
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 1

Fully-Automated Segmentation of Fluid/Cyst
Regions in Optical Coherence Tomography Images
with Diabetic Macular Edema using Neutrosophic

Sets and Graph Algorithms
Abdolreza Rashno, Student Member, IEEE, Dara D. Koozekanani, Member, IEEE, Paul M. Drayna, Behzad

Nazari, Saeed Sadri, Hossein Rabbani, Senior Member, IEEE, Keshab K. Parhi, Fellow, IEEE,

Abstract—This paper presents a fully-automated algorithm to
segment fluid-associated (fluid-filled) and cyst regions in optical
coherence tomography (OCT) retina images of subjects with
diabetic macular edema (DME). The OCT image is segmented
using a novel neutrosophic transformation and a graph-based
shortest path method. In neutrosophic domain, an image g is
transformed into three sets: T (true), I (indeterminate) that
represents noise, and F (false). This paper makes four key
contributions. First, a new method is introduced to compute
the indeterminacy set I , and a new λ-correction operation is
introduced to compute the set T in neutrosophic domain. Second,
a graph shortest-path method is applied in neutrosophic domain
to segment the inner limiting membrane (ILM) and the retinal
pigment epithelium (RPE) as regions of interest (ROI) and outer
plexiform layer (OPL) and inner segment myeloid (ISM) as
middle layers using a novel definition of the edge weights. Third, a
new cost function for cluster-based fluid/cyst segmentation in ROI
is presented which also includes a novel approach to estimating
the number of clusters in an automated manner. Fourth, the final
fluid regions are achieved by ignoring very small regions and the
regions between middle layers. The proposed method is evaluated
using two publicly available datasets: Duke, Optima, and a third
local dataset from the UMN clinic which is available online.
The proposed algorithm outperforms the previously proposed
Duke algorithm by 8% with respect to the dice coefficient
and by 5% with respect to precision on the Duke dataset,
while achieving about the same sensitivity. Also, the proposed
algorithm outperforms a prior method for Optima dataset by
6%, 22% and 23% with respect to the dice coefficient, sensitivity
and precision, respectively. Finally, the proposed algorithm also
achieves sensitivity of 67.3%, 88.8% and 76.7%, for the Duke,
Optima, and the UMN datasets, respectively.

Index Terms—Fluid/cyst segmentation, graph theory, neu-
trosophic set, optical coherence tomography, diabetic macular
edema.
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I. INTRODUCTION

OPTICAL coherence tomography (OCT) is a non-invasive
and non-contact imaging method with extensive clinical

use in ophthalmology. It uses optical technology to create
tomographic images with variable scan rates and resolutions,
and is used to create cross-sectional images of ocular tissues,
including the retina [1], [2]. It is extensively used clinically
for the diagnosis and follow-up of patients with DME and
age-related macular degeneration (AMD). OCT images allow
detection and quantitative assessment of retinal abnormalities
[3].

The macula is the central part of the retina and is critical for
good vision. Diabetic macular edema (DME), manifested by
fluid cysts within the retina and retinal thickening, is caused
by fluid leakage from damaged macular blood vessels. This
is the most common cause of vision loss among working-
aged adults in the United States. OCT images allow very
sensitive detection and quantitative assessment of these fluid
cysts and retinal thickening [4], [5]. Ophthalmologists evaluate
the severity of DME using retinal thickness maps to indirectly
measure the intra-retinal fluid/cyst regions in OCT images.
Manual segmentation of fluid/cyst regions is a time consuming
task and is prone to human errors [6]. Currently, very few
automated methods for fluid/cyst segmentation exist; some of
these are reviewed in Section II.

Neutrosophy is a branch of philosophy which studies the
nature and scope of the neutralities and their interactions which
is the basis of neutrosophic logic and neutrosophic (NS) set
[7]. This theory was applied for image processing first by
Guo et al. [8] and it has subsequently been successfully used
for other image processing operations including image seg-
mentation [8]–[11], image thresholding [12], medical image
segmentation [13] and edge detection [14]. Also, NS has been
adapted for data and image clustering as well [15].

Graph theory is one of the powerful tools for image segmen-
tation due to the benefits of mapping the image pixels (voxels)
and relationship between them onto a graph. Graph theory
based image segmentation makes use of techniques such as
minimal spanning tree, graph cut with cost function, graph
cut on Markov random field models, shortest path methods
and random walker methods [16]. Graph-based image segmen-
tation methods have been applied in OCT segmentation; some
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prior works include: automated layer segmentation [2], [17]–
[19], optic disc segmentation [20] and drusen segmentation
[21].

The main contributions of this paper that lead to a fully-
automated method for the segmentation of fluid-associated and
cyst regions in two-dimensional (2D) OCT of DME subjects
are summarized as follows:

1) The OCT images are first transformed into three sets
T (true), I(indeterminacy) and F (false) in the NS do-
main and denoised simultaneously. This is done by the
novel definition of indeterminacy set and proposed λ-
correction operation which is robust to the structures and
intrinsic properties of the OCT images. The traditional
NS domain processing, developed for natural images,
is not directly applicable to OCT segmentation due to
its layered structure. The proposed approach is the first
approach to make use of NS logic for OCT image
segmentation. Set T is the output of this step and is
used for all subsequent steps.

2) The outer layers inner limiting membrane (ILM) and
retinal pigment epithelium (RPE) are segmented as
region of interest (ROI) and the middle layers outer
plexiform layer (OPL) and inner segment myeloid (ISM)
are segmented using the proposed graph shortest path
based method in the NS domain. With respect to graph
construction, new definitions of edge weights are intro-
duced for layer segmentation. Note that middle-layer
segmentation is a key step of the algorithm to reduce
the number of false positives which is used in the post-
processing step.

3) A new method in the neutrosophic domain is pro-
posed for fluid/cyst segmentation. Then, the appropriate
number of clusters is computed automatically from the
estimated fluid/cyst regions and is used by the proposed
clustering scheme for segmentation. In the clustering
method, a new cost function is defined and minimized
to obtain the segmented image.

4) In the post-processing step, both the segmented regions
between middle layers and small segmented regions are
ignored.

The rest of this paper is organized as follows: Section II
describes related works. The neutrosophic set approach is
reviewed in Section III. Proposed algorithms are presented
in Section IV. Experimental setup and results are described
in Sections V and VI, respectively. Statistical comparison and
discussion are presented in Section VII. Finally, conclusions
and future directions are discussed in Section VIII. A prelim-
inary version of this work has been reported in [22].

II. RELATED WORKS

For segmentation and quantification of fluid/cyst features in
OCT images, several methods have been proposed. A semi-
automated method for fluid-filled region segmentation in AMD
subjects was proposed in [23]. In this method, a deformable
model for accurate shape descriptions of fluid-filled regions
was presented followed by a nonlinear anisotropic diffusion
filter to decrease the effect of speckle noise. This method

was evaluated on 7 AMD subjects and then quantitative and
qualitative (good, fair and poor extraction) analysis were
carried out. Note that all following methods are considered
as automated methods.

