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1. Introduction

Smarandache [1] initiated the concept of neutrosophic set (NS). Smarandache’s NS is characterized
by three parts: truth, indeterminacy, and falsity. Truth, indeterminacy and falsity membership values
behave independently and deal with the problems of having uncertain, indeterminant and imprecise
data. Wang et al. [2] gave a new concept of single valued neutrosophic set (SVNS) and defined the set
of theoretic operators in an instance of NS called SVNS. Ye [3–5] studied the correlation coefficient and
improved correlation coefficient of NSs, and also determined that, in NSs, the cosine similarity measure
is a special case of the correlation coefficient. Peng et al. [6] discussed the operations of simplified
neutrosophic numbers and introduced an outranking idea of simplified neutrosophic numbers.

Molodtsov [7] introduced the notion of soft set as a novel mathematical approach for handling
uncertainties. Molodtsov’s soft sets give us new technique for dealing with uncertainty from the
viewpoint of parameters. Maji et al. [8–10] introduced neutrosophic soft sets (NSSs), intuitionistic
fuzzy soft sets (IFSSs) and fuzzy soft sets (FSSs). Babitha and Sunil gave the idea of soft set relations [11].
In [12], Sahin and Kucuk presented NSS in the form of neutrosophic relation.

Rough set theory was initiated by Pawlak [13] in 1982. Rough set theory is used to study the
intelligence systems containing incomplete, uncertain or inexact information. The lower and upper
approximation operators of RSs are used for managing hidden information in a system. Therefore,
many hybrid models have been built such as soft rough sets (SRSs), rough fuzzy sets (RFSs),
fuzzy rough sets (FRSs), soft fuzzy rough sets (SFRSs), soft rough fuzzy sets (SRFSs), intuitionistic
fuzzy soft rough sets (IFSRS), neutrosophic rough sets (NRSs), and rough neutrosophic sets (RNSs) for
handling uncertainty and incomplete information effectively. Soft set theory and RS theory are two
different mathematical tools to deal with uncertainty. Evidently, there is no direct relationship between
these two mathematical tools, but efforts have been made to define some kind of relation [14,15].
Feng et al. [15] took a significant step to introduce parametrization tools in RSs. They introduced SRSs,
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in which parameterized subsets of universal sets are elementary building blocks for approximation
operators of a subset. Shabir et al. [16] introduced another approach to study roughness through SSs,
and this approach is known as modified SRSs (MSR-sets). In MSR-sets, some results proved to be
valid that failed to hold in SRSs. Feng et al. [17] introduced a modification of Pawlak approximation
space known as soft approximation space (SAS) in which SAS SRSs were proposed. Moreover, they
introduced soft rough fuzzy approximation operators in SAS and initiated a idea of SRFSs, which is an
extension of RFSs introduced by Dubois and Prade [18] . Meng et al. [19] provide further discussion
of the combination of SSs, RSs and FSs. In various decision-making problems, RSs have been used.
The existing results of RSs and other extended RSs such as RFSs, generalized RFSs, SFRSs and IFRSs
based decision-making models have their advantages and limitations [20,21]. In a different way,
RS approximations have been constructed into the IF environment and are known as IFRSs, RIFSs and
generalized IFRSs [22–24]. Zhang et al. [25,26] presented the notions of SRSs, SRIFSs, and IFSRSs,
its application in decision-making, and also introduced generalized IFSRSs. Broumi et al. [27,28]
developed a hybrid structure by combining RSs and NSs, called RNSs. They also presented interval
valued neutrosophic soft rough sets by combining interval valued neutrosophic soft sets and RSs.
Yang et al. [29] proposed single valued neutrosophic rough sets (SVNRSs) by combining SVNSs and
RSs, and established an algorithm for decision-making problems based on SVNRSs in two universes.
For some papers related to NSs and multi-criteria decision-making (MCDM), the readers are referred
to [30–38]. The notion of SRNSs is a extension of SRSs, SRIFSs, IFSRSs, introduced by Zhang et al.
motivated by the idea of single valued neutrosophic rough sets (SVNRSs) introduced, we extend the
single valued neutrosophic rough sets’ lower and upper approximations to the case of a neutrosophic
soft rough set. The concept of a neutrosophic soft rough set is introduced by coupling both the
neutrosophic soft sets and rough sets. In this research paper, we introduce the notions of SRNSs
and NSRSs as hybrid models for soft computing. Approximation operators of SRNSs and NSRSs are
described and their relevant properties are investigated in detail. We describe a mathematical approach
to handle decision-making problems in view of NSRSs. We also present an efficient algorithm of our
proposed hybrid model to solve decision-making problems.

2. Construction of Soft Rough Neutrosophic Sets

In this section, we introduce the notions of SRNSs by combining soft sets with RNSs and soft
rough neutrosophic relations (SRNRs). Soft rough neutrosophic sets consist of two basic components,
namely neutrosophic sets and soft relations, which are the mathematical basis of SRNSs. The basic idea
of soft rough neutrosophic sets is based on the approximation of sets by a couple of sets known as the
lower soft rough neutrosophic approximation and the upper soft rough neutrosophic approximation
of a set. Here, the lower and upper approximation operators are based on an arbitrary soft relation.
The concept of soft rough neutrosophic sets is an extension of the crisp set, rough set for the study
of intelligent systems characterized by inexact, uncertain or insufficient information. It is a useful
tool for dealing with uncertainty or imprecision information. The concept of neutrosophic soft
sets is powerful logic to handle indeterminate and inconsistent situations, and the theory of rough
neutrosophic sets is also powerful mathematical logic to handle incompleteness. We introduce the
notions of soft rough neutrosophic sets (SRNSs) and neutrosophic soft rough sets (NSRSs) as hybrid
models for soft computing. The rating of all alternatives is expressed with the upper soft rough
neutrosophic approximation and lower soft rough neutrosophic approximation operator and the pair
of neutrosophic sets that are characterized by truth-membership degree, indeterminacy-membership
degree, and falsity-membership degree from the view point of parameters.

