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Abstract: Technique for the order of preference by similarity to ideal solution (TOPSIS) and elimination
and choice translating reality (ELECTRE) are widely used methods to solve multi-criteria decision
making problems. In this research article, we present bipolar neutrosophic TOPSIS method and bipolar
neutrosophic ELECTRE-I method to solve such problems. We use the revised closeness degree to rank
the alternatives in our bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS
method and bipolar neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by
proposed methods. We also give a comparison of these methods.

Keywords: neutrosophic sets; bipolar neutrosophic TOPSIS; bipolar neutrosophic ELECTRE-I;
normalized Euclidean distance

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1]. Fuzzy set theory allows objects to be members
of the set with a degree of membership, which can take any value within the unit closed interval [0, 1].
Smarandache [2] originally introduced neutrosophy, a branch of philosophy which examines the origin,
nature, and scope of neutralities, as well as their connections with different intellectual spectra. To apply
neutrosophic set in real-life problems more conveniently, Smarandache [2] and Wang et al. [3] defined
single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a single-valued
neutrosophic set is an instance of neutrosophic set, and can be used feasibly to deal with real-world
problems, especially in decision support. Deli et al. [4] dealt with bipolar neutrosophic sets, which is
an extension of bipolar fuzzy sets [5].

Multi-criteria decision making (MCDM) is a process to make an ideal choice that has the highest
degree of achievement from a set of alternatives that are characterized in terms of multiple conflicting
criteria. Hwang and Yoon [6] developed the TOPSIS method, which is one of the most favorable
and effective MCDM methods to solve MCDM problems. In classical MCDM methods, the attribute
values and weights are determined precisely. To deal with problems consisting of incomplete and
vague information, in 2000 Chen [7] conferred the fuzzy version of TOPSIS method for the first time.
Chung and Chu [8] presented fuzzy TOPSIS method under group decision for facility location selection
problem. Hadi et al. [9] proposed the fuzzy inferior ratio method for multiple attribute decision making
problems. Joshi and Kumar [10] discussed the TOPSIS method based on intuitionistic fuzzy entropy
and distance measure for multi criteria decision making. A comparative study of multiple criteria
decision making methods under stochastic inputs is described by Kolios et al. [11]. Akram et al. [12–14]
considered decision support systems based on bipolar fuzzy graphs. Applications of bipolar fuzzy
sets to graphs have been discussed in [15,16]. Faizi et al. [17] presented group decision making for
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hesitant fuzzy sets based on characteristic objects method. Recently, Alghamdi et al. [18] have studied
multi-criteria decision-making methods in bipolar fuzzy environment. Dey et al. [19] considered
TOPSIS method for solving the decision making problem under bipolar neutrosophic environment.

On the other hand, the ELECTRE is one of the useful MCDM methods. This outranking
method was proposed by Benayoun et al. [20], which was later referred to as ELECTRE-I method.
Different versions of ELECTRE method have been developed as ELECTRE-I, II, III, IV and TRI.
Hatami-Marbini and Tavana [21] extended the ELECTRE-I method and gave an alternative fuzzy
outranking method to deal with uncertain and linguistic information. Aytac et al. [22] considered
fuzzy ELECTRE-I method for evaluating catering firm alternatives. Wu and Chen [23] proposed
the multi-criteria analysis approach ELECTRE based on intuitionistic fuzzy sets. In this research
article, we present bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method
to solve MCDM problems. We use the revised closeness degree to rank the alternatives in our
bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS method and bipolar
neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by proposed methods.
We also give a comparison of these methods. For other notions and applications that are not mentioned
in this paper, the readers are referred to [24–29].

2. Bipolar Neutrosophic TOPSIS Method

Definition 1. Ref. [4] Let C be a nonempty set. A bipolar neutrosophic set (BNS) B̃ on C is defined as follows

B̃ = {c,
〈

T+
B̃
(c), I+

B̃
(c), F+

B̃
(c), T−

B̃
(c), I−

B̃
(c), F−

B̃
(c)
〉
| c ∈ C},

where, T+
B̃
(c), I+

B̃
(c), F+

B̃
(c) : C → [0, 1] and T−

B̃
(c), I−

B̃
(c), F−

B̃
(c) : C → [−1, 0].

We now describe our proposed bipolar neutrosophic TOPSIS method.
Let S = {S1, S2, · · · , Sm} be a set of m favorable alternatives and let T = {T1, T2, · · · , Tn} be

a set of n attributes. Let W = [w1 w2 · · · wn]T be the weight vector such that 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1. Suppose that the rating value of each alternative Si, (i = 1, 2, · · · , m) with respect to the

attributes Tj, (j = 1, 2, · · · , n) is given by decision maker in the form of bipolar neutrosophic sets (BNSs).
The steps of bipolar neutrosophic TOPSIS method are described as follows:

(i) Each value of alternative is estimated with respect to n criteria. The value of each alternative
under each criterion is given in the form of BNSs and they can be expressed in the decision
matrix as

K = [kij]m×n =


k11 k12 ... k1n
k21 k22 ... k2n

. . ... .

