching, is it stable?
• SPR/STABLE/EXIST:

Given an SPR, does a stable matching exist?
For this purpose, we create two new fundamental problems.
• PARETOPARTITION:

Given positive integers multiset W = {w1, . . . , wn}, and
m targets θ1, . . . , θm ∈ N, any partition of W into a list
V1, . . . , Vm of m subsets is mapped to deficit vector δ ∈
Zm that is defined for every i ∈ [m] by:

δi = min {w(Vi)− θi, 0} ,
where w(Vi) =

∑
w∈Vi

w. (Subset Vi has negative value
if it sums below θi, and value zero if it surpasses θi.)
Find a partition of W into a list V1, . . . , Vm that is Pareto-
efficient3 with respect to the deficit vector.

• ∀∃-4-PARTITION:
Given positive integers multiset W = {w1, . . . , w4m},
target θ ∈ N and list of couples u1v1, . . . , u`v` of W , for
map σ : [`]→ {0, 1}, we say that a partition of W into m
subsets V1, . . . , Vm is σ-satisfying if and only if:
– for every i ∈ [m], it holds that |Vi| = 4 and w(Vi) = θ,
– for every j ∈ [`]:

if σ(j) = 1 then uj and vj are in the same subset,
if σ(j) = 0 then uj and vj are in different subsets.

Does, for every map σ : [`] → {0, 1}, there exist a σ-
satisfying partition of W into m subsets? y

Preliminaries
Our main interest lies in computing a nonwasteful and fair
matching. On one hand, it is well known that a nonwaste-
ful matching can be obtained by mechanism Serial Dictator-
ship (SD) (Goto et al. 2017, Th. 1). The matching is con-
structed following a fixed priority on students: every stu-
dent decides her most preferred project that is still feasi-
ble. Unfortunately, mechanism SD requires to verify feasi-
bility – an NP-complete problem (Th. 1 below) – O(nm)

3Given two vectors δ, δ′ ∈ Zm, vector δ Pareto-dominates δ′ if
and only if: ∀i ∈ [m], δi ≥ δ′i and ∃i ∈ [m], δi > δ′i. A vector is
Pareto-efficient when no vector Pareto-dominates it.

times. Hence SPR/NW/FIND is in class FPNP[poly]. On the
other hand, mechanism Artificial Caps Deferred Acceptance
(ACDA) computes a fair matching (Goto et al. 2017, Th. 2)
in polynomial-time. The idea is to fix (Pareto-efficient) arti-
ficial capacities on projects (e.g. by allocating every resource
on projects that are top-preferred by some students) and use
mechanism Deferre Acceptance (DA). Both SD and ACDA
are strategy-proof. However, nonwastefulness and fairness
are not compatible, since there exist SPR instances with no
stable matching.

First, we settle the complexity of matching feasibility:
Theorem 1. SPR/FA is NP-complete.

Proof. An allocation µ is a yes-certificate that can be veri-
fied in polynomial-time, hence SPR/FA is in class NP.

To show NP-hardness, any instance of 4-PARTITION, de-
fined by positive integers multisetW = {w1, . . . , w4m} and
target θ ∈ N is reduced to an instance of SPR/FA, as fol-
lows. One can assume that

∑
w∈W w = mθ. There are m

projects P = {p1, . . . , pm}. In matching Y , θ students are
matched to every project. ResourcesR are identified to mul-
tiset W : qR = (w1, . . . , w4m) and Tr ≡ P . Crucially, since
4-PARTITION is NP-hard even if integers wi and θ are poly-
nomially bounded, there is a polynomial number of students.

(yes⇔yes) There is a straightforward correspondence be-
tween a partition of W into m sets that hit θ, and an alloca-
tion that provides capacity for θ students on m projects.

In Th. 1, the strong NP-hardness of 4-PARTITION is
necessary: a similar construct from PARTITION with two
projects would require an exponential number of students,
which is not polynomial. This technical detail pushes us to
generalize 4-PARTITION into PARETOPARTITION and ∀∃-
4-PARTITION, also shown strongly hard for their classes.

