The Complexity of Student-Project-Resource Matching-Allocation Problems

Anisse Ismaili^{1,2} ¹ RIKEN AIP Center, Tokyo, Japan ² Yokoo-Laboratory, Kyushu University, Fukuoka, Japan

Abstract

In this technical note, I settle the computational complexity of nonwastefulness and stability in student-project-resource matching-allocation problems, a model that was first proposed by (Yamaguchi and Yokoo 2017). I show that computing a nonwasteful matching is complete for class $FP^{NP}[poly]$ and computing a stable matching is complete for class Σ_2^P . These results involve the creation of two fundamental problems: PARETOPARTITION, shown complete for $FP^{NP}[poly]$, and $\forall \exists$ -4-PARTITION, shown complete for Σ_2^P . Both are number problems that are hard in the strong sense.

Model

Definition 1 (Student-Project-Resource (SPR) Instance). An SPR instance is a tuple $(S, P, R, X, \succeq_S, \succeq_P, T_R, q_R)$.

- $S = \{s_1, \ldots, s_n\}$ is a set of students.
- $P = \{p_1, \ldots, p_m\}$ is a set of projects.
- $R = \{r_1, \ldots, r_k\}$ is a set of resources.
- $X \subseteq S \times P$ is a finite set of contracts.
- $\succeq_S = (\succeq_s)_{s \in S}$ are students' preferences over projects.
- $\succeq_P = (\succeq_p)_{p \in P}$ are projects' preferences over students.
- Resource r fits projects $T_r \subseteq P$, and $T_R = (T_r)_{r \in R}$.
- Resource r has capacity $q_r \in \mathbb{N}_{>0}$, and $q_R = (q_r)_{r \in R}$.

A contract $x = (s, p) \in X$ means that student s is matched to project p. For each student $s \in S$, strict order \succ_s represents her preference over set $P \cup \{\emptyset\}$. For each project $p \in P$, weak order \succeq_p represents its preference over set $S \cup \{\emptyset\}$. Preferences \succeq_p extend to 2^S in a non-specified manner that is both responsive and separable: For every pair of students $s, s' \in S$ and subset $S' \subseteq S \setminus \{s, s'\}$,

$$s \succeq_p s' \Leftrightarrow S' \cup \{s\} \succeq_p S' \cup \{s'\}.$$

For each $s \in S$ and $S' \subseteq S \setminus \{s\}, s \succeq_p \emptyset \Leftrightarrow S' \cup \{s\} \succeq_p S'$. Contract (s, p) is acceptable for student s if $p \succeq_s \emptyset$ holds. Contract (s, p) is acceptable for project p if $s \succeq_p \emptyset$ holds. Without loss of generality, we assume that every contract $(s, p) \in X$ is acceptable for student s and project p. (Any contract which is non-acceptable for either side is discarded from set X.) Given preference \succeq , let \sim (resp. \succ) be its symmetric (resp. asymmetric) part. Given subset of contracts $Y \subseteq X$, student s and project p, set Y_s denotes $\{(s, p) \in Y \mid p \in P\}$ and set Y_p denotes $\{(s, p) \in Y \mid s \in S\}$. Preferences naturally extend over contracts. When no misunderstanding is possible, we omit the subscript and just write \succ or \succeq .

Definition 2 (Matching). A (many students to one project) matching is a subset of contracts $Y \subseteq X$ such that for every student s, $|Y_s| \leq 1$. We can then abuse shorthand Y in a functional manner:

- Student s is mapped to project $Y(s) \in P \cup \{\emptyset\}$.
- Project p hires students $Y(p) \subseteq S$.

Definition 3 (Feasibility). Matching $Y \subseteq X$ is feasible if there exists an allocation function $\mu : R \to P$ that maps each resource r to one compatible project $\mu(r) \in T_r$, and that satisfies for every project $p \in P$ that:¹

$$|Y_p| \le \sum_{r \in \mu^{-1}(p)} q_r$$

A feasible matching (Y, μ) is a couple of a matching and an allocation as above. Let $q_{\mu}(p) = \sum_{r \in \mu^{-1}(p)} q_r$ be the total of capacities allocated to project p.

Definition 4 (Nonwastefulness). For feasible matching (Y, μ) , a contract $(s, p) \in X \setminus Y$ is an improving pair if and only if:

- student s has preference $p \succ_s Y(s)$,
- project p has preference $s \succ_p \emptyset$,
- and matching $(Y \setminus Y_s) \cup \{(s, p)\}$ is feasible.

A feasible matching (Y, μ) is nonwasteful if it admits no improving pair.