. . ... .
km1 km2 ... kmn

.

Each entry kij =< T+
ij , I+ij , F+

ij , T−ij , I−ij , F−ij >, where, T+
ij , I+ij and F+

ij represent the degree of

positive truth, indeterminacy and falsity membership, respectively, whereas, T−ij , I−ij and F−ij
represent the degree of negative truth, indeterminacy and falsity membership, respectively,
such that T+

ij , I+ij , F+
ij ∈ [0, 1], T−ij , I−ij , F−ij ∈ [−1, 0] and 0 ≤ T+

ij + I+ij + F+
ij − T−ij − I−ij − F−ij ≤ 6,

i = 1, 2, 3, ..., m; j = 1, 2, 3, ..., n.
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(ii) Suppose that the weights of the criteria are not equally assigned and they are totally unknown
to the decision maker. We use the maximizing deviation method [30] to determine the unknown
weights of the criteria. Therefore, the weight of the attribute Tj is given as

wj =

m
∑

i=1

m
∑

l=1
|kij − kl j|√√√√ n

∑
j=1

(
m
∑

i=1

m
∑

l=1
|kij − kl j|

)2
,

and the normalized weight of the attribute Tj is given as

w∗j =

m
∑

i=1

m
∑

l=1
|kij − kl j|

n
∑

j=1

(
m
∑

i=1

m
∑

l=1
|kij − kl j|

) .

(iii) The accumulated weighted bipolar neutrosophic decision matrix is computed by multiplying
the weights of the attributes to aggregated decision matrix as follows:

K⊗W = [k
wj
ij ]m×n =



kw1
11 kw2

12 ... kwn
1n

kw1
21 kw2

22 ... kwn
2n

. . ... .

. . ... .

kw1
m1 kw2

m2 ... kwn
mn


.

where

k
wj
ij =< T

wj+

ij , I
wj+

ij , F
wj+

ij , T
wj−
ij , I

wj−
ij , F

wj−
ij >

=< 1− (1− T+
ij )

wj , (I+ij )
wj , (F+

ij )
wj ,−(−T−ij )

wj ,−(−I−ij )
wj ,−(1− (1− (−F−ij ))

wj) >,

(iv) Two types of attributes, benefit type attributes and cost type attributes, are mostly applicable in
real life decision making. The bipolar neutrosophic relative positive ideal solution (BNRPIS) and
bipolar neutrosophic relative negative ideal solution (BNRNIS) for both type of attributes are
defined as follows:

BNRPIS =
(〈+Tw1+

1 ,+ Iw1+
1 ,+ Fw1+

1 ,+ Tw1−
1 ,+ Iw1−

1 ,+ Fw1−
1

〉
,
〈+Tw2+

2 ,+ Iw2+
2 ,+ Fw2+

2 ,+ Tw2−
2 ,

+ Iw2−
2 ,+ Fw2−

2
〉
, ...,

〈+Twn+
n ,+ Iwn+

n ,+ Fwn+
n ,+ Twn−

n ,+ Iwn−
n ,+ Fwn−

n
〉)

,

BNRNIS =
(〈−Tw1+

1 ,− Iw1+
1 ,− Fw1+

1 ,− Tw1−
1 ,− Iw1−

1 ,− Fw1−
1

〉
,
〈−Tw2+

2 ,− Iw2+
2 ,− Fw2+

2 ,− Tw2−
2 ,

− Iw2−
2 ,− Fw2−

2
〉
, ...,

〈−Twn+
n ,− Iwn+

n ,− Fwn+
n ,− Twn−

n ,− Iwn−
n ,− Fwn−

n
〉)

,
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such that, for benefit type criteria, j = 1, 2, ..., n〈+T
wj+

j ,+ I
wj+

j ,+ F
wj+

j ,+ T
wj−
j ,+ I

wj−
j ,+ F

wj−
j

〉
=
〈

max(T
wj+

ij ), min(I
wj+

ij ), min(F
wj+

ij ),

min(T
wj−
ij ), max(I

wj−
ij ), max(F

wj−
ij )

〉
,〈−T

wj+

j ,− I
wj+

j ,− F
wj+

j ,− T
wj−
j ,− I

wj−
j ,− F

wj−
j

〉
=
〈

min(T
wj+

ij ), max(I
wj+

ij ), max(F
wj+

ij ),

max(T
wj−
ij ), min(I

wj−
ij ), min(F

wj−
ij )

〉
.