The Complexity of Nonwastefulness
In this section, we first show that verifying nonwasteful-
ness for a given matching is complete for class coNP.
Hence, there is no natural verification procedure that makes
SPR/NW/FIND lie in class NP. Indeed, we then show that
computing a nonwasteful matching (which existence is guar-
anteed by SD) is FPNP-complete; that is complete for a poly-
nomial number of calls to (e.g.) SAT. The proof involves
polynomial number encoding in a new PARETOPARTITION
problem that we show strongly FPNP-hard.
Theorem 2. SPR/NW/VERIF is coNP-complete.
(Even if each student only has one acceptable project.)

Proof. An improving pair (s, p) along with the assignment
ν that makes it feasible are no-certificates that are efficiently
verifiable. Hence, SPR/NW/VERIF is in coNP.

To show coNP-hardness, we reduce any instance W =
{w1, . . . , w4m} of 4-PARTITION with target θ and assump-
tion

∑
w∈W w = mθ to the following co-instance, which

yes-answers are for existent deviations. There are m + 2
projects: For i ∈ [m], θ students want to attend pi. There
are mθ students who want to attend pm+1, and mθ + m
who want to attend pm+2. In matching Y , all students are
matched but one student s∗ from pm+2. Every project pi, for
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Figure 1: Reducing 4-PARTITION to SPR/NW/VERIF:
One more student can be matched to pm+2 if and only if the
dashed assignment is feasible (solution to 4-PARTITION).

i ∈ [m] receives a resource rxi with capacity qrxi
= θ + 1

and Tqrxi
= {pi, pm+2}. Project pm+1 receives 4m re-

sources ri identified with integer set W = {w1, . . . , w4m}:
every resource ri for i ∈ [m] has capacity qri = wi and
Tri = {pi | i ∈ [m + 1]}. Project pm+2 receives a re-
source rz with capacity qrz = mθ + m − 1 and Trz =
{pm+1, pm+2}. Since integers wi and θ are polynomially
bounded, there is a polynomial number of students.

(yes⇒yes) If the 4-PARTITION instance admits a solu-
tion V1, . . . , Vm, then (s∗, pm+2) is a feasible improving
pair, as following allocation (dashed in Fig. 1) ν shows:
ν−1(pi) ≡ Vi for i ∈ [m], ν−1(pm+1) = {rz} and
ν−1(pm+2) = {rxi | i ∈ [m]}. Indeed, allocation ν pro-
vides capacities qν(p1) = . . . = qν(pm) = θ, qν(pm+1) =
mθ +m− 1 and qν(pm+2) = mθ +m.

(yes⇐yes) The only possible improving pair is
(s∗, pm+2). The only way matching Y ∪ {(s∗, pm+2)}
is feasible, is when ν−1(pm+2) = {rxi | i ∈ [m]},
ν−1(pm+1) = {rz} and projects pi for i ∈ [m] use
resources ri for i ∈ [4m] in a perfectly balanced manner
qν(p1) = . . . = qν(pm) = θ. Hence, Vi ≡ ν−1(pi) for
i ∈ [m] is a solution for 4-PARTITION.

Theorem 3. SPR/NW/FIND is FPNP-complete.
(Even if each student only has one acceptable project.)

Proof. Mechanism SD shows that SPR/NW/FIND belongs
to FPNP. Hardness follows from Lemma 1 and 2 below.

Lemma 1. PARETOPARTITION is strongly FPNP-hard.
(This result still holds when all targets are the same.)

Proof. Let any instance of MAX3DM be defined by finite
sets A,B,C with |A| = |B| = |C| and triplets set M ⊆
A×B × C, |M | = m. Triplet t = (a, b, c) ∈M is mapped
to payoff vt ∈ N. In a (partial) 3-dimensional matching
(3DM), any element of A ∪ B ∪ C occurs at most once in
M ′. The goal is to maximize

∑
t∈M ′ vt for M ′ ⊆M a (par-

tial) 3-dimensional matching. This problem is FPNP[poly]-
complete (Gasarch, Krentel, and Rappoport 1995, Th. 3.5).
For every ai ∈ A (resp. bj ∈ B, ck ∈ C), let #ai (resp.
#bj , #ck) denote the number of occurrences of ai (resp. bj ,

ck) inM : the number of triplets that contain ai (resp. bj , ck).
Let integer vM denote total payoff

∑
t∈M vt. Elements are

identified with integers i, j, k ∈ [n] and t ∈ [m].
We reduce this problem to the following instance of