Definition 5 (Fairness). For feasible matching (Y, μ) , contract $(s, p) \in X \setminus Y$ is an envious pair if and only if:

- student s has preference $p \succ_s Y(s)$,
- there is a student $s' \in Y(p)$ such that p prefers $s \succ_p s'$,
- and matching $Y \setminus (Y_s \cup Y_{s'}) \cup \{(s, p)\}$ is feasible.²

A feasible matching (Y, μ) is fair if it has no envious pair. \Box

¹To handle the case where $p \notin \mu(R)$ and then $\mu^{-1}(p) = \emptyset$, we assume the standard convention that an empty sum equals zero.

²Since matching Y is made feasible by μ , matching $Y \setminus (Y_s \cup Y_{s'}) \cup \{(s, p)\}$ is also feasible by same allocation μ .

Definition 6 (Stability). A feasible matching (Y, μ) is stable if it is nonwasteful and fair. That is, it admits no improving pair and no envious pair.

We assume that following concepts are common knowledge: decision problem, function problem, length function, complexity classes P, XP, NP, coNP, FP^{NP} , NP^{NP} , coNP^{NP} , complementation, reduction, hardness and completeness. An SPR instance has length function $\Theta(nm + mk)$.

Definition 7. We study the following sequence of problems.

- SPR/FA:
- Given an SPR (instance) and a matching, is it feasible?
- SPR/NW/VERIF: Given an SPR and a feasible matching, is it nonwasteful?
- SPR/NW/FIND: Given an SPR, find a nonwasteful matching.
- SPR/STABLE/VERIF: Given an SPR and a feasible matching, is it stable?
- SPR/STABLE/EXIST:

Given an SPR, does a stable matching exist?

For this purpose, we create two new fundamental problems.

• PARETOPARTITION:

Given positive integers multiset $W = \{w_1, \ldots, w_n\}$, and m targets $\theta_1, \ldots, \theta_m \in \mathbb{N}$, any partition of W into a list V_1, \ldots, V_m of m subsets is mapped to deficit vector $\boldsymbol{\delta} \in \mathbb{Z}^m$ that is defined for every $i \in [m]$ by:

$$\delta_i = \min\left\{w(V_i) - \theta_i, 0\right\},\$$

where $w(V_i) = \sum_{w \in V_i} w$. (Subset V_i has negative value if it sums below θ_i , and value zero if it surpasses θ_i .) Find a partition of W into a list V_1, \ldots, V_m that is Paretoefficient³ with respect to the deficit vector.

• $\forall \exists$ -4-Partition:

Given positive integers multiset $W = \{w_1, \ldots, w_{4m}\}$, target $\theta \in \mathbb{N}$ and list of couples $u_1v_1, \ldots, u_\ell v_\ell$ of W, for map $\sigma : [\ell] \to \{0, 1\}$, we say that a partition of W into msubsets V_1, \ldots, V_m is σ -satisfying if and only if:

- for every $i \in [m]$, it holds that $|V_i| = 4$ and $w(V_i) = \theta$, - for every $i \in [\ell]$:

- IOI EVELY $j \in [k]$.
 - if $\sigma(j) = 1$ then u_j and v_j are in the same subset, if $\sigma(j) = 0$ then u_j and v_j are in different subsets.

Does, for every map $\sigma : [\ell] \to \{0, 1\}$, there exist a σ -satisfying partition of W into m subsets?

Preliminaries

Our main interest lies in computing a nonwasteful and fair matching. On one hand, it is well known that a nonwasteful matching can be obtained by mechanism Serial Dictatorship (SD) (Goto et al. 2017, Th. 1). The matching is constructed following a fixed priority on students: every student decides her most preferred project that is still feasible. Unfortunately, mechanism SD requires to verify feasibility – an NP-complete problem (Th. 1 below) – O(nm)

times. Hence SPR/NW/FIND is in class FP^{NP}[poly]. On the other hand, mechanism Artificial Caps Deferred Acceptance (ACDA) computes a fair matching (Goto et al. 2017, Th. 2) in polynomial-time. The idea is to fix (Pareto-efficient) artificial capacities on projects (e.g. by allocating every resource on projects that are top-preferred by some students) and use mechanism Deferre Acceptance (DA). Both SD and ACDA are strategy-proof. However, nonwastefulness and fairness are not compatible, since there exist SPR instances with no stable matching.

First, we settle the complexity of matching feasibility:

Theorem 1. SPR/FA is NP-complete.

Proof. An allocation μ is a yes-certificate that can be verified in polynomial-time, hence SPR/FA is in class NP.

To show NP-hardness, any instance of 4-PARTITION, defined by positive integers multiset $W = \{w_1, \ldots, w_{4m}\}$ and target $\theta \in \mathbb{N}$ is reduced to an instance of SPR/FA, as follows. One can assume that $\sum_{w \in W} w = m\theta$. There are m projects $P = \{p_1, \ldots, p_m\}$. In matching Y, θ students are matched to every project. Resources R are identified to multiset W: $q_R = (w_1, \ldots, w_{4m})$ and $T_r \equiv P$. Crucially, since 4-PARTITION is NP-hard even if integers w_i and θ are polynomially bounded, there is a polynomial number of students.