Definition 1. Let Y be an initial universal set and M a universal set of parameters. For an arbitrary soft relation
P over Y×M, let Ps : Y → N (M) be a set-valued function defined as Ps(u) = {k ∈ M | (u, k) ∈ P}, u ∈ Y.

Let (Y, M, P) be an SAS. For any NS C = {(k, TC(k), IC(k), FC(k)) | k ∈ M} ∈ N (M), where N (M)

is a neutrosophic power set of parameter set M, the lower soft rough neutrosophic approximation (LSRNA) and



Axioms 2018, 7, 19 3 of 24

the upper soft rough neutrosophic approximation (USRNA) operators of C w.r.t (Y, M, P) denoted by P(C) and
P(C), are, respectively, defined as follows:

P(C) = {(u, TP(C)(u), IP(C)(u), FP(C)(u)) | u ∈ Y},

P(C) = {(u, TP(C)(u), IP(C)(u), FP(C)(u)) | u ∈ Y},

where
TP(C)(u) =

∨
k∈Ps(u)

TC(k), IP(C)(u) =
∧

k∈Ps(u)

IC(k), FP(C)(u) =
∧

k∈Ps(u)

FC(k),

TP(C)(u) =
∧

k∈Ps(u)

TC(k), IP(C)(u) =
∨

k∈Ps(u)

IC(k), FP(C)(u) =
∨

k∈Ps(u)

FC(k).

It is observed that P(C) and P(C) are two NSs on Y, P(C), P(C) : N (M)→ P(Y) are referred to as the
LSRNA and the USRNA operators, respectively. The pair (P(C), P(C)) is called SRNS of C w.r.t (Y, M, P).

Remark 1. Let (Y, M, P) be an SAS. If C ∈ IF(M) and C ∈ P(M), where IF(M) and P(M) are
intuitionistic fuzzy power set and crisp power set of M, respectively. Then, the above SRNA operators P(C) and
P(C) degenerate to SRIFA and SRA operators, respectively. Hence, SRNA operators are an extension of SRIFA
and SRA operators.

Example 1. Suppose that Y = {w1, w2, w3, w4, w5} is the set of five careers under observation, and Mr. X
wants to select best suitable career. Let M = {k1, k2, k3, k4} be a set of decision parameters. The parameters
k1, k2, k3 and k4 stand for “aptitude”, “work value”, “skill” and “recent advancement”, respectively. Mr. X
describes the “most suitable career” by defining a soft relation P from Y to M, which is a crisp soft set as shown
in Table 1.

Table 1. Crisp soft relation P.

P w1 w2 w3 w4 w5

k1 1 1 0 1 0
k2 0 1 1 0 1
k3 0 1 0 0 0
k4 1 1 1 0 1

Ps : Y → N (M) is a set valued function, and we have Ps(w1) = {k1, k4}, Ps(w2) =

{k1, k2, k3, k4}, Ps(w3) = {k2, k4}, Ps(w4) = {k1} and Ps(w5) = {k2, k4}. Mr. X gives most the favorable
parameter object C, which is an NS defined as follows:

C = {(k1, 0.2, 0.5, 0.6), (k2, 0.4, 0.3, 0.2), (k3, 0.2, 0.4, 0.5), (k4, 0.6, 0.2, 0.1)}.

From the Definition 1, we have

TP(C)(w1) =
∨

k∈Ps(w1)

TC(k) =
∨
{0.2, 0.6} = 0.6,

IP(C)(w1) =
∧

k∈Ps(w1)

IC(k) =
∧
{0.5, 0.2} = 0.2,

FP(C)(w1) =
∧

k∈Ps(w1)

FC(k) =
∧
{0.6, 0.1} = 0.1,

TP(C)(w2) = 0.6, IP(C)(w2) = 0.2, FP(C)(w2) = 0.1,

TP(C)(w3) = 0.6, IP(C)(w3) = 0.2, FP(C)(w3) = 0.1,
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TP(C)(w4) = 0.2, IP(C)(w4) = 0.5, FP(C)(w4) = 0.6,

TP(C)(w5) = 0.6, IP(C)(w5) = 0.2, FP(C)(w5) = 0.1.

Similarly,

TP(C)(w1) =
∧

k∈Ps(w1)

TC(k) =
∧
{0.2, 0.6} = 0.2,

IP(C)(w1) =
∨

k∈Ps(w1)

IC(k) =
∨
{0.5, 0.2} = 0.5,

FP(C)(w1) =
∨

k∈Ps(w1)

FC(k) =
∨
{0.6, 0.1} = 0.6,

TP(C)(w2) = 0.2, IP(C)(w2) = 0.5, FP(C)(w2) = 0.6,

TP(C)(w3) = 0.4, IP(C)(w3) = 0.3, FP(C)(w3) = 0.2,

TP(C)(w4) = 0.2, IP(C)(w4) = 0.5, FP(C)(w4) = 0.6,

TP(C)(w5) = 0.4, IP(C)(w5) = 0.3, FP(C)(w5) = 0.2.