Similarly, for cost type criteria, j = 1, 2, ..., n〈+T
wj+

j ,+ I
wj+

j ,+ F
wj+

j ,+ T
wj−
j ,+ I

wj−
j ,+ F

wj−
j

〉
=
〈

min(T
wj+

ij ), max(I
wj+

ij ), max(F
wj+

ij ),

max(T
wj−
ij ), min(I

wj−
ij ), min(F

wj−
ij )

〉
,〈−T

wj+

j ,− I
wj+

j ,− F
wj+

j ,− T
wj−
j ,− I

wj−
j ,− F

wj−
j

〉
=
〈

max(T
wj+

ij ), min(I
wj+

ij ), min(F
wj+

ij ),

min(T
wj−
ij ), max(I

wj−
ij ), max(F

wj−
ij )

〉
.

(v) The normalized Euclidean distance of each alternative
〈

T
wj+

ij , I
wj+

ij , F
wj+

ij , T
wj−
ij , I

wj−
ij , F

wj−
ij

〉
from

the BNRPIS
〈+T

wj+

j ,+ I
wj+

j ,+ F
wj+

j ,+ T
wj−
j ,+ I

wj−
j ,+ F

wj−
j

〉
can be calculated as

dN(Si, BNRPIS) =

√√√√√ 1
6n

n
∑

j=1

{
(T

wj+

ij −+ T
wj+

j )2 + (I
wj+

ij −+ I
wj+

j )2 + (F
wj+

ij −+ F
wj+

j )2+

(T
wj−
ij −+ T

wj−
j )2 + (I

wj−
ij −+ I

wj−
j )2 + (F

wj−
ij −+ F

wj−
j )2

}
,

and the normalized Euclidean distance of each alternative
〈

T
wj+

ij , I
wj+

ij , F
wj+

ij , T
wj−
ij , I

wj−
ij , F

wj−
ij

〉
from the BNRNIS

〈−T
wj+

j ,− I
wj+

j ,− F
wj+

j ,− T
wj−
j ,− I

wj−
j ,− F

wj−
j

〉
can be calculated as

dN(Si, BNRNIS) =

√√√√√ 1
6n

n
∑

j=1

{
(T

wj+

ij −− T
wj+

j )2 + (I
wj+

ij −− I
wj+

j )2 + (F
wj+

ij −− F
wj+

j )2+

(T
wj−
ij −− T

wj−
j )2 + (I

wj−
ij −− I

wj−
j )2 + (F

wj−
ij −− F

wj−
j )2

}
.

(vi) Revised closeness degree of each alternative to BNRPIS represented as ρi and it is calculated
using formula

ρ(Si) =
dN(Si, BNRNIS)

max{dN(Si, BNRNIS)} −
dN(Si, BNRPIS)

min{dN(Si, BNRPIS)} , i = 1, 2, ..., m.

(vii) By using the revised closeness degrees, the inferior ratio to each alternative is determined
as follows:

IR(i) =
ρ(Si)

min
1≤i≤m

(ρ(Si))
.

It is clear that each value of IR(i) lies in the closed unit interval [0,1].
(viii) The alternatives are ranked according to the ascending order of inferior ratio values and the best

alternative with minimum choice value is chosen.

Geometric representation of the procedure of our proposed bipolar neutrosophic TOPSIS method
is shown in Figure 1.
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Identification of alternatives and criteria

method

Rank the alternatives according to ascending

order of inferior ratio values

Calculate the inferior ratio of each alternative

Calculate the revised closeness degree of

each alternative to BNRPIS

Calculate the distance of each alternative from

BNRPIS and BNRNIS

Compute BNRPIS and BNRNIS

Construct weighted bipolar neutrosophic decision

matrix

Calculate weights of criteria by maximizing deviation

Construct bipolar neutrosophic decision matrix

Technique for the order of preference by similarity

to ideal solution (TOPSIS)

Figure 2.2: Flow chart of bipolar neutrosophic TOPSIS method

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights to decision
matrix as given in Table 2:

6

Figure 1. Flow chart of bipolar neutrosophic TOPSIS.

3. Applications

In this section, we apply bipolar neutrosophic TOPSIS method to solve real life problems: the best
electronic commerce web site, heart surgeon and employee were chosen.
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3.1. Electronic Commerce Web Site

Electronic Commerce (e-commerce, for short) is a process of trading the services and goods
through electronic networks like computer structures as well as the internet. In recent times e-commerce
has become a very fascinating and convenient choice for both the businesses and customers.
Many companies are interested in advancing their online stores rather than the brick and mortar
buildings, because of the appealing requirements of customers for online purchasing. Suppose that
a person wants to launch his own online store for selling his products. He will choose the e-commerce
web site that has comparatively better ratings and that is most popular among internet users. After
initial screening four web sites, S1 = Shopify, S2 = 3d Cart, S3 = BigCommerce and S4 = Shopsite,
are considered. Four attributes, T1 = Customer satisfaction, T2 = Comparative prices, T3 = On-time
delivery and T4 = Digital marketing, are designed to choose the best alternative.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 1:

Table 1. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.4, 0.2, 0.5, (0.5, 0.3, 0.3, (0.2, 0.7, 0.5, (0.4, 0.6, 0.5,
−0.6,−0.4,−0.4) −0.7,−0.2,−0.4) −0.4,−0.4,−0.3) −0.3,−0.7,−0.4)

S2 (0.3, 0.6, 0.1, (0.2, 0.6, 0.1, (0.4, 0.2, 0.5, (0.2, 0.7, 0.5,
−0.5,−0.7,−0.5) −0.5,−0.3,−0.7) −0.6,−0.3,−0.1) −0.5,−0.3,−0.2)

S3 (0.3, 0.5, 0.2, (0.4, 0.5, 0.2, (0.9, 0.5, 0.7, (0.3, 0.7, 0.6,
−0.4,−0.3,−0.7) −0.3,−0.8,−0.5) −0.3,−0.4,−0.3) −0.5,−0.5,−0.4)

S4 (0.6, 0.7, 0.5, (0.8, 0.4, 0.6, (0.6, 0.3, 0.6, (0.8, 0.3, 0.2,
−0.2,−0.1,−0.3) −0.1,−0.3,−0.4) −0.1,−0.4,−0.2) −0.1,−0.3,−0.1)

Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.2567, w2 = 0.2776, w3 = 0.2179, w4 = 0.2478, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 2:

Table 2. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.123, 0.662, 0.837, (0.175, 0.716, 0.716, (0.047, 0.925, 0.86, (0.119, 0.881, 0.842,
−0.877,−0.79,−0.123) −0.906,−0.64,−0.132) −0.819,−0.819,−0.075) −0.742,−0.915,−0.119)

S2 (0.087, 0.877, 0.554, (0.06, 0.868, 0.528, (0.105, 0.704, 0.86, (0.054, 0.915, 0.842,
−0.837,−0.913,−0.163) −0.825,−0.716,−0.284) −0.895,−0.769,−0.023) −0.842,−0.742,−0.054)

S3 (0.087, 0.837, 0.662, (0.132, 0.825, 0.64, (0.395, 0.86, 0.925, (0.085, 0.915, 0.881,
−0.79,−0.734,−0.266) −0.716,−0.94,−0.175) −0.769,−0.819,−0.075) −0.842,−0.842,−0.119)

S4 (0.21, 0.913, 0.837, (0.36, 0775, 0.868, (0.181, 0.769, 0.895, (0.329, 0.742, 0.671,
−0.662,−0.554,−0.087) −0.528,−0.716,−0.132) −0.605,−0.819,−0.047) −0.565,−0.742,−0.026)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.21, 0.662, 0.554,−0.877,−0.554,−0.087),

(0.06, 0.868, 0.868,−0.528,−0.94,−0.284),

(0.395, 0.704, 0.86,−0.895,−0.769,−0.023),

(0.329, 0.742, 0.671,−0.842,−0.742,−0.062) >;
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BNRNIS =< (0.087, 0.913, 0.837,−0.662,−0.913,−0.266),

(0.36, 0.716, 0.528,−0.906,−0.64,−0.132),

(0.047, 0.925, 0.925,−0.605,−0.819,−0.075),

(0.054, 0.915, 0.881,−0.565,−0.915,−0.119) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.1805, dN(S1, BNRNIS) = 0.1125,

dN(S2, BNRPIS) = 0.1672, dN(S2, BNRNIS) = 0.1485,

dN(S3, BNRPIS) = 0.135, dN(S3, BNRNIS) = 0.1478,

dN(S4, BNRPIS) = 0.155, dN(S4, BNRNIS) = 0.1678.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = −0.667, ρ(S2) = −0.354, ρ(S3) = −0.119, ρ(S4) = −0.148.

Step 7. The inferior ratio to each alternative is given as

IR(1) = 1, IR(2) = 0.52, IR(3) = 0.18, IR(4) = 0.22.

Step 8. Ordering the web stores according to ascending order of alternatives, we obtain: S3 < S4 <

S2 < S1. Therefore, the person will choose the BigCommerce for opening a web store.

3.2. Heart Surgeon

Suppose that a heart patient wants to select a best cardiac surgeon for heart surgery. After initial
screening, five surgeons are considered for further evaluation. These surgeons represent the
alternatives and are denoted by S1, S2, S3, S4, and S5 in our MCDM problem. Suppose that he
concentrates on four characteristics, T1 = Availability of medical equipment, T2 = Surgeon reputation,
T3 = Expenditure and T4 = Suitability of time, in order to select the best surgeon. These characteristics
represent the criteria for this MCDM problem.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 3:

Table 3. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.6, 0.5, 0.3, (0.5, 0.7, 0.4, (0.3, 0.5, 0.5, (0.5, 0.3, 0.6,
−0.5,−0.7,−0.4) −0.6,−0.4,−0.5) −0.7,−0.3,−0.4) −0.4,−0.7,−0.5)