(yes \Leftrightarrow yes) There is a straightforward correspondence between a partition of W into m sets that hit θ , and an allocation that provides capacity for θ students on m projects. \Box

In Th. 1, the *strong* NP-hardness of 4-PARTITION is necessary: a similar construct from PARTITION with two projects would require an exponential number of students, which is not polynomial. This technical detail pushes us to generalize 4-PARTITION into PARETOPARTITION and $\forall \exists$ -4-PARTITION, also shown *strongly* hard for their classes.

The Complexity of Nonwastefulness

In this section, we first show that verifying nonwastefulness for a given matching is complete for class coNP. Hence, there is no natural verification procedure that makes SPR/NW/FIND lie in class NP. Indeed, we then show that computing a nonwasteful matching (which existence is guaranteed by SD) is FP^{NP}-complete; that is complete for a polynomial number of calls to (e.g.) SAT. The proof involves polynomial number encoding in a new PARETOPARTITION problem that we show strongly FP^{NP}-hard.

Theorem 2. SPR/NW/VERIF *is coNP-complete.* (Even if each student only has one acceptable project.)

Proof. An improving pair (s, p) along with the assignment ν that makes it feasible are no-certificates that are efficiently verifiable. Hence, SPR/NW/VERIF is in coNP.

To show coNP-hardness, we reduce any instance $W = \{w_1, \ldots, w_{4m}\}$ of 4-PARTITION with target θ and assumption $\sum_{w \in W} w = m\theta$ to the following co-instance, which yes-answers are for existent deviations. There are m + 2 projects: For $i \in [m]$, θ students want to attend p_i . There are $m\theta$ students who want to attend p_{m+1} , and $m\theta + m$ who want to attend p_{m+2} . In matching Y, all students are matched but one student s^* from p_{m+2} . Every project p_i , for

³Given two vectors $\delta, \delta' \in \mathbb{Z}^m$, vector δ Pareto-dominates δ' if and only if: $\forall i \in [m], \delta_i \geq \delta'_i$ and $\exists i \in [m], \delta_i > \delta'_i$. A vector is Pareto-efficient when no vector Pareto-dominates it.

Figure 1: Reducing 4-PARTITION to SPR/NW/VERIF: One more student can be matched to p_{m+2} if and only if the dashed assignment is feasible (solution to 4-PARTITION).

 $i \in [m]$ receives a resource r_{x_i} with capacity $q_{r_{x_i}} = \theta + 1$ and $T_{q_{r_{x_i}}} = \{p_i, p_{m+2}\}$. Project p_{m+1} receives 4m resources r_i identified with integer set $W = \{w_1, \ldots, w_{4m}\}$: every resource r_i for $i \in [m]$ has capacity $q_{r_i} = w_i$ and $T_{r_i} = \{p_i \mid i \in [m+1]\}$. Project p_{m+2} receives a resource r_z with capacity $q_{r_z} = m\theta + m - 1$ and $T_{r_z} = \{p_{m+1}, p_{m+2}\}$. Since integers w_i and θ are polynomially bounded, there is a polynomial number of students.

(yes \Rightarrow yes) If the 4-PARTITION instance admits a solution V_1, \ldots, V_m , then (s^*, p_{m+2}) is a feasible improving pair, as following allocation (dashed in Fig. 1) ν shows: $\nu^{-1}(p_i) \equiv V_i$ for $i \in [m]$, $\nu^{-1}(p_{m+1}) = \{r_z\}$ and $\nu^{-1}(p_{m+2}) = \{r_{x_i} \mid i \in [m]\}$. Indeed, allocation ν provides capacities $q_{\nu}(p_1) = \ldots = q_{\nu}(p_m) = \theta, q_{\nu}(p_{m+1}) = m\theta + m - 1$ and $q_{\nu}(p_{m+2}) = m\theta + m$.

(yes (yes) The only possible improving pair is (s^*, p_{m+2}) . The only way matching $Y \cup \{(s^*, p_{m+2})\}$ is feasible, is when $\nu^{-1}(p_{m+2}) = \{r_{x_i} \mid i \in [m]\}, \nu^{-1}(p_{m+1}) = \{r_z\}$ and projects p_i for $i \in [m]$ use resources r_i for $i \in [4m]$ in a perfectly balanced manner $q_{\nu}(p_1) = \ldots = q_{\nu}(p_m) = \theta$. Hence, $V_i \equiv \nu^{-1}(p_i)$ for $i \in [m]$ is a solution for 4-PARTITION.