Thus, we obtain

P(C) = {(w1, 0.6, 0.2, 0.1), (w2, 0.6, 0.2, 0.1), (w3, 0.6, 0.2, 0.1), (w4, 0.2, 0.5, 0.6), (w5, 0.6, 0.2, 0.1)},
P(C) = {(w1, 0.2, 0.5, 0.6), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.3, 0.2), (w4, 0.2, 0.5, 0.6), (w5, 0.4, 0.3, 0.2)}.

Hence, (P(C), P(C)) is an SRNS of C.

Theorem 1. Let (Y, M, P) be an SAS. Then, the LSRNA and the USRNA operators P(C) and P(C) satisfy
the following properties for all C, D ∈ N (M):

(i) P(C) =∼ P(∼ C),
(ii) P(C ∩ D) = P(C) ∩ P(D),
(iii) C ⊆ D ⇒ P(C) ⊆ P(D),
(iv) P(C ∪ D) ⊇ P(C) ∪ P(D),
(v) P(C) =∼ P(∼ C),
(vi) P(C ∪ D) = P(C) ∪ P(D),
(vii) C ⊆ D ⇒ P(C) ⊆ P(D),
(viii) P(C ∩ D) ⊆ P(C) ∩ P(D),

where ∼ C is the complement of C.

Proof. (i) By definition of SRNS, we have

∼ C = {(k, FC(k), 1− IC(k), TC(k))},
P(∼ C) = {(u, TP(∼C)(u), IP(∼C)(u), FP(∼C)(u)) | u ∈ Y},

∼ P(∼ C) = {(u, FP(∼C)(u), 1− IP(∼C)(u), TP(∼C)(u)) | u ∈ Y},

where

FP(∼C)(u) =
∨

k∈Ps(u)

TC(k), IP(∼C)(u) =
∨

k∈Ps(u)

(1− IC(k)), TP(∼C)(u) =
∧

k∈Ps(u)

FC(k).

Hence, ∼ P(∼ C) = P(C).
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(ii)

P(C ∩ D) = {(u, TP(C∩D)(u), IP(C∩D)(u), FP(C∩D)(u)) | u ∈ Y}

= {(u,
∧

k∈Ps(u)

T(C∩D)(k),
∨

k∈Ps(u)

I(C∩D)(k),
∨

k∈Ps(u)

F(C∩D)(k)) | u ∈ Y}

= {(u,
∧

k∈Ps(u)

(TC(k) ∧ TD(k)),
∨

k∈Ps(u)

(IC(k) ∨ ID(k)),

∨
k∈Ps(u)

(FC(k) ∨ FD(k)) | u ∈ Y}

= {(u, TP(C)(u) ∧ TP(D)(u), IP(C)(u) ∨ IP(D)(u), FP(C)(u) ∨ FP(D)(u)) | u ∈ Y}
= P(C) ∩ P(D).

(iii) It can be easily proved by Definition 1.
(iv)

TP(C∪D)(u) =
∧

k∈Ps(u)

TC∪D(k)

=
∧

k∈Ps(u)

(TC(k) ∨ TD(k))

≥ (
∧

k∈Ps(u)

TC(k) ∨
∧

k∈Ps(u)

TD(k))

≥ (TP(C)(u) ∨ TP(D)(u)),

TP(C∪D)(u) ≥ TP(C)(u) ∪ TP(D)(u).

Similarly, we can prove that

IP(C∪D)(u) ≤ IP(C)(u) ∪ IP(D)(u),

FP(C∪D)(u) ≤ FP(C)(u) ∪ FP(D)(u).

Thus, P(C ∪ D) ⊇ P(C) ∪ P(D).
The properties (v)–(viii) of the USRNA P(C) can be easily proved similarly.

Example 2. Considering Example 1, we have

∼ C = {(k1, 0.6, 0.5, 0.2), (k2, 0.2, 0.7, 0.4), (k3, 0.5, 0.6, 0.2), (k4, 0.1, 0.8, 0.6)},
P(∼ C) = {(w1, 0.6, 0.5, 0.2), (w2, 0.6, 0.5, 0.2), (w3, 0.2, 0.7, 0.4), (w4, 0.6, 0.5, 0.2),

(w5, 0.2, 0.7, 0.4)},
∼ P(∼ C) = {(w1, 0.2, 0.5, 0.6), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.3, 0.2), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.3, 0.2)},
= P(C).

Let D = {(k1, 0.4, 0.2, 0.6), (k2, 0.5, 0.3, 0.2), (k3, 0.5, 0.5, 0.1), (k4, 0.6, 0.4, 0.7)},
P(D) = {(w1, 0.4, 0.4, 0.7), (w2, 0.4, 0.5, 0.6), (w3, 0.5, 0.4, 0.7), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.4, 0.7)},
C ∩ D = {(k1, 0.2, 0.5, 0.6), (k2, 0.4, 0.3, 0.2), (k3, 0.2, 0.5, 0.5), (k4, 0.6, 0.4, 0.7)},
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P(C ∩ D) = {(w1, 0.2, 0.5, 0.7), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.4, 0.7), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.4, 0.7)},
P(C) ∩ P(D) = {(w1, 0.2, 0.5, 0.7), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.4, 0.7), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.4, 0.7)},
P(C ∩ D) = P(C) ∩ P(D),

C ∪ D = {(k1, 0.4, 0.2, 0.6), (k2, 0.5, 0.3, 0.2), (k3, 0.5, 0.4, 0.1), (k4, 0.6, 0.2, 0.1)},
P(C ∪ D) = {(w1, 0.4, 0.2, 0.6), (w2, 0.4, 0.4, 0.6), (w3, 0.5, 0.3, 0.2), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.3, 0.2)},
P(C) ∪ P(D) = {(w1, 0.4, 0.4, 0.6), (w2, 0.4, 0.5, 0.6), (w3, 0.5, 0.3, 0.2), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.3, 0.2)}.