S2 (0.9, 0.3, 0.2, (0.7, 0.4, 0.2, (0.4, 0.7, 0.6, (0.8, 0.3, 0.2,
−0.3,−0.6,−0.5) −0.4,−0.5,−0.7) −0.6,−0.3,−0.3) −0.2,−0.5,−0.7)

S3 (0.4, 0.6, 0.6, (0.5, 0.3, 0.6, (0.7, 0.5, 0.3, (0.4, 0.6, 0.7,
−0.7,−0.4,−0.3) −0.6,−0.4,−0.4) −0.4,−0.4,−0.6) −0.5,−0.4,−0.4)

S4 (0.8, 0.5, 0.3, (0.6, 0.4, 0.3, (0.4, 0.5, 0.7, (0.5, 0.4, 0.6,
−0.3,−0.4,−0.5) −0.5,−0.7,−0.8) −0.5,−0.4,−0.2) −0.6,−0.7,−0.3)

S5 (0.6, 0.4, 0.6, (0.4, 0.7, 0.6, (0.6, 0.3, 0.5, (0.5, 0.7, 0.4,
−0.4,−0.7,−0.3) −0.7,−0.5,−0.6) −0.3,−0.7,−0.4) −0.3,−0.6,−0.5)
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Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.2480, w2 = 0.2424, w3 = 0.2480, w4 = 0.2616, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 4:

Table 4. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.203, 0.842, 0.742, (0.155, 0.917, 0.801, (0.085, 0.842, 0.842, (0.166, 0.730, 0.875,
−0.842,−0.915,−0.119) −0.884,−0.801,−0.155) −0.915,−0.742,−0.119) −0.787,−0.911,−0.166)

S2 (0.435, 0.742, 0.671, (0.253, 0.801, 0.677, (0.119, 0.915, 0.881, (0.344, 0.730, 0.656,
−0.742,−0.881,−0.158) −0.801,−0.845,−0.253) −0.881,−0.742,−0.085) −0.656,−0.834,−0.270)

S3 (0.119, 0.881, 0.881, (0.155, 0.747, 0.884, (0.258, 0.842, 0.742, (0.125, 0.875, 0.911,
−0.915,−0.797,−0.085) −0.884,−0.801,−0.116) −0.797,−0.797,−0.203) −0.834,−0.787,−0.125)

S4 (0.329, 0.842, 0.742, (0.199, 0.801, 0.747, (0.119, 0.842, 0.915, (0.166, 0.787, 0.875,
−0.742,−0.797,−0.158) −0.845,−0.917,−0.323) −0.842,−0.797,−0.054) −0.875,−0.911,−0.089)

S5 (0.203, 0.797, 0.881, (0.116, 0.917, 0.884, (0.203, 0.742, 0.842, (0.166, 0.911, 0.787,
−0.797,−0.915,−0.085) −0.917,−0.845,−0.199) −0.742,−0.915,−0.119) −0.730,−0.875,−0.166)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.435, 0.742, 0.671,−0.915,−0.797,−0.085),

(0.253, 0.747, 0.677,−0.917,−0.801,−0.116),

(0.085, 0.915, 0.915,−0.742,−0.915,−0.203),

(0.344, 0.730, 0.656,−0.875,−0.787,−0.089) >;

BNRNIS =< (0.119, 0.881, 0.881,−0.742,−0.915,−0.158),

(0.116, 0.917, 0.884,−0.801,−0.917,−0.323),

(0.258, 0.742, 0.742,−0.915,−0.742,−0.054),

(0.125, 0.911, 0.911,−0.656,−0.911,−0.270) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.1176, dN(S1, BNRNIS) = 0.0945,

dN(S2, BNRPIS) = 0.0974, dN(S2, BNRNIS) = 0.1402,

dN(S3, BNRPIS) = 0.1348, dN(S3, BNRNIS) = 0.1043,

dN(S4, BNRPIS) = 0.1089, dN(S4, BNRNIS) = 0.1093,

dN(S5, BNRPIS) = 0.1292, dN(S5, BNRNIS) = 0.0837.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = −0.553, ρ(S2) = 0, ρ(S3) = −0.64, ρ(S4) = −0.338, ρ(S5) = −0.729

Step 7. The inferior ratio to each alternative is given as

IR(1) = 0.73, IR(2) = 0, IR(3) = 0.88, IR(4) = 0.46, IR(5) = 1.
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Step 8. Ordering the alternatives in ascending order, we obtain: S2 < S4 < S1 < S3 < S5. Therefore,
S2 is best among all other alternatives.