Theorem 3. SPR/NW/FIND *is FP^{NP}-complete.* (Even if each student only has one acceptable project.)

Proof. Mechanism SD shows that SPR/NW/FIND belongs to FP^{NP} . Hardness follows from Lemma 1 and 2 below.

Lemma 1. PARETOPARTITION is strongly FP^{NP} -hard. (This result still holds when all targets are the same.)

Proof. Let any instance of MAX3DM be defined by finite sets A, B, C with |A| = |B| = |C| and triplets set $M \subseteq A \times B \times C$, |M| = m. Triplet $t = (a, b, c) \in M$ is mapped to payoff $v_t \in \mathbb{N}$. In a (partial) 3-dimensional matching (3DM), any element of $A \cup B \cup C$ occurs at most once in M'. The goal is to maximize $\sum_{t \in M'} v_t$ for $M' \subseteq M$ a (partial) 3-dimensional matching. This problem is FP^{NP}[poly]-complete (Gasarch, Krentel, and Rappoport 1995, Th. 3.5). For every $a_i \in A$ (resp. $b_j \in B$, $c_k \in C$), let $\#a_i$ (resp. $\#b_j, \#c_k$) denote the number of occurrences of a_i (resp. b_j ,

 c_k) in M: the number of triplets that contain a_i (resp. b_j, c_k). Let integer v_M denote total payoff $\sum_{t \in M} v_t$. Elements are identified with integers $i, j, k \in [n]$ and $t \in [m]$.

We reduce this problem to the following instance of PARETOPARTITION for which finding a solution gives out the optimum (solution) for the given MAX3DM instance. Formally, it is a many-one metric reduction. Set W contains 6m different integers that must be partitioned into m+1different subsets of various cardinalities. Every subset bears an objective for Pareto-efficiency. The idea is that a Paretoefficient deficit vector will always have deficit zero on the m first subsets, and will give the optimal value of MAX3DM by the deficit of the last subset. Given basis $\beta \in \mathbb{N}_{\geq 2}$ and integer sequence $(z_i)_{i \in \mathbb{N}}$, we define integer $\langle \dots z_2 \ \overline{z_1} \ z_0 \rangle_{\beta}$ by $\sum_{i>0} z_i \beta^i$, with $z_i = 0$ when it is not written. Let β be an integer large enough for such representation in basis β (as below) to never have remainders, even when one adds all the integers in W. Choosing $\beta = 32m|A| + 1$ will largely fit the purpose. The integers in set W are represented below. For every triplet $t = (a_i, b_j, c_k) \in M$, there is an integer $w(a_i, b_i, c_k)$. For every element $a_i \in A$, we introduce one *actual* integer $w(a_i)$ representing the actual element intended to go with the triplets in a 3-dimensional matching, and $\#a_i - 1$ dummies who will go with the triplets that are not in the 3-dimensional matching. Similarly, we introduce $\#b_j$ integers for every $b_j \in B$ and $\#c_k$ integers for every $c_k \in C$. For every triplet $t \in M$, we introduce two integers $w(v_t)$ and $w'(v_t)$ which roles we precise later.

triplet t							
$w((\overline{(a_i, b_j, c_k)}) = \langle 1$	1	-i	-j	-k	-t	0	$0\rangle_{\beta}$
actual $w(a_i) = \langle 1$ # $a_i - 1 w'(a_i) = \langle 1$	$\frac{2}{2}$	$_{i}^{i}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\frac{2}{1}$	$\begin{array}{c} 0 \rangle_{eta} \\ 0 \rangle_{eta} \end{array}$
actual $w(b_j) = \langle 1$ # $b_j - 1 w'(b_j) = \langle 1$	$\frac{4}{4}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$j \\ j$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	21	$\begin{array}{c} 0 angle_{eta} \ 0 angle_{eta} \ 0 angle_{eta} \end{array}$
actual $w(c_k) = \langle 1$ $\#c_k - 1 \ w'(c_k) = \langle 1$	8 8	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$k \atop k$	$\begin{array}{c} 0 \\ 0 \end{array}$	21	$\begin{array}{c} 0 angle_{eta} \ 0 angle_{eta} \ 0 angle_{eta} \end{array}$
actual $w(v_t) = \langle 1$ goal $w'(v_t) = \langle 1$	$\begin{array}{c} 16 \\ 16 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$t \ t$	$\begin{array}{c} 0 \\ 3 \end{array}$	$\begin{array}{c} 0 angle_{eta} \ v_t angle_{eta} \end{array}$
targets $\theta_{1m} = \langle 5 $ target $\theta_{m+1} = \langle m$	$\begin{array}{c} 31 \\ 16m \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 6 \\ 0 \end{array}$	$\begin{array}{c} 0 angle_{eta} \ v_M angle_{eta} \end{array}$			