Clearly, P(C ∪ D) ⊇ P(C) ∪ P(D). Hence, properties of the LSRNA operator hold, and we can easily
verify the properties of the USRNA operator.

The conventional soft set is a mapping from a parameter to the subset of universe and let (P, M)

be a crisp soft set. In [11], Babitha and Sunil introduced the concept of soft set relation. Now, we present
the constructive definition of SRNR by using a soft relation R from M×M = Ḿ to P(Y × Y = Ý),
where Y is a universal set and M is a set of parameter.

Definition 2. A SRNR (R(D), R(D)) on Y is a SRNS, R : Ḿ→ P(Ý) is a soft relation on Y defined by

R(kik j) = {uiuj | ∃ui ∈ P(ki), uj ∈ P(k j)}, uiuj ∈ Ý.

Let Rs : Ý → P(Ḿ) be a set-valued function by

Rs(uiuj) = {kik j ∈ Ḿ | (uiuj, kik j) ∈ R}, uiuj ∈ Ý.

For any D ∈ N (Ḿ), the USRNA and the LSRNA operators of D w.r.t (Ý, Ḿ, R) defined as follows:

R(D) = {(uiuj, TR(D)(uiuj), IR(D)(uiuj), FR(D)(uiuj)) | uiuj ∈ Ý},

R(D) = {(uiuj, TR(D)(uiuj), IR(D)(uiuj), FR(D)(uiuj)) | uiuj ∈ Ý},

where

TR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

TD(kik j), IR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

ID(kik j),

FR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

FD(kik j),

TR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

TD(kik j), IR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

ID(kik j),

FR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

FD(kik j).

The pair (R(D), R(D)) is called SRNR and R, R : N (Ḿ) → P(Ý) are called the LSRNA and the
USRNA operators, respectively.
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Remark 2. For an NS D on Ḿ and an NS C on M,

TD(kik j) ≤ min
ki∈M
{TC(ki)},

ID(kik j) ≤ min
ki∈M
{IC(ki)},

FD(kik j) ≤ min
ki∈M
{FC(ki)}.

According to the definition of SRNR, we get

TR(D)(uiuj) ≤ min{TR(C)(ui), TR(C)(uj)},
IR(D)(uiuj) ≤ max{IR(C)(ui), IR(C)(uj)},
FR(D)(uiuj) ≤ max{FR(C)(ui), FR(C)(uj)}.

Similarly, for the LSRNA operator R(D),

TR(D)(uiuj) ≤ min{TR(C)(ui), TR(C)(uj)},
IR(D)(uiuj) ≤ max{IR(C)(ui), IR(C)(uj)},
FR(D)(uiuj) ≤ max{FR(C)(ui), FR(C)(uj)}.

Example 3. Let Y = {u1, u2, u3} be a universal set and M = {k1, k2, k3} be a set of parameters. A soft set
(P, M) on Y can be defined in tabular form (see Table 2) as follows:

Table 2. Soft set (P, M).

P u1 u2 u3

k1 1 1 0
k2 0 0 1
k3 1 1 1

Let E = {u1u2, u2u3, u2u2, u3u2} ⊆ Ý and L = {k1k3, k2k1, k3k2} ⊆ Ḿ. Then, a soft relation R on E
(from L to E) can be defined in tabular form (see Table 3) as follows:

Table 3. Soft relation R.

R u1u2 u2u3 u2u2 u3u2

k1k3 1 1 1 0
k2k1 0 0 0 1
k3k2 0 1 0 0

Now, we can define set-valued function Rs such that

Rs(u1u2) = {k1k3}, Rs(u2u3) = {k1k3, k3k2}, Rs(u2u2) = {k1k3}, Rs(u3u2) = {k2k1}.

Let C = {(k1, 0.2, 0.4, 0.6), (k2, 0.4, 0.5, 0.2), (k3, 0.1, 0.2, 0.4)} be an NS on M, then
R(C) = {(u1, 0.2, 0.2, 0.4), (u2, 0.2, 0.4, 0.4), (u3, 0.4, 0.2, 0.2)},
R(C) = {(u1, 0.1, 0.4, 0.6), (u2, 0.1, 0.4, 0.6), (u3, 0.1, 0.5, 0.4)},
Let D = {(k1k3, 0.1, 0.2, 0.2), (k2k1, 0.1, 0.1, 0.2), (k3k2, 0.1, 0.2, 0.1)} be an NS on L, then
R(D) = {(u1u2, 0.1, 0.2, 0.2), (u2u3, 0.1, 0.2, 0.1), (u2u2, 0.1, 0.2, 0.2), (u3u2, 0.1, 0.1, 0.2)},
R(D) = {(u1u2, 0.1, 0.2, 0.2), (u2u3, 0.1, 0.2, 0.1), (u2u2, 0.1, 0.2, 0.2), (u3u2, 0.1, 0.1, 0.2)}.

Hence, R(D) = (R(D), R(D)) is SRNR.
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3. Construction of Neutrosophic Soft Rough Sets

In this section, we will introduce the notions of NSRSs, neutrosophic soft rough relations (NSRRs).