3.3. Employee (Marketing Manager)

Process of employee selection has an analytical importance for any kind of business. According to
firm hiring requirements and the job position, this process may vary from a very simple process
to a complicated procedure. Suppose that a company wants to hire an employee for the post of
marketing manager. After initial screening, four candidates are considered as alternatives and
denoted by S1, S2, S3 and S4 in our MCDM problem. The requirements for this post, T1 = Confidence,
T2 = Qualification, T3 = Leading skills and T4 = Communication skills, are considered as criteria in
order to select the most relevant candidate.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 5:

Table 5. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.8, 0.5, 0.3, (0.7, 0.3, 0.2, (0.5, 0.4, 0.6, (0.9, 0.3, 0.2,
−0.3,−0.6,−0.5) −0.3,−0.5,−0.4) −0.5,−0.3,−0.4) −0.3,−0.4,−0.2)

S2 (0.5, 0.7, 0.6 (0.4, 0.7, 0.5, (0.6, 0.8, 0.5, (0.5, 0.3, 0.6,
−0.4,−0.2,−0.4) −0.6,−0.2,−0.3) −0.3,−0.5,−0.7) −0.6,−0.4,−0.3)

S3 (0.4, 0.6, 0.8, (0.6, 0.3, 0.5, (0.3, 0.5, 0.7, (0.5, 0.7, 0.4,
−0.7,−0.3,−0.4) −0.2,−0.4,−0.6) −0.8,−0.4,−0.2) −0.6,−0.3,−0.5)

S4 (0.7, 0.3, 0.5, (0.5, 0.4, 0.6, (0.6, 0.4, 0.3, (0.4, 0.5, 0.7,
−0.4,−0.2,−0.5) −0.4,−0.5,−0.3) −0.3,−0.5,−0.7) −0.6,−0.5,−0.3)

Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.25, w2 = 0.2361, w3 = 0.2708, w4 = 0.2431, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 6:

Table 6. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.3313, 0.8409, 0.7401, (0.2474, 0.7526, 0.6839, (0.1711, 0.7803, 0.8708, (0.4287, 0.7463, 0.6762,
−0.7401,−0.8801,−0.1591) −0.7526,−0.8490,−0.1136) −0.8289,−0.7218,−0.1292) −0.7463,−0.8003,−0.0528)

S2 (0.1591, 0.9147, 0.8801, (0.1136, 0.9192, 0.8490, (0.2197, 0.9414, 0.8289, (0.1551, 0.7463, 0.8832,
−0.7953,−0.6687,−0.1199) −0.8864,−0.6839,−0.0808) −0.7218,−0.8289,−0.2782) −0.8832,−0.8003,−0.0831)

S3 (0.1199, 0.8801, 0.9457, (0.1945, 0.7526, 0.8490, (0.0921, 0.8289, 0.9079, (0.1551, 0.9169, 0.8003,
−0.9147,−0.7401,−0.1199) −0.6839,−0.8055,−0.1945) −0.9414,−0.7803,−0.0586) −0.8832,−0.7463,−0.1551)

S4 (0.2599, 0.7401, 0.8409, (0.1510, 0.8055, 0.8864, (0.2197, 0.7803, 0.7218, (0.1168, 0.8449, 0.9169,
−0.7953,−0.6687,−0.1591) −0.8055,−0.8490,−0.0808) −0.7218,−0.8289,−0.2782) −0.8832,−0.8449,−0.0831)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.3313, 0.7401, 0.7401,−0.9147,−0.6687,−0.1199),

(0.2474, 0.7526, 0.6839,−0.8864,−0.6839,−0.0808),

(0.2197, 0.7803, 0.7218,−0.9414,−0.7218,−0.0586),

(0.4287, 0.7463, 0.6762,−0.8832,−0.7463,−0.0528) >;
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BNRNIS =< (0.1199, 0.9147, 0.9457,−0.7401,−0.8801,−0.1591),

(0.1136, 0.9192, 0.8864,−0.6839,−0.8490,−0.1945),

(0.0921, 0.9414, 0.9079,−0.7218,−0.8289,−0.2782),

(0.1168, 0.9169, 0.9169,−0.7463,−0.8449,−0.1551) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.0906, dN(S1, BNRNIS) = 0.1393,

dN(S2, BNRPIS) = 0.1344, dN(S2, BNRNIS) = 0.0953,

dN(S3, BNRPIS) = 0.1286, dN(S3, BNRNIS) = 0.1011,

dN(S4, BNRPIS) = 0.1293, dN(S4, BNRNIS) = 0.0999.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = 0, ρ(S2) = −0.799, ρ(S3) = −0.694, ρ(S4) = −0.780.

Step 7. The inferior ratio to each alternative is given as

IR(1) = 0, IR(2) = 1, IR(3) = 0.87, IR(4) = 0.98.

Step 8. Ordering the alternatives in ascending order, we obtain: S1 < S3 < S4 < S2. Therefore, the
company will select the candidate S1 for this post.