PARETOPARTITION for which finding a solution gives out
the optimum (solution) for the given MAX3DM instance.
Formally, it is a many-one metric reduction. Set W contains
6m different integers that must be partitioned into m + 1
different subsets of various cardinalities. Every subset bears
an objective for Pareto-efficiency. The idea is that a Pareto-
efficient deficit vector will always have deficit zero on them
first subsets, and will give the optimal value of MAX3DM
by the deficit of the last subset. Given basis β ∈ N≥2 and
integer sequence (zi)i∈N, we define integer 〈. . . z2 z1 z0〉β
by

∑
i≥0 ziβ

i, with zi = 0 when it is not written. Let β be
an integer large enough for such representation in basis β
(as below) to never have remainders, even when one adds all
the integers in W . Choosing β = 32m|A| + 1 will largely
fit the purpose. The integers in set W are represented be-
low. For every triplet t = (ai, bj , ck) ∈ M , there is an in-
teger w(ai, bj , ck). For every element ai ∈ A, we introduce
one actual integer w(ai) representing the actual element in-
tended to go with the triplets in a 3-dimensional matching,
and #ai − 1 dummies who will go with the triplets that are
not in the 3-dimensional matching. Similarly, we introduce
#bj integers for every bj ∈ B and #ck integers for every
ck ∈ C. For every triplet t ∈ M , we introduce two integers
w(vt) and w′(vt) which roles we precise later.

w(

triplet t︷ ︸︸ ︷
(ai, bj , ck)) = 〈1 1 −i −j −k −t 0 0〉β

actual w(ai) = 〈1 2 i 0 0 0 2 0〉β
#ai−1 w′(ai) = 〈1 2 i 0 0 0 1 0〉β

actual w(bj) = 〈1 4 0 j 0 0 2 0〉β
#bj−1 w′(bj) = 〈1 4 0 j 0 0 1 0〉β

actual w(ck) = 〈1 8 0 0 k 0 2 0〉β
#ck−1 w′(ck) = 〈1 8 0 0 k 0 1 0〉β

actual w(vt) = 〈1 16 0 0 0 t 0 0〉β
goal w′(vt) = 〈1 16 0 0 0 t 3 vt〉β

targets θ1...m = 〈5 31 0 0 0 0 6 0〉β
target θm+1 = 〈m 16m 0 0 0 0 0 vM 〉β

The idea is that every subset Vi (which corresponds to
an objective for Pareto-efficiency) has a preference on in-
tegers with respect to columns, from the heaviest weight
β7 to the lower one β0, because in basis β, sums of inte-
gers in W never have remainders from a column to a heav-
ier one. Firstly, for Pareto-efficiency, due to the heaviest
digits, each subset V1, . . . , Vm must contain five elements,
and subset Vm+1 must contain m elements, in order to in-
duce a deficit of approximately zero (if we round the dig-
its of lower weight β6 . . . β0). Indeed, since the sum of the
heaviest digits is 6m, any other repartition would induce
(approximate) deficits in multiples of −β7 for some sub-
set, hence would be Pareto-dominated. Secondly, for similar
reasons, because of the second heaviest digits (the powers
of 2), each subset V1, . . . , Vm must contain one w(a, b, c)
integer, one w(a) or w′(a), one w(b) or w′(b), one w(c)



or w′(c), and one w(v) or w′(v). Also, subset Vm+1 must
contain a number m of w(v) or w′(v) integers. Digits on
β5, . . . , β2 (that contain integers ±i,±j,±k,±t) make ev-
ery triple integer w(ai, bj , ck) be precisely with its own
elements (actual or dummies): w(ai) or w′(ai), w(bj) or
w′(bj), w(ck) or w′(ck), and own payoff integer: w(vt) or
w′(vt). To sum up, rounding the two lower digits, any par-
tition V1, . . . , Vm, Vm+1 that respects the constraints above
has (approximate) deficits zero for every subset Vi, and any
other partition would be Pareto-dominated by this (approx-
imate) ideal point, hence not Pareto-efficient. Then, we al-
ready know that for every triple t = (ai, bj , ck), either pay-
off integer w(vt) is with triple integer w(t), and w′(vt) in
Vm+1, either w′(vt) is with w(t), and w(vt) in Vm+1. While
deficit on digit β1 for Vm+1 is always zero, and deficit on
digits β0 for V1...m are also always zero, assuming Pareto-
efficiency, payoff integer w′(vt) only goes in Vm+1 when
the (only) three actual elements integers are together, like in
a (partial) 3-dimensional matching, in order to yield deficits
zero on digit β1 for V1...m. All in all, Pareto-efficiency, while
requiring a partition which structure follows any (partial) 3-
dimensional matching M ′, simply asks an optimal deficit
δm+1 =

∑
t∈M ′ vt − vM for subset Vm+1.