Definition 3. Let Y be an initial universal set and M a universal set of parameters. For an arbitrary
neutrosophic soft relation P̃ from Y to M, (Y, M, P̃) is called neutrosophic soft approximation space (NSAS).
For any NS C ∈ N (M), we define the upper neutrosophic soft approximation (UNSA) and the lower
neutrosophic soft approximation (LNSA) operators of C with respect to (Y, M, P̃) denoted by P̃(C) and P̃(C),
respectively as follows:

P̃(C) = {(u, TP̃(C)(u), IP̃(C)(u), FP̃(C)(u)) | u ∈ Y},

P̃(C) = {(u, TP̃(C)(u), IP̃(C)(u), FP̃(C)(u)) | u ∈ Y},

where

TP̃(C)(u) =
∨

k∈M

(
TP̃(C)(u, k) ∧ TC(k)

)
, IP̃(C)(u) =

∧
k∈M

(
IP̃(C)(u, k) ∨ IC(k)

)
,

FP̃(C)(u) =
∧

k∈M

(
FP̃(C)(u, k) ∨ FC(k)

)
,

TP̃(C)(u) =
∧

k∈M

(
FP̃(C)(u, k) ∨ TC(k)

)
, IP̃(C)(u) =

∨
k∈M

(
(1− IP̃(C)(u, k)) ∧ IC(k)

)
,

FP̃(C)(u) =
∨

k∈M

(
TP̃(C)(u, k) ∧ FC(k)

)
.

The pair (P̃(C), P̃(C)) is called NSRS of C w.r.t (Y, M, P̃), and P̃ and P̃ are referred to as the LNSRA
and the UNSRA operators, respectively.

Remark 3. A neutrosophic soft relation over Y × M is actually a neutrosophic soft set on Y. The NSRA
operators are defined over two distinct universes Y and M. As we know, universal set Y and parameter set M are
two different universes of discourse but have solid relations. These universes can not be considered as identical
universes; therefore, the reflexive, symmetric and transitive properties of neutrosophic soft relations from Y to M
do not exist.

Let P̃ be a neutrosophic soft relation from Y to M, if, for each u ∈ Y, there exists k ∈ M such that
TP̃(u, k) = 1, IP̃(u, k) = 0, FP̃(u, k) = 0. Then, P̃ is referred to as a serial neutrosophic soft relation from Y to
parameter set M.

Example 4. Suppose that Y = {w1, w2, w3, w4} is the set of careers under consideration, and Mr. X wants
to select the most suitable career. M = {k1, k2, k3} is a set of decision parameters. Mr. X describes the “most
suitable career” by defining a neutrosophic soft set (P̃, M) on Y that is a neutrosophic relation from Y to M as
shown in Table 4.

Table 4. Neutrosophic soft relation P̃.

P̃ w1 w2 w3 w4

k1 (0.3, 0.4, 0.5) (0.4, 0.2, 0.3) (0.1, 0.5, 0.4) (0.2, 0.3, 0.4)
k2 (0.1, 0.5, 0.4) (0.3, 0.4, 0.6) (0.4, 0.4, 0.3) (0.5, 0.3, 0.8)
k3 (0.3, 0.4, 0.4) (0.4, 0.6, 0.7) (0.3, 0.5, 0.4) (0.5, 0.4, 0.6)
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Now, Mr. X gives the most favorable decision object C, which is an NS on M defined as follows:
C = {(k1, 0.5, 0.2, 0.4), (k2, 0.2, 0.3, 0.1), (k3, 0.2, 0.4, 0.6)}. By Definition 3, we have

TP̃(C)(w1) =
∨

k∈M

(
TP̃(C)(w1, k) ∧ TC(k)

)
=
∨
{0.3, 0.1, 0.2} = 0.3,

IP̃(C)(w1) =
∧

k∈M

(
IP̃(C)(w1, k) ∨ IC(k)

)
=
∧
{0.4, 0.5, 0.4} = 0.4,

FP̃(C)(w1) =
∧

k∈M

(
FP̃(C)(w1, k) ∨ FC(k)

)
=
∧
{0.5, 0.4, 0.6} = 0.4,

TP̃(C)(w2) = 0.4, IP̃(C)(w2) = 0.2, FP̃(C)(w2) = 0.4,

TP̃(C)(w3) = 0.2, IP̃(C)(w3) = 0.4, FP̃(C)(w3) = 0.3,

TP̃(C)(w4) = 0.2, IP̃(C)(w4) = 0.3, FP̃(C)(w4) = 0.4.

Similarly,

TP̃(C)(w1) =
∧

k∈M

(
FP̃(C)(w1, k) ∨ TC(k)

)
=
∧
{0.5, 0.4, 0.4} = 0.4,

IP̃(C)(w1) =
∨

k∈M

(
(1− IP̃(C)(w1, k)) ∧ IC(k)

)
=
∨
{0.2, 0.3, 0.4} = 0.4,

FP̃(C)(w1) =
∨

k∈M

(
TP̃(C)(w1, k) ∧ FC(k)

)
=
∨
{0.3, 0.1, 0.3} = 0.3,

TP̃(C)(w2) = 0.5, IP̃(C)(w2) = 0.4, FP̃(C)(w2) = 0.4,

TP̃(C)(w3) = 0.4, IP̃(C)(w3) = 0.4, FP̃(C)(w3) = 0.3,

TP̃(C)(w4) = 0.5, IP̃(C)(w4) = 0.4, FP̃(C)(w4) = 0.5.