The idea is that every subset V_i (which corresponds to an objective for Pareto-efficiency) has a preference on integers with respect to columns, from the heaviest weight β^7 to the lower one β^0 , because in basis β , sums of integers in W never have remainders from a column to a heavier one. Firstly, for Pareto-efficiency, due to the heaviest digits, each subset V_1, \ldots, V_m must contain five elements, and subset V_{m+1} must contain m elements, in order to induce a deficit of approximately zero (if we round the digits of lower weight $\beta^6 \dots \beta^0$). Indeed, since the sum of the heaviest digits is 6m, any other repartition would induce (approximate) deficits in multiples of $-\beta^7$ for some subset, hence would be Pareto-dominated. Secondly, for similar reasons, because of the second heaviest digits (the powers of 2), each subset V_1, \ldots, V_m must contain one w(a, b, c)integer, one w(a) or w'(a), one w(b) or w'(b), one w(c)

or w'(c), and one w(v) or w'(v). Also, subset V_{m+1} must contain a number m of w(v) or w'(v) integers. Digits on β^5, \ldots, β^2 (that contain integers $\pm i, \pm j, \pm k, \pm t$) make every triple integer $w(a_i, b_i, c_k)$ be precisely with its own elements (actual or dummies): $w(a_i)$ or $w'(a_i)$, $w(b_j)$ or $w'(b_i), w(c_k)$ or $w'(c_k)$, and own payoff integer: $w(v_t)$ or $w'(v_t)$. To sum up, rounding the two lower digits, any partition $V_1, \ldots, V_m, V_{m+1}$ that respects the constraints above has (approximate) deficits zero for every subset V_i , and any other partition would be Pareto-dominated by this (approximate) ideal point, hence not Pareto-efficient. Then, we already know that for every triple $t = (a_i, b_i, c_k)$, either payoff integer $w(v_t)$ is with triple integer w(t), and $w'(v_t)$ in V_{m+1} , either $w'(v_t)$ is with w(t), and $w(v_t)$ in V_{m+1} . While deficit on digit β^1 for V_{m+1} is always zero, and deficit on digits β^0 for $V_{1...m}$ are also always zero, assuming Paretoefficiency, payoff integer $w'(v_t)$ only goes in V_{m+1} when the (only) three actual elements integers are together, like in a (partial) 3-dimensional matching, in order to yield deficits zero on digit β^1 for $V_{1...m}$. All in all, Pareto-efficiency, while requiring a partition which structure follows any (partial) 3dimensional matching M', simply asks an optimal deficit $\delta_{m+1} = \sum_{t \in M'} v_t - v_M$ for subset V_{m+1} . To conclude, there is a correspondence between optimal

To conclude, there is a correspondence between optimal 3-dimensional matchings M' (resp. their values $\sum_{t \in M'} v_t$) and Pareto-efficient partitions (resp. deficit $\delta_{m+1} = \sum_{t \in M'} v_t - v_M$; recall that $\delta_1 = \ldots = \delta_m = 0$). This is a polynomial many-one metric reduction. Crucially, no integer is larger than polynomial β^8 ; hence PARETOPAR-TITION is *strongly* FP^{NP}-hard. Also, one can build the exact same reduction with $\theta_1 = \ldots = \theta_m = \theta_{m+1} = m\beta^7 + 16m\beta^6 + v_M$, by introducing *m* gap integers $(m - 5)\beta^7 + (16m - 31)\beta^6 + v_M$ in set *W*.

Lemma 2. PARETOPARTITION \leq_p SPR/NW/FIND

Proof. We reduce any instance $W = \{w_1, \ldots, w_n\}$ and $\theta_1, \ldots, \theta_m \in \mathbb{N}$ of PARETOPARTITION to the following (very simple) instance of SPR/NW/FIND. There are m projects p_1, \ldots, p_m ; and for each project p_i there is a set of θ_i students who consider only p_i acceptable (and reciprocally), strictly above \emptyset . Crucially, since numbers in the PARETOPARTITION instance are polynomially bounded, there is only a polynomial number of students. Set of resources R is identified with integers set W: any resource is compatible with any project and $q_R = (w_1, \ldots, w_n)$.

Computing a nonwasteful matching (Y, μ) precisely outputs a partition $V_1, \ldots, V_m \equiv \mu^{-1}(p_1), \ldots, \mu^{-1}(p_m)$ with Pareto-efficient deficits: if there was a partition (allocation) which deficits (unmatched students) Pareto-dominated the deficits of V_1, \ldots, V_m , then an improving pair would exist. In other words, it is not possible to obtain one more capacity for an unmatched student without decreasing capacity on an other project p_i (with $q_\mu(p_i) \leq \theta_i$).