To conclude, there is a correspondence between optimal
3-dimensional matchings M ′ (resp. their values

∑
t∈M ′ vt)

and Pareto-efficient partitions (resp. deficit δm+1 =∑
t∈M ′ vt − vM ; recall that δ1 = . . . = δm = 0). This

is a polynomial many-one metric reduction. Crucially, no
integer is larger than polynomial β8; hence PARETOPAR-
TITION is strongly FPNP-hard. Also, one can build the ex-
act same reduction with θ1 = . . . = θm = θm+1 =
mβ7 + 16mβ6 + vM , by introducing m gap integers (m−
5)β7 + (16m− 31)β6 + vM in set W .

Lemma 2. PARETOPARTITION ≤p SPR/NW/FIND

Proof. We reduce any instance W = {w1, . . . , wn} and
θ1, . . . , θm ∈ N of PARETOPARTITION to the following
(very simple) instance of SPR/NW/FIND. There are m
projects p1, . . . , pm; and for each project pi there is a set
of θi students who consider only pi acceptable (and re-
ciprocally), strictly above ∅. Crucially, since numbers in
the PARETOPARTITION instance are polynomially bounded,
there is only a polynomial number of students. Set of re-
sources R is identified with integers set W : any resource is
compatible with any project and qR = (w1, . . . , wn).

Computing a nonwasteful matching (Y, µ) precisely out-
puts a partition V1, . . . , Vm ≡ µ−1(p1), . . . , µ−1(pm) with
Pareto-efficient deficits: if there was a partition (allocation)
which deficits (unmatched students) Pareto-dominated the
deficits of V1, . . . , Vm, then an improving pair would exist.
In other words, it is not possible to obtain one more capacity
for an unmatched student without decreasing capacity on an
other project pi (with qµ(pi) ≤ θi).

The Complexity of Stability
A matching that is both nonwasteful and fair (i.e.: stable)
may not exist. In this section, we settle the complexity of de-
ciding whether one exists in a given SPR, as ΣP2 -complete.

Theorem 4. SPR/STABLE/VERIF is also coNP-complete.
(Even if each student only has one acceptable project.)

Proof. It is the same proof as for verifying nonwastefulness,
since no envious pair is possible. Furthermore, verifying
fairness is straightforward in P (see Def. 5, footnote).

Theorem 5. SPR/STABLE/EXIST is NPNP-complete.

Proof. A stable matching is a yes-certificate that can be ver-
ified in coNP time. Therefore, SPR/STABLE/EXIST belongs
to NPNP. Hardness follows from Lem. 3 and 4 below.

Lemma 3. ∀∃-4-PARTITION is strongly coNPNP-hard.
(It holds even if couples are disjoint and couple heads u go
in distinct subsets.)

Proof. Let any instance of ∀∃-3DM be defined by finite sets
A,B,C with |A| = |B| = |C| and two disjoint triplets set
M,N ⊆ A × B × C, with |M | = m and |N | = n. This
decision problem asks whether:

∀M ′ ⊆M, ∃N ′ ⊆ N, M ′ ∪N ′ is a 3DM,

whereM ′∪N ′ a 3DM means that any element ofA∪B∪C
occurs exactly once in M ′ ∪ N ′. It is a Πp

2-complete prob-
lem (McLoughlin 1984). For every ai ∈ A (resp. bj ∈ B,
ck ∈ C), let #ai (resp. #bj , #ck) denote the number of
occurrences of ai (resp. bj , ck) in M : the number of triplets
that contain ai (resp. bj , ck). One can identify elements and
triplets with integers i, j, k ∈ [n] and t ∈ [m].