Thus, we obtain

P̃(C) = {(w1, 0.3, 0.4, 0.4), (w2, 0.4, 0.2, 0.4), (w3, 0.2, 0.4, 0.3), (w4, 0.2, 0.3, 0.4)},
P̃(C) = {(w1, 0.4, 0.4, 0.3), (w2, 0.5, 0.4, 0.4), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.4, 0.5)}.

Hence, (P̃(C), P̃(C)) is an NSRS of C.

Theorem 2. Let (Y, M, P̃) be an NSAS. Then, the UNSRA and the LNSRA operators P̃(C) and P̃(C) satisfy
the following properties for all C, D ∈ N (M):

(i) P̃(C) =∼ P̃(∼ A),
(ii) P̃(C ∩ D) = P̃(C) ∩ P̃(D),
(iii) C ⊆ D ⇒ P̃(C) ⊆ P̃(D),
(iv) P̃(C ∪ D) ⊇ P̃(C) ∪ P̃(D),

(v) P̃(C) =∼ P̃(∼ C),

(vi) P̃(C ∪ D) = P̃(C) ∪ P̃(D),

(vii) C ⊆ D ⇒ P̃(C) ⊆ P̃(D),

(viii) P̃(C ∩ D) ⊆ P̃(C) ∩ P̃(D).
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Proof. (i)

∼ C = {(k, FC(k), 1− IC(k), TC(k)) | k ∈ M}.
By definition of NSRS, we have

P̃(∼ C) = {
(
u, TP̃(∼C)(u), IP̃(∼C)(u), FP̃(∼C)(u)

)
| u ∈ Y},

∼ P̃(∼ C) = {
(
u, FP̃(∼C)(u), 1− IP̃(∼C)(u), TP̃(∼C)(u)

)
| u ∈ Y},

FP̃(∼C)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC(k)

)
= TP̃(C)(u),

1− IP̃(∼C)(u) = 1−
( ∧

k∈M

[IP̃(u, k) ∨ I∼C(k)]
)

=
∨

k∈M

(
(1− IP̃(u, k)) ∧ (1− I∼C(k))

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧

(
1− (1− IC(k))

))
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
= IP̃(C)(u),

TP̃(∼C)(u) =
∨

k∈M

(
TP̃(u, k) ∧ T∼C(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
= FP̃(C)(u).

Thus, P̃(C) = ∼ P̃(∼ C).

(ii)

P̃(C ∩ D) = {
(
u, TP̃(C∩D)(u), IP̃(C∩D)(u), FP̃(C∩D)(u)

)
},

P̃(C) ∩ P̃(D) = {
(
u, TP̃(C)(u) ∧ TP̃(D)(u), IP̃(C)(u) ∨ IP̃(D)(u), FP̃(C)(u) ∨ FP̃(D)(u)

)
}.

Now, consider

TP̃(C∩D)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC∩D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (TC(k) ∧ TD(k))

)
=

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= TP̃(C)(u) ∧ TP̃(D)(u),
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IP̃(C∩D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC∩D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ (IC(k) ∨ ID(k))

)
=

∨
k∈M

(
(1− IP̃(u, k))) ∧ IC(k)

)
∨
∨

k∈M

(
(1− IP̃(u, k)) ∨ ID(k)

)
= IP̃(C)(u) ∨ IP̃(D)(u),

FP̃(C∩D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC∩D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (FC(k) ∨ FD(k))

)
=

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∨
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= FP̃(C)(u) ∨ FP̃(D)(u).

Thus, P̃(C ∩ D) = P̃(C) ∩ P̃(D).

(iii) It can be easily proven by Definition 3.
(iv)

P̃(C ∪ D) = {
(
u, TP̃(C∪D)(u), IP̃(C∪D)(u), FP̃(C∪D)(u)

)
},

P̃(C) ∪ P̃(D) = {
(
u, TP̃(C)(u) ∨ TP̃(D)(u), IP̃(C)(u) ∧ IP̃(D)(u), FP̃(C)(u) ∧ FP̃(D)(u)

)
},

TP̃(C∪D)(u) =
∧

k∈M

(FP̃(u, k) ∨ TC∪D(k))

=
∧

k∈M

(
FP̃(u, k) ∨ [TC(k) ∨ TD(k)]

)
=

∧
k∈M

(
[FP̃(u, k) ∨ TC(k)] ∨ [FP̃(u, k) ∨ TD(k)]

)
≥

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∨
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= TP̃(C)(u) ∨ TP̃(D)(u),

IP̃(C∪D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC∪D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ [IC(k) ∧ ID(k)]

)
=

∨
k∈M

(
[1− IP̃(u, k)) ∧ IC(k)] ∧ [(1− IP̃(u, k)) ∧ ID(k)]

)
≤

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
∨

k∈M

(
(1− IP̃(u, k)) ∧ ID(k)

)
= IP̃(C)(u) ∧ IP̃(D)(u),

FP̃(C∪D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC∪D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ [FC(k) ∧ FD(k)]

)
=

∨
k∈M

(
[TP̃(u, k) ∧ FC(k)] ∧ [TP̃(u, k) ∧ FD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= FP̃(C)(u) ∧ FP̃(D)(u).
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(vii)

P̃(C ∩ D) = {
(
u, TP̃(C∩D)

(u), IP̃(C∩D)
(u), FP̃(C∩D)

(u)
)
},

P̃(C) ∩ P̃(D) = {
(
u, TP̃(C)(u) ∧ TP̃(D)

(u), IP̃(C)(u) ∨ IP̃(D)
(u), FP̃(C)(u) ∨ FP̃(D)

(u)
)
},

TP̃(C∩D)
(u) =

∨
k∈M

(TP̃(u, k) ∧ TC∩D(k))