The Complexity of Stability

A matching that is both nonwasteful and fair (i.e.: stable) may not exist. In this section, we settle the complexity of deciding whether one exists in a given SPR, as Σ_2^P -complete.

Theorem 4. SPR/STABLE/VERIF *is also coNP-complete.* (Even if each student only has one acceptable project.)

Proof. It is the same proof as for verifying nonwastefulness, since no envious pair is possible. Furthermore, verifying fairness is straightforward in P (see Def. 5, footnote).

Theorem 5. SPR/STABLE/EXIST *is NP^{NP}-complete*.

Proof. A stable matching is a yes-certificate that can be verified in coNP time. Therefore, SPR/STABLE/EXIST belongs to NP^{NP}. Hardness follows from Lem. 3 and 4 below. \Box

Lemma 3. $\forall \exists$ -4-PARTITION is strongly $coNP^{NP}$ -hard. (It holds even if couples are disjoint and couple heads u go in distinct subsets.)

Proof. Let any instance of $\forall \exists -3DM$ be defined by finite sets A, B, C with |A| = |B| = |C| and two disjoint triplets set $M, N \subseteq A \times B \times C$, with |M| = m and |N| = n. This decision problem asks whether:

$$\forall M' \subseteq M, \quad \exists N' \subseteq N, \quad M' \cup N' \text{ is a 3DM},$$

where $M' \cup N'$ a 3DM means that any element of $A \cup B \cup C$ occurs exactly once in $M' \cup N'$. It is a Π_2^p -complete problem (McLoughlin 1984). For every $a_i \in A$ (resp. $b_j \in B$, $c_k \in C$), let $\#a_i$ (resp. $\#b_j, \#c_k$) denote the number of occurrences of a_i (resp. b_j, c_k) in M: the number of triplets that contain a_i (resp. b_j, c_k). One can identify elements and triplets with integers $i, j, k \in [n]$ and $t \in [m]$.

We reduce it to the following $\forall \exists$ -4-PARTITION instance. Set W contains the 4(m + n) integers depicted below in basis $\beta = 4(m + n)|A| + 1$ (def. in proof for Lem. 1). For every triplet $t = (a_i, b_j, c_k) \in M \cup N$, there is one "triplet" integer $w(a_i, b_j, c_k) \in \mathbb{N}$. For every element $a_i \in A$, we introduce one *actual* integer $w(a_i)$ representing the actual element intended to go with the triplets in the 3DM, and $\#a_i - 1$ dummies who will go with the triplets that are not in the 3-dimensional matching. Similarly, we introduce $\#b_j$ integers for each $b_j \in B$ and $\#c_k$ integers for each $c_k \in C$. Target $\theta = \beta^5 + 15\beta^4$ is given below.

triplet t					
$w((\overline{(a_i, b_j, c_k)}) = \langle 1$	1	-i	-j	-k	$0 angle_{eta}$
$\overset{\text{one actual}}{\#a_i - 1 \text{ dum.}} w(a_i) = \langle 1$	2	i	0	0	${}^{-2(\mathrm{actual})}_{0(\mathrm{dummy})} angle_{eta}$
$\overset{\text{one actual}}{\#b_j - 1 \text{ dum.}} w(b_j) = \langle 1$	4	0	j	0	$^{+1(\mathrm{actual})}_{0(\mathrm{dummy})} angle_{eta}$
one actual $\#c_k - 1 \text{ dum.} w(c_k) = \langle 1 \rangle$	8	0	0	k	$^{+1(\mathrm{actual})}_{0(\mathrm{dummy})} angle_{eta}$
target $\theta = \langle 4 \rangle$	15	0	0	0	$0\rangle_{\beta}$

We define a list of couples of length $\ell = |M|$ in W: for every triple $t = (a_i, b_j, c_k) \in M$, we associate in a couple $u_t v_t$ "triplet" integer $u_t = w(a_i, b_j, c_k)$ with the "actual" integer $v_t = w(a_i)$. This instance asks whether:

 $\forall \sigma : [\ell] \to \{0, 1\}, \exists \sigma$ -satisfying partition of W.

First let us observe that since β is large enough, additions in W never have remainders. Hence, subsets must hit the target on each column of this representation. Consequently, in any 4-partition of W, there are 4 elements (in case it wasn't required), one of each in: "triplet" integers, elementa integers, element-b integers and element-c integers. Moreover, "triplet" integer $w(a_i, b_j, c_k)$ is with "its" elements $w(a_i), w(b_j)$ and $w(c_k)$. Also, actual elements must be in the same subset, and dummies in others. Therefore, there is a correspondence between any (full) 3-dimensional matching $M' \cup N'$ and a 4-partition, since in a 4-partition, the actual elements are regrouped according to triplets.