In [3], a supervised method was proposed to identify fluid-
filled regions and retinal layers on 110 Bscans of 10 patients
with DME. In this method, fluid and retinal layer positions
were estimated by a kernel regression-based classification
approach. The classification method is then used for more
accurate segmentation of retinal layer boundaries using a graph
theory and dynamic programming framework. In [24], intra-
retinal and sub-retinal fluid regions were detected in 78 SD-
OCT volumes from 23 AMD patients by a supervised 3D
method. This method computes the local differences from
normal appearance by 23 extracted features in each layer
locally and the normal ranges of layer-specific feature vari-
ations derived from 13 SD-OCT volumes of normal subjects.
Fluid-associated abnormalities in OCT images of 15 OCT
volumes from 15 AMD subjects undergoing intravitreal anti-
VEGF injection treatment were segmented by a supervised
3D method [25]. This method includes two main steps. Layer
segmentation, candidate fluid identification and retinal OCT
flattening were carried out in the first step. In the second step,
a probability constrained graph search graph cut method was
proposed to refine the candidate fluid regions. In [26], fluid
filled boundaries on B-scans (x and y-axes) and C-scans (z-
axis) were identified in DME subjects by an unsupervised
method based on fuzzy level set. These boundaries were
combined to generate 3D segmentation of retinal fluid. Then,
morphological characteristics were used for the elimination of
artefactual fluid regions. Identification of vascular shadowing
was also used for removing such artefactuals. The accuracy of
this method in retinal fluid segmentation was evaluated on 10
DME subjects. In [27], an automated method based on artifi-
cial neural network combined with a segmentation framework
based on geodesic graph cut for retinal fluid segmentation from
OCT images of AMD subjects was presented. This method
was evaluated on 30 OCT volumes from 10 AMD subjects at
3 different treatment stages. In [28], a supervised 2D segmen-
tation of cyst regions in AMD patients was presented based on
k-means cluster analysis and k-nearest neighbor classifier. 31
volume scans collected during a 4-year period from one AMD
patient with a serous retinal detachment were used to evaluate
this method. Localization of cysts in OCT images of DME
subjects was proposed using an unsupervised 2D method in
[29]. In this approach, sub-retinal layers segmentation, dark
regions detection, and solidity analysis steps were carried out
for fluid segmentation. In [30], microcystic macular edema
pixels were classified using a supervised 2D method based
on random forest classifier with intensity and spatial features.
Automatic segmentation of intraretinal cysts from 3D OCT
images of DME patients was presented using an unsupervised
method with three-dimensional curvelet transform [31]. This
method was evaluated on 30 OCT volumes of 10 subjects at
3 different stages of treatment. In [32], an unsupervised 2D
retinal cyst segmentation method was proposed based on bilat-
eral filter for DME subjects. This approach was tested on 16
vitreoretinal patients and three control subjects. Detection of
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cysts among DME subjects with non-linear complex diffusion
and mathematical morphology operations was proposed by an
unsupervised 2D method in [33]. Detection of pseudo-cysts
on Spectralis OCT and Cirrus OCT scans of DME subjects
was proposed based on a supervised 2D method in [34], [35].
These methods were evaluated on a small sample size of five
subjects. Supervised 3D cystoid macular edema segmentation
of macular hole images of DME patients was presented in [36].
This method was tested in 3D OCT images from 18 subjects
with cystoid macular edema and macular hole. Finally, in
[37], a higher-order constraint-based supervised 3D method
was proposed based on label propagation for fluid-associated
regions segmentation.

Fluid/cyst regions can be revealed in AMD and DME
subjects. Therefore, proposed methods for fluid/cyst segmen-
tation are categorized as AMD and DME methods. Also,
segmentation methods can be applied to 2D OCT slices and
3D OCT volumes which are referred as 2D and 3D meth-
ods, respectively. Furthermore, segmentation methods that use
fluid/cyst regions labeled by experts are referred as supervised
methods. Unsupervised methods segment fluid/cyst regions
directly without requiring manually segmented regions. Fi-
nally, if user interaction is used in segmentation process the
method is semi-automated; otherwise it is automated. A brief
explanation of how our proposed method is similar to and
differs from the related works is summarized as follows.
The proposed method defines a new cost function in NS
domain. Then, the cost function is minimized which leads to an
unsupervised segmentation of 2D OCT slices of DME patients.
Therefore, the proposed method can be considered in the same
category of methods proposed in [29], [32], [33]. Similar to the
proposed method, methods in [3], [30], [34], [35], [38] are 2D
methods applicable to DME subjects although these methods
use supervised procedures in segmentation process. Methods
in [26], [31] address the same problem as the proposed
method except these methods have been applied to 3D OCT
volumes rather than 2D slices. [36], [37] also present DME
methods which have been applied to 3D OCT volumes but
in a supervised manner. Apart from the proposed methods for
DME subjects, methods in [24], [25], [27], [39] have been
proposed for AMD subjects using a supervised 3D procedure.
Correlation between initial vision and vision improvement
with automatically calculated retinal cyst volume in treated
DME subjects was analysed in [40].

III. REVIEW OF NEUTROSOPHIC IMAGES

A. Neutrosophic Set

Consider that X is a universal set in the neutrosophic
domain and a set A is included in X . Each member x in
A is described with three real subsets of [0, 1] named as T , I
and F . Element x in set A is expressed as x(t, z, f), where
t, z and f vary in T , I and F , respectively. x(t, z, f) could
be interpreted as it is t% true, z% indeterminate, and f%
false that x belongs to A. T , I and F could be considered as
membership sets [7].

B. Neutrosophic Image

For using the concept of NS in image processing, an image
should be transformed into the neutrosophic domain. Although
the general method for this transformation was proposed by
Guo et al. [8], the method of transformation is completely
dependent on the image processing application. In Section IV,
we propose our transformation method that is appropriate for
OCT segmentation.

Consider an image g with L gray levels. g can be mapped
into T , I and F sets. Thus, the pixel p(i, j) in g is transformed
into PNS(i, j) = T (i, j), I(i, j), F (i, j)) or PNS(t, z, f) in
neutrosophic domain. T , I and F are considered as white,
noise and black pixel sets, respectively. PNS(t, z, f) means
that this pixel is %t true to be a white pixel, %z to be a noisy
pixel and %f to be a black pixel. T , I and F are computed
as follows [8], [9]:

T (i, j) =
g(i, j)− gmin
gmax − gmin

(1)

F (i, j) = 1− T (i, j); (2)

I(i, j) =
δ(i, j)− δmin
δmax − δmin

; (3)

g(i, j) =
1

w2

w
2∑

m=−w
2

w
2∑

n=−w
2

g(i+m, j + n) (4)

δ(i, j) = |g(i, j)− g(i, j)| (5)
where g is the gray scale image, g is a filtered version of the

image g filtered with an averaging filter, w is the window size
for the averaging filter, gmax and gmin are the maximum and
minimum of the g, respectively, δ is the absolute difference
between g and g, δmax and δmin are also the maximum and
minimum values of δ, respectively.