4. Bipolar Neutrosophic ELECTRE-I Method

In this section, we propose bipolar neutrosophic ELECTRE-I method to solve MCDM problems.
Consider a set of alternatives, denoted by S = {S1, S2, S3, · · · , Sm} and the set of criteria, denoted by
T = {T1, T2, T3, · · · , Tn} which are used to evaluate the alternatives.

(i–iii) As in the section of bipolar neutrosophic TOPSIS, the rating values of alternatives with respect
to the criteria are expressed in the form of matrix [kij]m×n. The weights wj of the criteria Tj are
evaluated by maximizing deviation method and the weighted bipolar neutrosophic decision
matrix [k

wj
ij ]m×n is constructed.

(iv) The bipolar neutrosophic concordance sets Exy and bipolar neutrosophic discordance sets Fxy

are defined as follows:

Exy = {1 ≤ j ≤ n | ρxj ≥ ρyj}, x 6= y, x, y = 1, 2, · · · , m,

Fxy = {1 ≤ j ≤ n | ρxj ≤ ρyj}, x 6= y, x, y = 1, 2, · · · , m,

where, ρij = T+
ij + I+ij + F+

ij + T−ij + I−ij + F−ij , i = 1, 2, · · · , m, j = 1, 2, · · · , n.

(v) The bipolar neutrosophic concordance matrix E is constructed as follows:

E =



− e12 . . . e1m
e21 − . . . e2m
.
.
.

em1 em2 . . . −


,
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where, the bipolar neutrosophic concordance indices exy
,s are determined as

exy = ∑
j∈Exy

wj.

(vi) The bipolar neutrosophic discordance matrix F is constructed as follows:

F =



− f12 . . . f1m
f21 − . . . f2m
.
.
.

fm1 fm2 . . . −


,

where, the bipolar neutrosophic discordance indices f xy
,s are determined as

fxy =

max
j∈Fxy

√√√√√ 1
6n

{
(T

wj+

xj − T
wj+

yj )2 + (I
wj+

xj − I
wj+

yj )2 + (F
wj+

xj − F
wj+

yj )2+

(T
wj−
xj − T

wj−
yj )2 + (I

wj−
xj − I

wj−
yj )2 + (F

wj−
xj − F

wj−
yj )2

}

max
j

√√√√√ 1
6n

{
(T

wj+

xj − T
wj+

yj )2 + (I
wj+

xj − I
wj+

yj )2 + (F
wj+

xj − F
wj+

yj )2+

(T
wj−
xj − T

wj−
yj )2 + (I

wj−
xj − I

wj−
yj )2 + (F

wj−
xj − F

wj−
yj )2

} .

(vii) Concordance and discordance levels are computed to rank the alternatives. The bipolar
neutrosophic concordance level ê is defined as the average value of the bipolar neutrosophic
concordance indices as

ê =
1

m(m− 1)

m

∑
x=1,
x 6=y

m

∑
y=1,
y 6=x

exy,

similarly, the bipolar neutrosophic discordance level f̂ is defined as the average value of the
bipolar neutrosophic discordance indices as

f̂ =
1

m(m− 1)

m

∑
x=1,
x 6=y

m

∑
y=1,
y 6=x

fxy.

(viii) The bipolar neutrosophic concordance dominance matrix φ on the basis of ê is determined
as follows:

φ =



− φ12 . . . φ1m
φ21 − . . . φ2m

.

.

.
φm1 φm2 . . . −


,

where, φxy is defined as

φxy =

{
1, if exy ≥ ê,
0, if exy < ê.
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(ix) The bipolar neutrosophic discordance dominance matrix ψ on the basis of f̂ is determined
as follows:

ψ =



− ψ12 . . . ψ1m
ψ21 − . . . ψ2m

.

.

.
ψm1 ψm2 . . . −


,

where, ψxy is defined as

ψxy =

{
1, if fxy ≤ f̂ ,
0, if fxy > f̂ .

(x) Consequently, the bipolar neutrosophic aggregated dominance matrix π is evaluated by
multiplying the corresponding entries of φ and ψ, that is

π =



− π12 . . . π1m
π21 − . . . π2m

.

.

.
πm1 πm2 . . . −


,

where, πxy is defined as

πxy = φxyψxy.

(xi) Finally, the alternatives are ranked according to the outranking values πxy
,s. That is, for each

pair of alternatives Sx and Sy, an arrow from Sx to Sy exists if and only if πxy = 1. As a result,
we have three possible cases:

(a) There exits a unique arrow from Sx into Sy.
(b) There exist two possible arrows between Sx and Sy.
(c) There is no arrow between Sx and Sy.

For case a, we decide that Sx is preferred to Sy. For the second case, Sx and Sy are indifferent,
whereas, Sx and Sy are incomparable in case c.