We reduce it to the following ∀∃-4-PARTITION instance.
Set W contains the 4(m + n) integers depicted below in
basis β = 4(m + n)|A| + 1 (def. in proof for Lem. 1). For
every triplet t = (ai, bj , ck) ∈M ∪N , there is one “triplet”
integer w(ai, bj , ck) ∈ N. For every element ai ∈ A, we
introduce one actual integer w(ai) representing the actual
element intended to go with the triplets in the 3DM, and
#ai − 1 dummies who will go with the triplets that are not
in the 3-dimensional matching. Similarly, we introduce #bj
integers for each bj ∈ B and #ck integers for each ck ∈ C.
Target θ = β5 + 15β4 is given below.

w(

triplet t︷ ︸︸ ︷
(ai, bj , ck)) = 〈1 1 −i −j −k 0〉β

one actual
#ai−1 dum. w(ai) = 〈1 2 i 0 0 −2 (actual)

0 (dummy)〉β
one actual

#bj−1 dum. w(bj) = 〈1 4 0 j 0 +1 (actual)
0 (dummy)〉β

one actual
#ck−1 dum. w(ck) = 〈1 8 0 0 k +1 (actual)

0 (dummy)〉β
target θ = 〈4 15 0 0 0 0〉β

We define a list of couples of length ` = |M | in W : for
every triple t = (ai, bj , ck) ∈ M , we associate in a couple
utvt “triplet” integer ut = w(ai, bj , ck) with the “actual”
integer vt = w(ai). This instance asks whether:

∀σ : [`]→ {0, 1}, ∃σ-satisfying partition of W.

First let us observe that since β is large enough, additions
in W never have remainders. Hence, subsets must hit the
target on each column of this representation. Consequently,
in any 4-partition of W , there are 4 elements (in case it



wasn’t required), one of each in: “triplet” integers, element-
a integers, element-b integers and element-c integers. More-
over, “triplet” integer w(ai, bj , ck) is with “its” elements
w(ai), w(bj) and w(ck). Also, actual elements must be in
the same subset, and dummies in others. Therefore, there is
a correspondence between any (full) 3-dimensional match-
ing M ′ ∪ N ′ and a 4-partition, since in a 4-partition, the
actual elements are regrouped according to triplets.

(yes⇒yes) Assume the 3DM instance is a yes, and let σ :
[`] → {0, 1} be any couple enforcement/forbidding func-
tion. We construct a σ-satisfying 4-partition in correspon-
dence with the following 3-dimensional matching M ′ ∪N ′:
for t ∈ [`]≡M , triplet t is in M ′ if and only if σ(t) = 1;
then the assumption gives N ′ such that M ′ ∪N ′ is a 3DM.
We construct the corresponding 4-partition (see paragraph
above), and it is σ-satisfying.

(yes⇐yes) Assume the partition instance is a yes, and let
us show that for any M ′ ⊆ M , there is N ′ ⊆ N such that
M ′ ∪ N ′ is a 3DM. Let σ be defined as σ(t) = 1 if and
only if t ∈ M ′. A σ-satisfying 4-partition exists, and is in
correspondence with some 3DM M ′ ∪N ′ (see above).

It follows from this construction that the lemma holds
even if couples are disjoint and no subset shall contain two
heads, that is two u elements. Crucially, hardness holds even
if numbers are polynomially bounded above by β6.

Lemma 4. ∀∃-4-PARTITION ≤p CO-SPR/STABLE/EXIST

Proof. We reduce any ∀∃-4-PARTITION instance to the CO-
SPR/STABLE/EXIST instance depicted in Figure 2. The idea
is that capacity requirements of projects p1, . . . , pm model
the m targets of a 4-partition. Since integers u1, . . . , u` are
in different subsets, we remove them from the targets of
p1, . . . , p` (assuming they are already therein). We have a
correspondance between enforcing ut and vt together in a
4-partition (by σ(t) = 1) and letting capacity requirement of
project pt be θ − ut − vt (that’s ut and vt therein together),
by matching svt with p′t and allocating rvt on p′t (out of the
remaining feasibility problem on p1, . . . , pm). Conversely,
there is a correspondance between forbidding ut and vt to be
together in a 4-partition (by σ(t) = 0), and trying to match
svt with pt, hence bringing its capacity requirement to θ−ut,
while resource rvt can’t be allocated to pt. Remark that no
student in any class svt can be involved in an improving or
envious pair (unless unmatched).