IV. PROPOSED METHOD

In this section, segmentation approach is proposed for
fluid/cyst segmentation.

A. Transform the images to neutrosophic domain and denois-
ing

For fluid/cyst segmentation, first the OCT image is trans-
formed into NS by the proposed method. This method not
only transforms the image into NS but also changes the gray
level of the noisy pixels. In NS, indeterminacy is one of the
important concepts, and in the image processing domain, it is
interpreted as noise. Here, a new definition of indeterminacy is
proposed. In the basic NS-based image segmentation method,
indeterminacy set was defined by (3). In this definition, the
greater the difference between each pixel with the mean of its
neighbors in the square window, the greater the indeterminacy.
In (3), higher indeterminacy is assigned to pixels near the OCT
layers and the boundaries while these are not noisy pixels. For
example, in Fig. 1, pixel P1 is not a noisy pixel; however,
a high indeterminacy value is assigned to this pixel because
of its difference with the mean of its surrounding pixels. We
propose a new definition of indeterminacy of the image g in
Algorithm 1.
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Algorithm 1 Indeterminacy computation

1: Consider a rectangular Gaussian filter with the dimension
of [g1, g2].

2: Rotate the filter in 10 different directions to cover 180
degrees of rotation.

3: Apply all filters to image T to compute 10 filtered images:
FIk=1...10.

4: Compute I as: I(i, j) = mink|T (i, j)− FIk(i, j)|

Fig. 1: Illustration of the proposed indeterminacy definition.

Instead of considering the difference between each pixel and
the mean of its surrounding window, the minimum difference
between each pixel and the mean of its neighbors in 10
different directions is considered. By this way, for pixels like
P2 (which has similar situation as P1) in Fig. 1, the filter d1
(in horizontal direction) results in the lowest difference with
P2. Thus, the indeterminacy of this pixel is not increased.

Pixels with high indeterminacy are considered as too noisy.
A λ-correction operation is proposed to decrease the noise
effect as defined in (6)-(8). In this definition, the very noisy
pixels are blurred with the filter which has the greatest
difference (the biggest penalty is considered for these pixels).

T̄ (λ) =

{
T (i, j), if I(i, j) < λ

T ′λ(i, j), otherwise
(6)

Ind(i, j) = argmaxk|g(i, j)− FIk(i, j)| (7)

T ′λ(i, j) = FIInd(i,j)(i, j) (8)
where FI has been defined in Algorithm 1.

Based on this definition for indeterminacy set and λ-
correction operation, the image g is transformed and denoised
as described in Algorithm 2.

Algorithm 2 Proposed image transformation to NS domain

1: Inputs: g (input image), Output: T , I and F .

2: Compute T (i, j) = 1− g(i, j)− gmin
gmax − gmin

, F = 1− T and I

with Algorithm 1.
3: Apply λ-correction operation to T set.
4: Compute T = T̄ (λ), F = 1− T and I with Algorithm 1.
5: If |Entropy(Ik)−Entropy(Ik−1)|< ε go to 6, otherwise

go to 3.
6: End.

The entropy is defined as Entropy(I) =
−
∑m
i=1

∑n
j=1 I(i, j)log2I(i, j). Since fluid regions are

darker than other regions, the inverse of intensity is
considered as T set. Therefore, pixels with high T (i, j)
values are likely to be in fluid regions. Fig. 2 shows a

Fig. 2: Transformation to NS domain. (a): input OCT Bscan,
(b): subset T, (c): subset F and (d): subset I.

transformed OCT Bscan to NS domain. The obtained T and
I sets in Algorithm 2 are used in the subsequent steps of
segmentation.

B. ROI segmentation with shortest path graph

Fluid/cyst regions are all located between ILM and RPE
layers in the OCT images of DME subjects. Therefore, the
first step of our proposed method is the segmentation of
these layers as the ROI in the NS domain. This step is very
important due to two aspects. First, the background region
is very similar to fluid/cyst regions in both brightness and
texture. This can easily mislead the segmentation method since
this method is based on an unsupervised clustering scheme
and will be affected by the similarity between the desired
fluid/cyst regions and the irrelevant background region. The
second reason for ROI segmentation is speeding up since the
ROI is processed instead of the whole image. The proposed
ROI segmentation is derived from the method presented in
Chiu et al. [19]; however, the method in [19] was proposed
for the OCT layers of normal adult eyes while our proposed
method is proposed for abnormal OCT images. For this task,
the graph is constructed from each OCT image by mapping
each pixel in the image to one node in a graph. We only
consider the local relationship between pixels. Therefore, by
considering the local relationship for 8 neighbors of each pixel,
the 8-regular graph is constructed. For ILM segmentation,
the image is first filtered with filter H for the calculation of
vertical gradient of each pixel using (9).

V erGrad = T ∗H,H =

−2
0
2

 (9)

where T is the transformed image in NS. The proposed
weight computation between any two arbitrary pixels (a1, b1)
and (a2, b2) is defined by (10):
W ((a1, b1), (a2, b2)) = 4×MaxG− V erGrad(a1, b1)

− V erGrad(a2, b2) + 2×mean(R)

(10)
where MaxG is the maximum gray level of the image and

R is a set of D pixels above (a1, b1). In all experiments D is
set to 40. Based on the filter H , the maximum of V erGrad
is 2 × MaxG. So, the maximum of V erGrad(a1, b1) +
V erGrad(a2, b2) is 4 ×MaxG. Pixels which are located in
the first layer have the maximum vertical gradient. Therefore,
the minimum weight will be assigned between them and then
they have the highest chance to be selected by the shortest
path algorithm. The main problem is that there are pixels in
other layers which also have the maximum vertical gradient.
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Fig. 3: Weight computation parameters in (a): ILM, (b): ISM
and (c): OPL segmentation.

Fig. 4: ROI segmentation for a sample Bscan.

Fig. 3 (a) shows the pixels which have the maximum vertical
gradient (and thus minimum weight) but not located in the
first layer. The weight between these pixels is increased by
introducing the term 2 ∗mean(R); note that this term is very
small for the pixels in ILM. Therefore, it is guaranteed that
the pixels in ILM always have the minimum weight.

After graph construction, the gradients of all boundary
pixels are set to MaxG and then the start and end points are
selected randomly from nodes corresponding to the pixels in
the first and the last columns of the image, respectively. The
proposed weight computation equation assigns non-negative
weights between nodes. Therefore, the Dijkstra shortest path
algorithm can be applied to this problem to find the shortest
path between start and end points and this path is considered
as the ILM layer. The procedure for the segmentation of RPE
is same except for the filter H which is inversed. Also, note
that R corresponds to a set of D pixels under (a1, b1). A
result of ROI segmentation for a sample OCT image is shown
in Fig. 4.

