Goldbach’s conjecture

Toshiro Takami*
mmm82889@yahoo.co.jp

Abstract
I proved the Goldbach’s conjecture. Even numbers are prime numbers and prime numbers added, but it has not been proven yet whether it can be true even for a huge number (forever huge number).
All prime numbers are included in (6n -1) or (6n+1) except 2 and 3 (n is a positive integer).
All numbers are executed in hexadecimal notation. This does not change even in a huge number (forever huge number).
The larger the even value, the more the number of prime number plus prime number that become even.
That is because the number of rotations of the hexagon increases.
The number is infinite. the number circlate this hexagon infinite.

key words
Eternal rotation in a hexagon, Forever huge number, Prime number, Goldbach’s conjecture

Introduction

(6n -2), (6n), (6n+2) in are even numbers.
(6n -1), (6n+1), (6n+3) are odd numbers.

Prime numbers are (6n -1) or (6n+1). Except 2 and 3. (n is positive integer).
The following is a prime number.
There are no prime numbers that are not (6n -1) or (6n+1).

(6n -2), (6n), (6n+2) are even numbers. (6n -1), (6n+1), (6n+3) are odd numbers.

(6n+2) are not prime number, except 2.
(6n+3) are not prime number, except 3.
In a hexagonal diagram, \((6n-1)\) and \((6n+1)\), many are prime numbers.

\[
(6n-1)+(6n-1)=6(2n)-2, \quad \text{4th angle is Even numbers.}
\]
\[
(6n-1)+(6n+1)=6(2n), \quad \text{0th angle is Even numbers.}
\]
\[
(6n+1)+(6n+1)=6(2n)+2, \quad \text{2th angle is Even numbers.}
\]

Discussion

At \((6n-1)\), include not prime numbers below.
For example,
35, 65, 77, 95, 119, 125, 143, 155, 161, 185.....as the 5th angle and not a prime number.

At \((6n+1)\), include not prime numbers below.
For example,
25, 49, 55, 85, 91, 115, 133, 145, 169, 175, 187.....as 1st angle.

For example, 65 is 5th angle, but the next rotation, 71 to which 6 is added, is a prime number.
Also, 335 is 5th angle, but the next rotation, 347 to which 6 + 6 is added, is a prime number.

As the size of the even number increases, the combination of (odd number not prime) plus (odd number not prime), (odd number not prime) plus (prime number), and (prime number) plus (prime number) also increases.

The fact that the set of (prime) plus (prime) increases to an even number means that the even number of (prime) plus (prime) always exists.

This is because as the even size increases, the number of rotations within the hexagon also increases proportionally.

All even numbers are included in 0th angle, 2th angle, 4th angle.
And, all prime numbers are present in 1th angle, 5th angle. except 2 and 3.

\((5\text{th angle} + 5\text{th angle})\) are 4th angle(even number).
\((5\text{th angle} + 1\text{th angle})\) are 0th angle(even number).
\((1\text{th angle} + 1\text{th angle})\) are 2th angle(even number).
0th
6n

5th
6n-1

1th
6n+1

4th
6n-2

2th
6n+2

3th
6n+3

...
Conclusion

The larger the even value, the more the number of prime number plus prime number that become even.

That is because the number of rotations of the hexagon increases. The number is infinite. The number circle this hexagon infinite.

In this way, the number is running in hexadecimal notation, and the decimal method which is most used now is wrong in a strict sense.

Thus, all numbers are executed in hexadecimal notation. It does not change in a huge number (forever huge number).

It is clear that all the even numbers are a prime number plus a prime number if it comes to the idea of a hexadecimal system.

References