(yes \Rightarrow yes) Assume the 3DM instance is a yes, and let σ : $[\ell] \rightarrow \{0,1\}$ be any couple enforcement/forbidding function. We construct a σ -satisfying 4-partition in correspondence with the following 3-dimensional matching $M' \cup N'$: for $t \in [\ell] \equiv M$, triplet t is in M' if and only if $\sigma(t) = 1$; then the assumption gives N' such that $M' \cup N'$ is a 3DM. We construct the corresponding 4-partition (see paragraph above), and it is σ -satisfying.

(yes \Leftarrow yes) Assume the partition instance is a yes, and let us show that for any $M' \subseteq M$, there is $N' \subseteq N$ such that $M' \cup N'$ is a 3DM. Let σ be defined as $\sigma(t) = 1$ if and only if $t \in M'$. A σ -satisfying 4-partition exists, and is in correspondence with some 3DM $M' \cup N'$ (see above).

It follows from this construction that the lemma holds even if couples are disjoint and no subset shall contain two heads, that is two u elements. Crucially, hardness holds even if numbers are polynomially bounded above by β^6 .

Lemma 4. $\forall \exists$ -4-PARTITION \leq_p CO-SPR/STABLE/EXIST

Proof. We reduce any $\forall \exists$ -4-PARTITION instance to the CO-SPR/STABLE/EXIST instance depicted in Figure 2. The idea is that capacity requirements of projects p_1, \ldots, p_m model the *m* targets of a 4-partition. Since integers u_1, \ldots, u_ℓ are in different subsets, we remove them from the targets of p_1, \ldots, p_ℓ (assuming they are already therein). We have a correspondance between enforcing u_t and v_t together in a 4-partition (by $\sigma(t) = 1$) and letting capacity requirement of project p_t be $\theta - u_t - v_t$ (that's u_t and v_t therein together), by matching $\overline{s_{v_t}}$ with p'_t and allocating r_{v_t} on p'_t (out of the remaining feasibility problem on p_1, \ldots, p_m). Conversely, there is a correspondance between forbidding u_t and v_t to be together in a 4-partition (by $\sigma(t) = 0$), and trying to match $\overline{s_{v_t}}$ with p_t , hence bringing its capacity requirement to $\theta - u_t$, while resource r_{v_t} can't be allocated to p_t . Remark that no student in any class $\overline{s_{v_t}}$ can be involved in an improving or envious pair (unless unmatched).

(yes \Rightarrow yes) For any $\sigma : [\ell] \rightarrow \{0, 1\}$, there exists a σ satisfying 4-partition $V_1, \ldots, V_\ell, V_{\ell+1}, \ldots, V_m$ such that for any $t \in [\ell]$, firstly $u_t \in V_t$ and secondly $v_t \in V_t$ if and only if $\sigma(t) = 1$. For the sake of contradiction, let us assume a stable matching (Y, μ) . By nonwastefulness, for every $t \in$ $[\ell]$, either $\mu(r_{v_t}) = p'_t$ (think to $\sigma(t) = 1$) or $\mu(r_{v_t}) \in \{p_i \mid i \neq t\}$ (think to $\sigma(t) = 0$). Provided by the σ -satisfying 4partition, there is an allocation of v_1, \ldots, v_ℓ and $W \setminus \mathcal{L}$ that makes feasible a full matching $Y(\overline{s_i}) = p_i$ for any $i \in [m]$. Hence it would be wasteful to use resource r_1 on projects $\{p_1, \ldots, p_m\}$ and it is allocated to p_a or p_b . The SPR defined by s_a, s_b, p_a, p_b, r_1 cannot be stable.

Figure 2: Given a $\forall \exists$ -4-PARTITION instance defined by $m \in \mathbb{N}$, positive integers multiset $W = \{w_1, \ldots, w_{4m}\}$, target $\theta \in \mathbb{N}$ and list of couples $\mathcal{L} = u_1 v_1, \ldots, u_\ell v_\ell$ of W, we construct the CO-SPR/STABLE/EXIST instance depicted above, which contains $\ell + m + 2$ projects $p'_1, \ldots, p'_\ell, p_1, \ldots, p_m, p_a, p_b$ which preferences (strictly above \emptyset) are in the boxes. There are $m\theta - \sum_{t=1}^{\ell} u_t + 2$ students, distributed in $\ell + m$ different classes $\overline{s_{v_1}}, \ldots, \overline{s_{v_\ell}}, \overline{s_1}, \ldots, \overline{s_m}$ which sizes are on the left of classes, and two students s_a, s_b . Crucially, since $\forall \exists$ -4-PARTITION is strongly hard, there is a polynomial number of students. There are $|W| - \ell + 1$ resources with compatibilities depicted by right-left arrows, and capacities inside the boxes. For every $t \in [\ell]$, resource r_{v_t} is compatible with $\{p'_t\} \cup \{p_i \mid i \neq t\}$.