C. Segmentation scheme for fluid/cyst regions

In this research, an unsupervised clustering method is
proposed for the segmentation of fluid/cyst regions in OCT
images. For this task, a new cost function is proposed. Al-
though the OCT images were denoised in Algorithm 2, in
the clustering scheme, the effect of noise is still considered
in the proposed cost function in two steps. In the first one,
an extra cluster referred as noise cluster (NC) is considered
beside K main clusters. Therefore, it is expected that the noisy
pixels will be assigned to the NC. The second step is that the
indeterminacy of the pixels is included in the cost function.
The proposed cost function is presented in (11).
J(M,N,C)

=

n1∑
i=1

n2∑
j=1

K∑
k=1

(IijMijk)m‖Tij

−Ck‖2 +
n1∑
i=1

n2∑
j=1

((1−Iij)Nij)m||K−
K∑
k=1

||Tij−Ck||2||

(11)

(12)s.t.
K∑
k =1

Mijk +Nij = 1

where T and I represent true and indeterminacy sets in NS,
respectively, which were computed in Algorithm 2, and Mijk

and Nij represent the membership degree of pixel (i, j) to
main cluster k and NC, respectively, K is the number of main
clusters, Ck is the center of kth main cluster, m is a constant
and n1 and n2 are the image dimension. The proposed cost
function (13) is derived from fuzzy c-means clustering whose
convergence has been proved in [41].

(13)Jm =
N∑
i=1

K∑
j=1

Mm
ij ||Xi − Cj ||2

where Xi and Cj represent data point i and cluster center
j, respectively, and Mij represents the membership degree of
data point i to cluster j.

In fuzzy c-means, for each data point Xi, the highest
membership is assigned to the closest cluster since the goal
is to minimize the cost function. Our cost function includes
two terms, one for the main clusters and another for NC. We
consider two conditions for pixel (i, j) to have the highest
membership degree to the main cluster k: (a) pixel (i, j)
should have the minimum distance from the main cluster
center k rather than other clusters, (b) pixel (i, j) should
have the minimum indeterminacy. Similarly, there are also
two conditions for pixel (i, j) to have the highest membership
degree to NC: (a) having the maximum sum distance from all
main clusters

∑K
k=1‖Tij−Ck‖2 and (b) having the maximum

indeterminacy. The maximum distance (in intensity) between
any two pixels is 1 since all sets in NS have been normalized
to the interval [0, 1]. Therefore, the maximum quantity for∑K
k=1‖Tij − Ck‖2 is K. For considering the constraint in

(12), the Lagrange cost function in (14) is constructed.

J(M,N,C) =
n1∑
i=1

n2∑
j=1

K∑
k=1

(IijMijk)m‖Tij − Ck‖2

+

n1∑
i=1

n2∑
j=1

((1− Iij)Nij)m||K −
K∑
k=1

||Tij − Ck||2||−

λij

n1∑
i=1

n2∑
j=1

(Mijk +Nij − 1)

(14)

For minimizing this cost function, gradient descent approach
is used. Therefore,

(15)Mijk = I
m−1
m

ij (
λij
m

)

1

m− 1 ||Tij − Ck||
−2

m− 1

Nij = (1−Iij)
m−1
m (

λij
m

)

1

m− 1 ||K−
K∑
k=1

||Tij−Ck||2||
−2

m− 1

(16)

(17)Ck =

∑n1
i=1

∑n2
j=1(IijMijk)m((1− Iij)Nij)mTij∑n1

i=1

∑n2
j=1(IijMijk)m((1− Iij)Nij)m

The final proposed clustering algorithm is described in
Algorithm 3.

The result of clustering Algorithm 3 for a sample Bscan by
considering just fluid regions in step 5 is depicted in Fig. 5.
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Algorithm 3 Proposed clustering algorithm

1: Initialize K, m, Mijk and Nij .
2: Compute Ck, Mijk and Nij using (15)-(17).
3: If |Jk(M,N,C)− Jk−1(M,N,C)|< ε go to 4 else go to

2.
4: Assign the cluster number with the highest membership

to each pixel, the cluster number for NC is K + 1.
5: Based on the definition of T in Algorithm 2, fluid pixels

have the maximum value. Therefore, these pixels are in
the cluster Ck with the greatest center value.

Fig. 5: Clustering result for a sample Bscan.

D. Post processing with middle layers segmentation

The proposed post-processing is an important step in image
segmentation. After segmentation with the proposed clustering
scheme, some segmented regions are incorrectly marked as
fluid/cyst. The regions between OPL and ISM are similar
to fluid/cyst regions in both texture and brightness. In the
proposed approach, another layer segmentation method for
OPL and ISM segmentation is proposed which is similar to
the proposed ROI segmentation method and is based on the
Dijkstra graph shortest path algorithm. After the segmentation
of fluid regions, the regions between OPL and ISM layers are
ignored during post-processing. For the segmentation of ISM,
the graph is constructed from the image similar to that for
ROI, except for the weight computation between nodes which
is proposed to be calculated by (18).

(18)W (p1, p2) = 2×MaxG− [mean(L1)−mean(U1)]

− [mean(L2)−mean(U2)]

where L1, U1, L2 and U2 are the set of pixels under p1,
above p1, under p2 and above p2, respectively, and are shown
in Fig. 3(b).

For OPL segmentation, the weights are computed using
(19).

(19)W (p1, p2) = 2×MaxG− [mean(U1)−mean(L1)]

− [mean(U2)−mean(L2)] + β ×D.
where D is the distance of p1 from ISM layer, U1, L1, U2

and L2 are same with (18). Fig. 3(c) shows all parameters
for weight computation in OPL. The extra term β×D in (19)
increases the weight of pixels that are far from ISM. Therefore,
this term enforces the shortest path algorithm to be as close as
possible to ISM. This step is necessary since all the regions
between ISM and OPL are ignored in the post processing step.
Therefore, the proposed method tries to find OPL layer under
the fluid regions. For both OPL and ISM, the start and end
points for finding shortest path are selected from any arbitrary
pixels in the first and the last columns of ROI image. Finally,
OPL is flattened using (20).

Fig. 6: OPL and ISM segmentation result for a sample
Bscan.

Oi =

{
Oi, ifabs(Oi − Ii) <= mean(Dif)

Ii +AD, otherwise
(20)

where Oi and Ii represent OPL and ISM pixels in ith
column, respectively, Dif is a vector that shows the distance
between OPL and ISM in each column and AD is the average
distance between OPL and ISM. OPL and ISM segmentation
results are shown in Fig. 6.