(yes⇒yes) For any σ : [`] → {0, 1}, there exists a σ-
satisfying 4-partition V1, . . . , V`, V`+1, . . . , Vm such that for
any t ∈ [`], firstly ut ∈ Vt and secondly vt ∈ Vt if and only
if σ(t) = 1. For the sake of contradiction, let us assume a
stable matching (Y, µ). By nonwastefulness, for every t ∈
[`], either µ(rvt) = p′t (think to σ(t) = 1) or µ(rvt) ∈ {pi |
i 6= t} (think to σ(t) = 0). Provided by the σ-satisfying 4-
partition, there is an allocation of v1, . . . , v` and W \ L that
makes feasible a full matching Y (si) = pi for any i ∈ [m].
Hence it would be wasteful to use resource r1 on projects
{p1, . . . , pm} and it is allocated to pa or pb. The SPR defined
by sa, sb, pa, pb, r1 cannot be stable.

p′1 : sv1
...

p′` : sv`

v1
rv1

...
rv`
v`

sv1 : p1 ∼ p′1v1
...

...
sv` : p` ∼ p′`v`

p1 : s1 ∼ sv1
...

p` : s` ∼ sv`

s1 : p1θ−u1−v1
...

...
s` : p`θ−u`−v`

p`+1 : s`+1

...
pm : sm

s`+1 : p`+1θ
...

...
sm : pmθ

W \ L

pa : sb � sa

pb : sa � sb
1 r1

sa : pa � pb

sb : pb � pa

{pi | i 6=1}

{pi | i 6=`}

{p1 . . . pm}

Figure 2: Given a ∀∃-4-PARTITION instance defined by
m ∈ N, positive integers multiset W = {w1, . . . , w4m},
target θ ∈ N and list of couples L = u1v1, . . . , u`v`
of W , we construct the CO-SPR/STABLE/EXIST in-
stance depicted above, which contains ` + m + 2
projects p′1, . . . , p

′
`, p1, . . . , pm, pa, pb which preferences

(strictly above ∅) are in the boxes. There are mθ −∑`
t=1 ut + 2 students, distributed in ` + m different

classes sv1 , . . . , sv` , s1, . . . , sm which sizes are on the left
of classes, and two students sa, sb. Crucially, since ∀∃-4-
PARTITION is strongly hard, there is a polynomial number
of students. There are |W | − ` + 1 resources with compat-
ibilities depicted by right-left arrows, and capacities inside
the boxes. For every t ∈ [`], resource rvt is compatible with
{p′t} ∪ {pi | i 6= t}.

(no⇒no) There exists σ : [`] → {0, 1} such that no σ-
satisfying 4-partition exists. Let us construct a stable match-
ing (Y, µ). For any t ∈ [`]:

• if σ(t) = 1, then Y (svt) = p′t and µ(rvt) = p′t;
• if σ(t) = 0, then µ(rvt) ∈ {pi | i 6= t}.

More precisely, we allocate the resources in a way that min-
imizes the number of unmatched students in s1, . . . , sm and
svt for σ(t) = 0. However, since no σ-satisfying 4-partition
exists, some projects in p1, . . . , pm have deficits of capacity.
We allocate r1 with one of those. Then, the SPR defined by
sa, sb, pa, pb is stable in its emptyness.

Related Work
When the capacity of every project is fixed, a matching that
satisfies stability, fairness and efficiency can be found by us-



ing the celebrated Gale-Shapley mechanism (Gale and Shap-
ley 1962) (also referred to as Deferred Acceptance (DA)
mechanism), which is also strategyproof. The present work
deals with constrained two-sided matching, which has been
attracting attention from AI researchers (Aziz et al. 2017;
Hamada et al. 2017). Many real-world matching markets
are subject to a variety of distributional constraints, in-
cluding regional maximum quotas, which restrict the to-
tal number of students assigned to a set of schools (Ka-
mada and Kojima 2015), minimum quotas, which guaran-
tee that a certain number of students are assigned to each
school (Fragiadakis et al. 2016; Sönmez and Switzer 2013;
Sönmez 2013), and diversity constraints, which enforce that
a school satisfies a balance between different types (e.g.,
socioeconomic status) of students (Hafalir, Yenmez, and
Yildirim 2013; Ehlers et al. 2014). Also, there exists a stream
of works that examines the computational complexity for
finding a matching that satisfies some desirable properties
under distributional constraints, including (Biró et al. 2010;
Fleiner and Kamiyama 2012).
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