Geometric representation of proposed bipolar neutrosophic ELECTRE-I method is shown
in Figure 2.
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Axioms 2018, 7, 33 14 of 17

Numerical Example

In Section 3, MCDM problems are presented using the bipolar neutrosophic TOPSIS method.
In this section, we apply our proposed bipolar neutrosophic ELECTRE-I method to select the “electronic
commerce web site” to compare these two MCDM methods. Steps (1–3) have already been done in
Section 3.1. So we move on to Step 4.

Step 4. The bipolar neutrosophic concordance sets Exy
,s are given as in Table 7:

Table 7. Bipolar neutrosophic concordance sets.

Exy�y 1 2 3 4

E1y - {1, 2, 3} {1, 2} { }
E2y {4} - {4} { }
E3y {3, 4} {1, 2, 3} - {3}
E4y {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 4} -

Step 5. The bipolar neutrosophic discordance sets Fxy
,s are given as in Table 8.

Table 8. Bipolar neutrosophic discordance sets.

Fxy�y 1 2 3 4

F1y - {4} {3, 4} {1, 2, 3, 4}
F2y {1, 2, 3} - {1, 2, 3} {1, 2, 3, 4}
F3y {1, 2} {4} - {1, 2, 4}
F4y { } { } {3} -

Step 6. The bipolar neutrosophic concordance matrix E is computed as follows

E =


− 0.7522 0.5343 0

0.2478 − 0.2478 0
0.4657 0.7522 − 0.2179

1 1 0.7821 −


Step 7. The bipolar neutrosophic discordance matrix F is computed as follows

F =


− 0.5826 0.9464 1
1 − 1 1
1 0.3534 − 1
0 0 0.6009 −


Step 8. The bipolar neutrosophic concordance level is ê = 0.5003 and bipolar neutrosophic discordance

level is f̂ = 0.7069. The bipolar neutrosophic concordance dominance matrix φ and bipolar
neutrosophic discordance dominance matrix ψ are as follows

φ =


− 1 1 0
0 − 0 0
0 1 − 0
1 1 1 −

, ψ =


− 1 0 0
0 − 0 0
0 1 − 0
0 0 0 −

.

Step 9. The bipolar neutrosophic aggregated dominance matrix π is computed as
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π =


− 1 0 0
0 − 0 0
0 1 − 0
0 0 0 −

.

According to nonzero values of πxy, we get the alternatives in the following sequence:

S1 → S2 ← S3

Therefore, the most favorable alternatives are S3 and S1.

5. Comparison of Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic ELECTRE-I

TOPSIS and ELECTRE-I are the most commonly used MCDM methods to solve decision making
problems, in which the best possible alternative is selected among others. The main idea of the
TOPSIS method is that the chosen alternative has the shortest distance from positive ideal solution and
the greatest distance from negative ideal solution, whereas the ELECTRE-I method is based on the
binary comparison of alternatives. The proposed MCDM methods TOPSIS and ELECTRE-I are based
on bipolar neutrosophic information. In the bipolar neutrosophic TOPSIS method, the normalized
Euclidean distance is used to compute the revised closeness coefficient of alternatives to BNRPIS and
BNRNIS. Alternatives are ranked in increasing order on the basis of inferior ratio values. Bipolar
neutrosophic TOPSIS is an effective method because it has a simple process and is able to deal with
any number of alternatives and criteria. Throughout history, one drawback of the TOPSIS method is
that more rank reversals are created by increasing the number of alternatives. The proposed bipolar
neutrosophic ELECTRE-I is an outranking relation theory that compares all pairs of alternatives and
figures out which alternatives are preferred to the others by systematically comparing them for each
criterion. The connection between different alternatives shows the bipolar neutrosophic concordance
and bipolar neutrosophic discordance behavior of alternatives. The bipolar neutrosophic TOPSIS
method gives only one possible alternative but the bipolar neutrosophic ELECTRE-I method sometimes
provides a set of alternatives as a final selection to consider the MCDM problem. Despite all of the
above comparisons, it is difficult to determine which method is most convenient, because both methods
have their own importance and can be used according to the choice of the decision maker.

6. Conclusions

A single-valued neutrosophic set as an instance of a neutrosophic set provides an additional
possibility to represent imprecise, uncertainty, inconsistent and incomplete information which exist
in real situations. Single valued neutrosophic models are more flexible and practical than fuzzy
and intuitionistic fuzzy models.We have presented the procedure, technique and implication of
TOPSIS and ELECTRE-I methods under bipolar neutrosophic environment. The rating values of
alternatives with respect to attributes are expressed in the form of BNSs. The unknown weights of
the attributes are calculated by maximizing the deviation method to construct the weighted decision
matrix. The normalized Euclidean distance is used to calculate the distance of each alternative from
BNRPIS and BNRNIS. Revised closeness degrees are computed and then the inferior ratio method
is used to rank the alternatives in bipolar neutrosophic TOPSIS. The concordance and discordance
matrices are evaluated to rank the alternatives in bipolar neutrosophic ELECTRE-I. We have also
presented some examples to explain these methods.
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