E. Fluid/cyst segmentation

1) Automated determination of the number of clusters (K):
In the proposed clustering method, the number of main clusters
(K) affects the segmentation results significantly. Therefore,
for having appropriate segmentation results, K should be
determined carefully. The main question is what K is appro-
priate for any arbitrary OCT scan. For this task, all ground
truth images were analyzed and we found that for images
with a great deal of fluid/cyst, ophthalmologists are interested
in the segmentation of the image with more general and
bigger segments. Therefore, segmentation with a small K
has the best correlation with the segmentation annotated by
an ophthalmologist. For the images with smaller fluid/cyst
regions, a larger K is more appropriate. By this interpretation,
an automated method is proposed for determining K. In this
method at first the minimum and maximum values for K
are considered and then the fluid/cyst regions are estimated.
Then, an appropriate K is determined based on this estimation.
Algorithm 4 describes the proposed method for automated
determination of K:

Algorithm 4 Automated determination of K

1: Find the mean (µ) and standard deviation (σ) of the normal
distribution of the pixel intensities between OPL and ISM.

2: Find the histogram of pixels between ILM and OPL
regions.

3: Count the number of pixels in the intensity interval [µ−
σ, µ+ σ] and name it as A.

4: Denote the maximum and minimum of A for all OCT
images in each subject as Amin and Amax.

5: Map the A of the each OCT image to appropriate K

with the following Eqs: A1 = 1 − A−Amin
Amax −Amin

, K =

round((Kmax −Kmin)A1 +Kmin)

2) Final fluid/cyst segmentation algorithm: Based on pro-
posed methods in previous sections, the final fluid/cyst seg-
mentation is performed using the following steps: 1) Trans-
form OCT scans to NS domain using Algorithms 1 and 2. 2)
Segment ILM and RPE as ROI and ISM and OPL as middle
layers. 3) Compute appropriate number of clusters using
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Fig. 7: Final segmentation result for a sample Bscan.
Algorithm 4. 4) Segment fluid/cyst regions using Algorithm
3. 5) Remove the regions between ISM and OPL and small
regions under H pixles. Final segmentation result for a sample
Bscan is shown in Fig. 7.

V. EXPERIMENTAL SETUP

A. Datasets

In this work, three datasets have been used for the evaluation
of the proposed algorithms. The first dataset is a local dataset
from the UMN ophthalmology clinic containing 725 images
from 29 DME subjects which were taken using the Heidel-
berg Spectralis imaging system. Each image is obtained by
averaging 12-19 frames with the resolution of 5.88µm/pixel
along the length and 3.87µm/pixel along the width. Fluid/cyst
regions were segmented by two UMN ophthalmologists (DDK
and PMD). The second dataset from Duke includes ten DME
subjects (patients) with lateral and azimuthal resolutions rang-
ing from 10.94 to 11.98µm/pixel and 118 to 128µm/pixel,
respectively [3]. This dataset is available online and includes
automated and manual segmentation results1. The third dataset
is from the OPTIMA Cyst Segmentation Challenge and con-
tains 4 DME subjects with 49 images per subject where the
image resolution varies from 512x496 to 512x10242.

B. Parameters tuning

Cluster numbers (K) are computed adaptively by Algorithm
4. In Algorithm 1: parameters [3, 9] were used for filter
dimension [g1, g2]. These dimensions were selected to just
have a rectangular filter. ε = 0.001 in Algorithm 2 and
ε = 0.01 in Algorithm 3 were selected in such small quantities
to make sure that there is no significant change in the cost
function J and entropy of the indeterminacy set I . Parameters
λ = 0.7 in Algorithm 2 and β = 0.008 in layer segmentation
were determined by experiments. Parameters m, M and N in
Algorithm 3 are initialized randomly with the same procedure
as in conventional fuzzy c-means algorithms. In Algorithm 4,
the minimum and maximum number of clusters were set to 4
and 10, respectively. The reason is that in our experiments, if
these numbers are selected to be smaller than 4 and greater
than 10, general (big segments) and very small fluid/cyst
regions are segmented, respectively, which do not correlate
well with manual expert segmentations. In layer segmentation
methods, R was set to 40. This quantity includes while pixels
in the rectangular area above the pixels in the ISM layer.
Parameters U1, L1, U2 and L2 were set to 10 to only consider
dark pixels above ISM and bright pixels below ISM. The
difference between the means of these two pixel sets is high
and it reduces the weights of the pixels located in ISM

1http://duke.edu/ sf59/Chiu˙BOE˙2014˙dataset.htm
2http://optima.meduniwien.ac.at/challenges/optima-segmentation-

challenge-1/

Fig. 8: Final fluid/cyst segmentation results in Duke dataset.
(a) input OCT images, (b): expert 1 segmentation, (c): expert
2 segmentation, (d): method in [3] and (e): proposed method

segmentation.

Fig. 9: Final fluid/cyst segmentation results in Optima
dataset. (a) input OCT images, (b): expert 1 segmentation,

(c): expert 2 segmentation and (d): proposed method
segmentation.

layer by equation (20). It means that pixels in ISM layer are
good candidates to be selected by the shortest path algorithm.
However the layer segmentation method is not very sensitive
to the small changes of these parameters since the means of
these pixel sets are used in weight computation equations. For
example, if we assign 45 to R instead of 40, the mean of 45
pixels is not very different from the mean of 40 pixels. Finally,
in post-processing step, H was set to 50. It was selected due to
the fact that in our datasets, ophthalmologists did not segment
very small regions under 50 pixels in area as fluid/cyst region.
Therefore, all segmented regions under 50 pixels are ignored
in post-processing.

VI. EXPERIMENTAL RESULTS

Our proposed fluid/cyst segmentation has been tested on
the three mentioned datasets. The final fluid/cyst segmentation
results on Duke, Optima and local UMN datasets are illustrated
in Figs. 8, 9 and 10, respectively.

The proposed fluid/cyst segmentation method has been eval-
uated with respect to dice coefficient, precision and sensitivity
criteria. Accuracy and specificity criteria haven’t been used
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Fig. 10: Final fluid/cyst segmentation results in UMN dataset.
(a) input OCT images, (b): expert 1 segmentation, (c): expert

2 segmentation and (d): proposed method segmentation.

here since these are biased to very high values (close to 100%).
This is due to the large number of negative (non-fluid) pixels
and the large number of true negative (TN) segmented pixels.
Segmentation results of our proposed method using Duke
dataset are compared with manual segmentation results by two
ophthalmologists and with the results of the method in [3].
The dice coefficients, sensitivity and precision for all subjects
in each dataset are reported in Tables I-III. Our proposed
method achieves an average dice coefficient of 57.51% and
outperforms the method in [3] that achieves an average dice
coefficient of 49.24%. Furthermore, our proposed method
achieves the highest dice coefficients of 70.52% for the Optima
dataset.