=
∨

k∈M

(
TP̃(u, k) ∧ [TC(k) ∧ TD(k)]

)
=

∨
k∈M

(
[TP̃(u, k) ∧ TC(k)] ∧ [TP̃(u, k) ∧ TD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ TC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ TD(k)

)
= TP̃(C)(u) ∧ TP̃(D)

(u),

IP̃(C∩D)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ IC∩D(k)

)
=

∧
k∈M

(
IP̃(u, k) ∨ [IC(k) ∨ ID(k)]

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∨ [IP̃(u, k) ∨ ID(k)]

)
≥

∧
k∈M

(
(IP̃(u, k)) ∨ IC(k)

)
∨
∧

k∈M

(
(IP̃(u, k)) ∨ ID(k)

)
= IP̃(C)(u) ∨ IP̃(D)

(u),

FP̃(C∩D)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ FC∩D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ [FC(k) ∨ FD(k)]

)
=

∧
k∈M

(
[FP̃(u, k) ∨ FC(k)] ∨ [FP̃(u, k) ∨ FD(k)]

)
≥

∧
k∈M

(
FP̃(u, k) ∨ FC(k)

)
∨
∧

k∈M

(
FP̃(u, k) ∨ FD(k)

)
= FP̃(C)(u) ∨ FP̃(D)

(u).

Thus, P̃(C ∩ D) ⊆ P̃(C) ∩ P̃(D).

The properties (v)–(vii) of the UNSRA operator P̃(C) can be easily proved similarly.

Theorem 3. Let (Y, M, P̃) be an NSAS. The UNSRA and the LNSRA operators P̃ and P̃ satisfy the following
properties for all C, D ∈ N (M):

(i) P̃(C− D) ⊇ P̃(C)− P̃(D),

(ii) P̃(C− D) ⊆ P̃(C)− P̃(D).
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Proof. (i) By Definition 3 and definition of difference of two NSs, for all u ∈ Y,

TP̃(C−D)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC−D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (TC(k) ∧ FD(k))

)
=

∧
k∈M

(
[FP̃(u, k) ∨ TC(k)] ∧ [FP̃(u, k) ∨ FD(k)]

)
=

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ FD(k)

)
= TP̃(C)(u) ∧ FP̃(D)

(u)

= TP̃(C)−P̃(D)
(u),

IP̃(C−D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC−D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ (IC(k) ∧ (1− ID(k)))

)
=

∨
k∈M

(
[(1− IP̃(u, k)) ∧ IC(k)] ∧ [(1− IP̃(u, k)) ∧ (1− ID(k))]

)
=

∨
k∈M

(
[(1− IP̃(u, k)) ∧ IC(k)] ∧ [1−

(
IP̃(u, k) ∨ ID(k)

)
]
)

≤
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
∨

k∈M

(
1−

(
IP̃(u, k) ∨ ID(k)

))
≤

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
(

1−
∧

k∈M

(
IP̃(u, k) ∨ ID(k)

))
= IP̃(C)(u) ∧ (1− IP̃(D)

(u))

= IP̃(C)−P̃(D)
(u),

FP̃(C−D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC−D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (FC(k) ∧ TD(k))

)
=

∨
k∈M

(
[TP̃(u, k) ∧ FC(k)] ∧ [TP̃(u, k) ∧ TD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ TD(k)

)
= FP̃(C)(u) ∧ TP̃(D)

(u)

= FP̃(C)−P̃(D)
(u).

Thus, P̃(C− D) ⊆ P̃(C)− P̃(D).

(ii) By Definition 3 and definition of difference of two NSs, for all u ∈ Y,
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TP̃(C−D)
(u) =

∨
k∈M

(
TP̃(u, k) ∧ TC−D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (TC(k) ∧ FD(k))

)
=

∨
k∈M

(
[TP̃(u, k) ∧ TC(k)] ∧ [TP̃(u, k) ∧ FD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ TC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= TP̃(C)(u) ∧ FP̃(D)(u)

= TP̃(C)−P̃(D)
(u),

IP̃(C−D)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ IC−D(k)

)
=

∧
k∈M

(
IP̃(u, k) ∨ (IC(k) ∧ (1− ID(k)))

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∧ [IP̃(u, k) ∨ (1− ID(k))]

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∧ [1− (1− IP̃(u, k)) ∨ (1− ID(k))]

)
=

∧
k∈M

(IP̃(u, k) ∨ IC(k)) ∧
(

1−
∨

k∈M

(
(1− IP̃(u, k)) ∧ ID(k)

))
= IP̃(C)(u) ∧ (1− IP̃(D)(u))

= IP̃(C)−P̃(D)
(u),

FP̃(C−D)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ FC−D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (FC(k) ∧ TD(k))

)
=

∧
k∈M

(
[FP̃(u, k) ∨ FC(k)] ∧ [FP̃(u, k) ∨ TD(k)]

)
=

∧
k∈M

(
FP̃(u, k) ∨ FC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= FP̃(C)(u) ∧ TP̃(D)(u)

= FP̃(C)−P̃(D)
(u).

Thus, P̃(C− D) ⊆ P̃(C)− P̃(D).