(no \Rightarrow no) There exists $\sigma : [\ell] \rightarrow \{0,1\}$ such that no σ -satisfying 4-partition exists. Let us construct a stable matching (Y, μ) . For any $t \in [\ell]$:

- if $\sigma(t) = 1$, then $Y(\overline{s_{v_t}}) = p'_t$ and $\mu(r_{v_t}) = p'_t$;
- if $\sigma(t) = 0$, then $\mu(r_{v_t}) \in \{p_i \mid i \neq t\}$.

More precisely, we allocate the resources in a way that minimizes the number of unmatched students in $\overline{s_1}, \ldots, \overline{s_m}$ and $\overline{s_{v_t}}$ for $\sigma(t) = 0$. However, since no σ -satisfying 4-partition exists, some projects in p_1, \ldots, p_m have deficits of capacity. We allocate r_1 with one of those. Then, the SPR defined by s_a, s_b, p_a, p_b is stable in its emptyness.

Related Work

When the capacity of every project is fixed, a matching that satisfies stability, fairness and efficiency can be found by using the celebrated Gale-Shapley mechanism (Gale and Shapley 1962) (also referred to as Deferred Acceptance (DA) mechanism), which is also strategyproof. The present work deals with constrained two-sided matching, which has been attracting attention from AI researchers (Aziz et al. 2017; Hamada et al. 2017). Many real-world matching markets are subject to a variety of distributional constraints, including regional maximum quotas, which restrict the total number of students assigned to a set of schools (Kamada and Kojima 2015), minimum quotas, which guarantee that a certain number of students are assigned to each school (Fragiadakis et al. 2016; Sönmez and Switzer 2013; Sönmez 2013), and diversity constraints, which enforce that a school satisfies a balance between different types (e.g., socioeconomic status) of students (Hafalir, Yenmez, and Yildirim 2013; Ehlers et al. 2014). Also, there exists a stream of works that examines the computational complexity for finding a matching that satisfies some desirable properties under distributional constraints, including (Biró et al. 2010; Fleiner and Kamiyama 2012).

References

Aziz, H.; Biró, P.; Fleiner, T.; Gaspers, S.; de Haan, R.; Mattei, N.; and Rastegari, B. 2017. Stable matching with uncertain pairwise preferences. In *Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS*, 344–352.

Biró, P.; Fleiner, T.; Irving, R. W.; and Manlove, D. F. 2010. The college admissions problem with lower and common quotas. *Theoretical Computer Science* 411(34-36):3136–3153.

Ehlers, L.; Hafalir, I. E.; Yenmez, M. B.; and Yildirim, M. A. 2014. School choice with controlled choice constraints: Hard bounds versus soft bounds. *Journal of Economic Theory* 153:648–683.

Fleiner, T., and Kamiyama, N. 2012. A matroid approach to stable matchings with lower quotas. In *Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-12)*, 135–142.

Fragiadakis, D.; Iwasaki, A.; Troyan, P.; Ueda, S.; and Yokoo, M. 2016. Strategyproof matching with minimum quotas. *ACM Transactions on Economics and Computation* 4(1):6:1–6:40.

Gale, D., and Shapley, L. S. 1962. College admissions and the stability of marriage. *The American Mathematical Monthly* 69(1):9–15.

Gasarch, W. I.; Krentel, M. W.; and Rappoport, K. J. 1995. Optp as the normal behavior of np-complete problems. *Mathematical Systems Theory* 28(6):487–514.

Goto, M.; Kojima, F.; Kurata, R.; Tamura, A.; and Yokoo, M. 2017. Designing matching mechanisms under general distributional constraints. *American Economic Journal: Microeconomics* 9(2):226–62.

Hafalir, I. E.; Yenmez, M. B.; and Yildirim, M. A. 2013. Effective affirmative action in school choice. *Theoretical Economics* 8(2):325–363.

Hamada, N.; Ismaili, A.; Suzuki, T.; and Yokoo, M. 2017. Weighted matching markets with budget constraints. In *Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS*, 317–325.

Kamada, Y., and Kojima, F. 2015. Efficient matching under distributional constraints: Theory and applications. *American Economic Review* 105(1):67–99.

McLoughlin, A. 1984. The complexity of computing the covering radius of a code. *IEEE Transactions on Information Theory* 30:800–804.

Sönmez, T., and Switzer, T. B. 2013. Matching with (branch-of-choice) contracts at the United States military academy. *Econometrica* 81(2):451–488.

Sönmez, T. 2013. Bidding for army career specialties: Improving the ROTC branching mechanism. *Journal of Political Economy* 121(1):186–219.

Yamaguchi, T., and Yokoo, M. 2017. private communication.