The method in [3] achieves only about 1% better sensitivity
than our method while the proposed method achieves about
8% and 5% higher dice coefficient and precision, respectively,
compared to [3]. It should be noted that the method in [3]
achieved an average dice coefficient of 78% for fluid, NFL,
IPL, INL, OPL, ISM, ISE and RPE segmentation. However,
we compared our segmentation results with only fluid segmen-
tation results of [3] since layer segmentation is not the main
contribution of this paper and is just used for pre-processing
and post-processing steps. The goal of the layer segmentation
method is to avoid false positives in fluid/cyst segmentation,
and not to segment layers that correlate well with annota-
tions by the ophthalmologist. Therefore, segmented sub-retinal
layers have different positions as compared with segmented
layers by the ophthalmologist and these are not comparable.
Note that the approach in [3] for Duke dataset required 11.4s
compared to 29.25s for the proposed approach. However, this
segmentation is significantly less than 5.5 minutes required for
manual segmentation by an expert. Also, our segmentation
results in Optima dataset are compared with the method in
[31] (which achieved the third rank in Optima challenge) in
TABLE III. Note that the first and second ranks have not
been published yet. Our proposed method achieves 70.52%,
88.84% and 73.89% with respect to dice coefficient, sensitivity
and precision, respectively, which outperforms the method in
[31] with 63.63%, 66.49% and 50.03%. Finally, the proposed
method achieves 69.40%, 76.79% and 74.91% with respect to
dice coefficient, sensitivity and precision, respectively, in the
UMN dataset. The results of different steps in the proposed
fluid/cyst segmentation scheme for sample Bscans and the
average run times of the different steps of the segmentation
algorithm have been reported in supplementary parts of the

Fig. 11: Averge Dice Coefficients, Sensitivity and Precision
of methods in all datasets.

TABLE I: Dice Coefficients, sensitivity and precision of all
subjects in local collected UMN dataset.

Dice Coefficients Sensitivity Precision
Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 83.32% 79.25% 94.08% 89.68% 83.14% 83.21%
S 2 83.58% 83.50% 86.76% 86.06% 85.39% 85.52%
S 3 57.24% 49.81% 85.84% 74.40% 62.34% 62.32%
S 4 37.01% 37.07% 50.26% 49.61% 50.10% 50.41%
S 5 67.45% 67.45% 78.62% 78.62% 65.68% 65.68%
S 6 83.45% 82.88% 85.06% 83.88% 84.16% 84.25%
S 7 75.80% 75.80% 86.99% 86.99% 78.63% 78.63%
S 8 66.76% 62.74% 79.44% 75.38% 73.56% 73.64%
S 9 65.65% 65.21% 76.55% 75.97% 80.65% 80.52%
S 10 92.00% 88.00% 100.00% 96.00% 92.00% 92.00%
S 11 78.23% 73.72% 79.49% 74.14% 89.69% 90.07%
S 12 60.81% 61.98% 57.96% 58.73% 82.39% 82.91%
S 13 62.39% 62.42% 82.68% 82.72% 61.60% 61.59%
S 14 65.05% 65.00% 82.36% 82.06% 62.31% 62.41%
S 15 67.31% 67.77% 70.77% 67.89% 71.03% 72.25%
S 16 66.65% 66.24% 69.78% 69.19% 65.67% 65.50%
S 17 66.29% 66.29% 67.46% 67.46% 73.69% 73.69%
S 18 64.31% 64.66% 72.77% 72.57% 66.28% 67.13%
S 19 81.37% 81.29% 83.33% 82.95% 82.48% 82.52%
S 20 66.24% 66.16% 68.57% 68.31% 76.74% 76.92%
S 21 73.20% 73.08% 66.88% 66.75% 93.17% 93.17%
S 22 67.53% 67.52% 66.29% 66.28% 78.54% 78.54%
S 23 76.83% 76.64% 84.38% 83.92% 80.15% 80.27%
S 24 76.24% 76.24% 82.87% 82.87% 76.04% 76.04%
S 25 73.65% 72.95% 74.01% 72.25% 75.80% 76.44%
S 26 70.00% 70.03% 82.36% 82.55% 71.37% 71.03%
S 27 59.96% 58.04% 58.62% 58.77% 65.21% 61.23%
S 28 69.37% 69.77% 88.13% 86.97% 73.58% 76.14%
S 29 67.89% 68.02% 85.03% 83.86% 69.04% 70.34%
Ave. 69.85% 68.95% 77.49% 76.10% 74.84% 74.98%

paper1.

VII. STATISTICAL COMPARISON

In the experimental results section, the average of each
measure was used as an overall performance criterion. In
this section a statistical test named as pairwise U-Mann-
Whitney test is used for evaluating which method has better
performance statistically [42]. Different pairwise comparisons
between our proposed method and [3] using different criteria
are carried out using the mentioned test. The confidence level
threshold of 90% is considered. Test results show that the

1The Address of the supplementary materials.
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TABLE II: Dice Coefficients, sensitivity and precision of all subjects in Duke dataset.

Dice Cofficients Sensitivity Precision
Method in [3] Prop. Method Method in [3] Prop. Method Method in [3] Prop. Method
Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 61.79% 42.38% 74.53% 52.96% 68.03% 48.47% 79.28% 55.40% 57.91% 58.66% 71.77% 70.99%
S 2 48.10% 43.10% 62.56% 59.38% 74.86% 70.33% 70.91% 68.76% 44.30% 40.83% 65.79% 60.21%
S 3 52.98% 37.05% 72.90% 42.69% 92.99% 73.15% 83.63% 53.96% 47.49% 50.08% 72.18% 71.69%
S 4 42.81% 42.69% 42.87% 43.90% 79.76% 78.32% 70.86% 74.05% 34.93% 38.21% 39.33% 43.61%
S 5 66.19% 57.24% 61.49% 60.64% 81.09% 71.47% 81.58% 72.62% 60.42% 62.74% 56.05% 58.74%
S 6 49.67% 57.43% 48.81% 55.86% 79.03% 77.92% 64.85% 61.73% 48.25% 59.53% 55.93% 69.64%
S 7 52.38% 45.84% 80.56% 74.01% 85.79% 87.76% 89.72% 94.52% 58.96% 54.46% 82.39% 74.12%
S 8 48.87% 57.65% 55.25% 59.35% 60.48% 61.41% 59.07% 55.34% 64.74% 75.87% 65.73% 76.14%
S 9 51.09% 14.78% 58.33% 20.78% 56.07% 16.36% 58.29% 18.40% 84.87% 88.36% 66.91% 71.05%
S 10 59.40% 53.34% 66.27% 56.92% 54.47% 45.69% 73.75% 58.64% 72.68% 84.67% 61.01% 66.32%
Ave. 53.33% 45.15% 62.36% 52.65% 73.26% 63.09% 73.19% 61.34% 57.46% 61.34% 63.71% 66.25%

TABLE III: Dice Coefficients, sensitivity and precision of all
subjects in Optima dataset.

Dice Coefficients Sensitivity Precision
Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 83.38% 81.86% 87.59% 83.03% 84.45% 87.30%
S 2 59.53% 57.46% 97.17% 92.56% 59.51% 59.61%
S 3 71.34% 79.09% 85.39% 91.57% 77.07% 79.21%
S 4 65.90% 65.59% 87.19% 86.24% 71.62% 72.36%
Ave. 70.04% 71.00% 89.34% 88.35% 73.16% 74.62%

proposed method with the mean rank of 12.9 statistically
outperforms the method in [3] with the mean rank of 8.9 in
terms of dice coefficient with a confidence level of 93%. For
sensitivity and precision all confidence levels are under thresh-
old; therefore, which method is significantly better cannot be
concluded, although, for example, in precision measure the
mean rank of the proposed method and the method in [3] are
12.1 and 8.9, respectively, with a confidence level of 77.4%.

VIII. DISCUSSION

A. The effect of hard exudates and signal intensity

In some DME eyes, a collection of hard exudates exists
which are imaged as intensely hyper-reflective structures. With
regard to the evaluation of the proposed methods in subjects
with these structures, we collected 2 subjects with these struc-
tures from the UMN eye clinic. In Fig. 12, (a) shows a sample
of an OCT image with hyper-reflective structures and (b) is the
transformed image corresponding to subset T in neutrosophic
domain. Based on the step 2 of Algorithm 2 and the result
of transformation in Fig. 12(b), very low memberships are
assigned to hyper-reflective regions. Also, in indeterministic
set, higher memberships are assigned to these regions (see
Fig. 12(c)) which means that in the designed cost function
in the clustering scheme, these are considered as noisy pixels
and assigned to noise cluster. Therefore, these structures do
not affect the fluid/cyst segmentation results. With regard to
the effect of hard exudates on the proposed layer segmentation
algorithms, although these regions create high vertical-gradient
points (good candidates for being selected by shortest path
algorithms), the shortest path does not include these regions.
The cost of a path through these regions would be much higher
as it would contain many low vertical-gradient nodes. Fig.
12(d) shows the segmented OPL layer and fluid/cyst regions
by proposed algorithms.

Fig. 12: Hyper-reflective structures in a sample OCT Bscan.
(a): Input OCT, (b): transformed image to neutrosophic

domain (c): indeterminacy set and (d): segmented OPL and
fluid/cyst regions.

Fig. 13: Signal intensity effect.

It is clear that the intensity of OCT Bscans may be different
in even subsequent slices of an OCT volume. In our collected
dataset and other two datasets, there are variations in signal in-
tensities. In the proposed Algorithm 2 for transforming Bscans
to neutrosophic domain, the highest membership is assigned
to fluid/cyst regions. This membership is computed based
on the intensity of each individual Bscan. In the proposed
clustering Algorithm 3, the cluster with the highest center
value in T subset in neutrosophic domain is designed for
fluid/cyst regions. It guarantees that if the Bscan be either
darker or brighter in subsequent slices, fluid regions always
are located in the cluster with maximum membership. Fig.
13 shows the two subsequent slices in one of the subjects
of Duke dataset. It can be observed that the Bscan in right
side with lower noise level in background is darker than left
side. Segmented fluid/cyst results for these samples show that
the proposed method is robust with respect to the variation
of signal intensity. In these examples, although the average
of the points in fluid/cyst clusters in the T set are 0.71 and
0.84 for the left and right Bscans, respectively, it does not
affect the fluid/cyst segmentation results. In contrast with semi-
automated and supervised methods reported in section II which
are sensitive to initial seed points and training samples for fluid
regions (due to the variation of intensity level for fluid regions
in different Bscans), our proposed method is fully-automated,
unsupervised, more robust and does not need any user seed
point or training set for fluid regions.

It should be noted that in some cases with abnormal
intensity changes in layer structures, our proposed layer seg-
mentation method can lead to a part of the layer path that is
misleading. Figs. 14 (a) and (b) show two examples of such
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Fig. 14: Middle layer segmentation errors.

cases. This is due to the existence of the high vertical-gradient
pixels which stem from the intensity changes from very bright
regions to darker ones. However, these errors do not affect the
final fluid/cyst segmentation results since segmented layers are
just used in the ROI segmentation and post processing steps.
In few images which are very dim, gradient information of the
layer structures is almost lost and the OPL layer segmentation
method follows a wrong path. This path may be even under the
ISM layer. Fig. 14 (c) shows an example of such case. In these
cases, the final fluid/cyst segmentation results will be affected
and false positive pixels are segmented as fluid/cyst region
which is due to the fact that in very dim images many pixels
are similar to fluid/regions and the middle layer segmentation
fails to ignore them in the post-processing step.

B. Benefits of NS theory in OCT analysis

Here, the effect of the proposed indeterminacy definition
and λ-correction operation in NS domain is analyzed qual-
itatively and quantitatively. Although transforming image to
NS domain is not a direct denoising approach, the effect of
noise is decreased in this transformation by operations such
as α-mean and β-enhancement in the conventional NS-based
segmentation approaches and indeterminacy definition and λ-
correction in the proposed method. For the evaluation of the
proposed transformation method, the result of a transformed
image by our method is compared with other transformation
methods in [8], [9] which are based on NS. Fig. 15 (a), (b),
(c) and (d) show the input OCT Bscan, transformed image by:
our method, method in [8] and method in [9], respectively.
It is visually clear that the sub-retinal layers structure is not
preserved in [8]. Method in [9] preserves layer structure better
than method in [8] although some artifacts are created near
the hard exudates regions. Our proposed method preserves the
layer structure without creating any artifact in the NS domain.
It should be noted that we compare subset F in our method
with the subsets T in [8], [9] since in Algorithm 2 subset T is
inverted to assign highest memberships to pixels in fluid/cyst
regions.

Beside the benefits of using NS for hard exudates, hyper-
reflective structures and signal intensity variations, the effect
of NS is evaluated quantitatively to show that how NS affects
the final fluid/cyst segmentation results. TABLE IV shows how
segmentation results are affected when Algorithms 3 and 4 are
used in image domain for segmentation. It should be noted that
in clustering Algorithm 3, subsets T is replaced with input
image g and I is ignored. As it is reported in TABLE IV the
best effect of using NS is observed in the Optima dataset with

TABLE IV: The effect of NS in segmentation results.

With NS Without NS

UMN dataset
Dice Coff. 69.40% 64.76%
Sensitivity 76.79% 70.45%
Precision 74.91% 68.14%

Duke dataset
Dice Coff. 57.51% 48.34%
Sensitivity 67.27% 59.73%
Precision 64.98% 58.15%

Optima dataset
Dice Coff. 70.52% 59.12%
Sensitivity 88.84% 73.17%
Precision 73.89% 61.08%

Fig. 15: Transformation to NS domain. (a): input OCT
Bscan, transformed image by: (b): proposed method, (c):

method in [8] and (d): method in [9].

11.14% improvement in dice coefficient which is due to the
existence of higher amount of speckle noise in this dataset. The
minimum improvement of segmentation accuracy is 4.64% in
the UMN dataset which has the lowest level of noise. It can be
concluded that using proposed transformation to NS domain
has more benefits for images with lower signal to noise ratio.

C. Inter-observer variability analysis

In this study, the automatic segmentation results are com-
pared with two experts referred as grader 1 (G1) and grader 2
(G2). Correlation between observers is analyzed and reported
in TABLE V. When the observer correlation is high, the
segmentation errors are due to the segmentation algorithm,
not inter-observer variation. The observer correlation of the
used datasets in this study are 97.70%, 91.15% and 58.08%
with respect to the dice coefficients in the UMN, Optima and
Duke datasets, respectively. It can be concluded from TABLE
V that the dice coefficient errors of our automated algorithm
in UMN and Optima datasets are from the algorithm, not
inter-observer variability while this error is increased by inter-
observer variability in the Duke dataset.

D. The effect of the number of clusters in segmentation results

The number of main clusters (K) affects the segmentation
results significantly. The smaller K, the bigger clusters are
created and vice versa for larger K. The segmentation results

TABLE V: Inter-observer variability analysis.

Average of
Automatic vs.

G1 and G2
Inter-Observer

Automatic vs.
G1 and G2
Intersection

UMN dataset
Dice Coff. 69.40% 97.70% 69.88%
Sensitivity 76.79% 97.46% 77.64%
Precision 74.91% 99.34% 74.62%

Duke dataset
Dice Coff. 57.51% 58.08% 57.99%
Sensitivity 67.27% 60.20% 81.68%
Precision 64.98% 76.80% 52.50%

Optima dataset
Dice Coff. 70.52% 91.15% 71.80%
Sensitivity 88.84% 91.39% 93.36%
Precision 73.89% 94.35% 70.93%
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Fig. 16: Fluid/cyst segmentation results for (a) K=4 and (b)
K=7.

TABLE VI: The effect of the number of clusters in segmen-
tation results.

K=4 K=5 K=6 K=7 K=8 K=9 K=10 Automated K
Random Bscans 45.66% 49.83% 44.33% 23.80% 39.42% 31.75% 27.19% 64.69%
Bscans with hard exudates 33.73% 31.59% 44.68% 49.52% 38.76% 35.33% 41.46% 68.76%
Bscans with intensity changes 69.81% 75.87% 66.55% 66.87% 59.35% 45.41% 40.83% 86.64%
Bscans without fluid 21.13% 25.19% 26.49% 48.84% 59.42% 75.51% 88.64% 84.33%

for two different K values are depicted in Fig. 16. In this
section the effect of K in final segmentation results is analyzed
quantitatively. If K is considered as a constant value for all
OCT scans, average segmentation accuracy is decreased. For
example, for the scan shown in Fig. 16, K = 4 is more
appropriate than K = 7. In scans with less fluid regions K = 7
is better. It means that for each scan, the corresponding K
should be considered. To show that how the proposed method
for the determination of K affects segmentation results, four
groups of OCT scans (100 scans per group) including random
scans, scans with hard exudates, scans with intensity changes
and scans without fluid are considered. The main reason for
this consideration is to evaluate the effect of K in all types
of OCT scans (first group) and OCT scans which have more
challenges for fluid segmentation (last three groups). The
average dice coefficient of each group for different values
of K (from the minimum to maximum values) is reported
in TABLE VI. From TABLE VI it is concluded that for the
first three groups, using the K obtained from the automated
method improves segmentation results significantly. For the
last group, considering the maximum value for K is better
than automated K. This stems from the fact that segmentation
with the maximum K segments very small fluid regions which
are ignored in the last segmentation step in Section IV.E.2.

E. Remove the regions between OPL and ISM and small
regions

To improve the fluid/cyst segmentation results, two heuris-
tics are presented which ignore the incorrectly segmented
regions as fluid/cyst. In the first one (heuristic 1), the regions
between OPL and ISM are ignored. This idea stems from
the fact that these regions are created from OPL elevation
which is because of fluid/regions in the central part of OCT
scans. These regions are similar to fluid/cyst regions in both
texture and brightness and mislead the proposed segmentation
method. In the second one (heuristic 2), small regions under
H pixels are ignored. The reason for this heuristic is that
the proposed segmentation method does not consider spatial
dimension and connectivity of segmented regions. Therefore,
small isolated regions are segmented as fluid/cyst which are
false positive pixels. To show how these heuristics improve the
segmentation results, TABLE VII reports the dice coefficient,
sensitivity and precision of the proposed segmentation method

TABLE VII: Effect of removing the regions between OPL and
ISM and small regions.

Without
post-processing Ignore small regions Ignore regions

between OPL and ISM

Ignore small regions
and the regions
between OPL and ISM

UMN Dataset
Dice Coff. 61.79% 63.76% 68.33% 69.40%
Sensitivity 77.61% 77.13% 75.41% 76.79%
Precision 71.32% 72.43% 72.99% 74.91%

Duke Dataset
Dice Coff. 46.11% 50.65% 55.86% 57.51%
Sensitivity 67.95% 66.34% 67.38% 67.27%
Precision 58.45% 61.78% 61.75% 64.98%

Optima Dataset
Dice Coff. 62.19% 66.98% 65.72% 70.52%
Sensitivity 90.13% 90.66% 89.54% 88.84%
Precision 70.56% 71.13% 70.33% 73.89%

with and without these heuristics separately. Both heuristics
decrease the number of false positive pixels since the proposed
segmentation method consider some regions between OPL
and ISM and some small regions far from fluid/cyst regions
as fluid/cyst (see Fig. 5 in this document and Fig. 1 (b) in
supplementary materials). Therefore, as shown in TABLE VII,
applying these heuristics improves dice coefficient by 9%, 11%
and 8% in UMN, Duke and Optima datasets, respectively.
Also, precisions are increased 3%, 6% and 3% in UMN, Duke
and Optima datasets, respectively. With respect to sensitivity
measure, there is no considerable improvement in any metric
since the number of false negatives is not affected by such
heuristics significantly. Finally, in both heuristics, in some
cases the number of true positive pixels is slightly decreased
which leads to a decrease in the sensitivity.

IX. CONCLUSION

In this research, a fully automated algorithm for fluid/cyst
segmentation in OCT images of the retina with DME pathol-
ogy has been proposed based on graph shortest paths and
neutrosophic sets. Accurate segmentation of DME biomarkers
is important since it can provide a quantitative measure for
diagnosis of DME. To show the efficiency of the proposed
method, it was tested on three OCT datasets with DME.
Segmentation results show that the segmented images obtained
by our proposed algorithm are not only in close agreement
with the manual segmentations of the two ophthalmologist
experts but also achieve better performance with respect to
dice coefficient and precision comparison criteria, as compared
to a prior method [3]. Future efforts will be directed towards
the segmentation of fluid-filled regions in age-related macular
degeneration (AMD). Future efforts will also be directed to-
wards fine-tuning the algorithm for OCT images obtained from
other manufacturers. Finally, reproducibility studies between
segmentation following repeat imaging can be addressed as
another future work.

X. DATA ACCESS

The local UMN DME dataset and the segmented images of
the approach presented in this paper for the UMN, Duke and
Optima data sets are available from Prof. Keshab Parhi’s web
site: http://people.ece.umn.edu/∼parhi/DATA/OCT/DME/.
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