Theorem 4. Let (Y, M, P̃) be an NSAS. If P̃ is serial, then the UNSA and the LNSA operators P̃ and P̃ satisfy
the following properties for all ∅,M, C ∈ N (M):

(i) P̃(∅) = ∅, P̃(M) = Y,

(ii) P̃(C) ⊆ P̃(C).
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Proof. (i)

P̃(∅) = {(u, TP̃(∅)
(u), IP̃(∅)

(u), FP̃(∅)
(u)) | u ∈ Y},

TP̃(∅)
(u) =

∨
k∈M

(
TP̃(u, k) ∧ T∅(k)

)
,

IP̃(∅)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ I∅(k)

)
,

FP̃(∅)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ F∅(k)

)
.

Since ∅ is a null NS on M, T∅(k) = 0, I∅(k) = 1, F∅(k) = 1, and this implies
TP̃(∅)

(u) = 0, IP̃(u) = 1, FP̃(u) = 1. Thus, P̃(∅) = ∅.

Now,

P̃(M) = {(u, TP̃(M)(u), IP̃(M)(u), FP̃(M)(u)) | u ∈ Y},

TP̃(M)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TM(k)

)
, IP̃(M)(u) =

∨
k∈M

(
(1− IP̃(u, k)) ∧ IM(k)

)
,

FP̃(M)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FM(k)

)
.

Since M is full NS on M, TM(k) = 1, IM(k) = 0, FM(k) = 0, for all k ∈ M, and this implies
TP̃(M)(u) = 1, IP̃(M)(u) = 0, FP̃(M)(u) = 0. Thus, P̃(M) = Y.

(ii) Since (Y, M, P̃) is an NSAS and P̃ is a serial neutrosophic soft relation, then, for each u ∈ Y, there
exists k ∈ M, such that TP̃(u, k) = 1, IP̃(u, k) = 0, and FP̃(u, k) = 0. The UNSRA and LNSRA
operators P̃(C), and P̃(C) of an NS C can be defined as:

TP̃(C)(u) =
∨

k∈M

TC(k), IP̃(C)(u) =
∧

k∈M

IC(k),

FP̃(C)(u) =
∧

k∈M

FC(k),

TP̃(C)(u) =
∧

k∈M

TC(k), IP̃(C)(u) =
∨

k∈M

IC(k),

FP̃(C)(u) =
∨

k∈M

FC(k).

Clearly, TP̃(C)(u) ≤ TP̃(C)(u), IP̃(C)(u) ≥ TP̃(C)(u), FP̃(C)(u) ≥ FP̃(C)(u) for all u ∈ Y.

Thus, P̃(C) ⊆ P̃(C).

The conventional NSS is a mapping from a parameter to the neutrosophic subset of universe and
let (P̃, M) be NSS. Now, we present the constructive definition of neutrosophic soft rough relation by
using a neutrosophic soft relation R̃ from M×M = Ḿ to N (Y× Y = Ý), where Y is a universal set
and M is a set of parameters.

Definition 4. A neutrosophic soft rough relation (R̃(D), R̃(D)) on Y is an NSRS, R̃ : Ḿ → N (Ý) is
a neutrosophic soft relation on Y defined by

R̃(kik j) = {uiuj | ∃ui ∈ P̃(ki), uj ∈ P̃(k j)}, uiuj ∈ Ý,
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such that

TR̃(uiuj, kik j) ≤ min{TP̃(ui, ki), TP̃(uj, k j)},
IR̃(uiuj, kik j) ≤ max{IP̃(ui, ki), IP̃(uj, k j)},
FR̃(uiuj, kik j) ≤ max{FP̃(ui, ki), FP̃(uj, k j)}.

For any D ∈ N (Ḿ), the UNSA and the LNSA of B w.r.t (Ý, Ḿ, R̃) are defined as follows:

R̃(D) = {(uiuj, TR̃(D)
(uiuj), IR̃(D)

(uiuj), FR̃(D)
(uiuj)) | uiuj ∈ Ý},

R̃(D) = {(uiuj, TR̃(D)(uiuj), IR̃(D)(uiuj), FR̃(D)(uiuj)) | uiuj ∈ Ý},

where

TR̃(D)
(uiuj) =

∨
kikj∈Ḿ

(
TR̃(uiuj, kik j) ∧ TD(kik j)

)
,

IR̃(D)
(uiuj) =

∧
kikj∈M̃

(
IR̃(uiuj, kik j) ∨ ID(kik j)

)
,

FR̃(D)
(uiuj) =

∧
kikj∈M̃

(
FR̃(uiuj, kik j) ∨ FD(kik j)

)
,

TR̃(D)(uiuj) =
∧

kikj∈Ḿ

(
FR̃(uiuj, kik j) ∨ TD(kik j)

)
,

IR̃(D)(uiuj) =
∨

kikj∈M̃

(
(1− IR̃(uiuj, kik j)) ∧ ID(kik j)

)
,

FR̃(D)(uiuj) =
∨

kikj∈M̃

(
TR̃(uiuj, kik j) ∧ FD(kik j)

)
.

The pair (R̃(D), R̃(D)) is called NSRR and R̃, R̃ : N (Ḿ) → N (Ý) are called the LNSRA and the
UNSRA operators, respectively.

Remark 4. Consideer an NS D on Ḿ and an NS C on M,

TD(kik j) ≤ min{TC(ki), TC(k j)},
ID(kik j) ≤ max{IC(ki), IC(k j)},
FD(kik j) ≤ max{FC(ki), FC(k j)}.

According to the definition of NSRR, we get

TR̃(D)
(uiuj) ≤ min{TR̃(C)(ui), TR̃(C)(uj)},

IR̃(D)
(uiuj) ≤ max{IR̃(C)(ui), IR̃(C)(uj)},

FR̃(D)
(uiuj) ≤ max{FR̃(C)(ui).FR̃(C)(uj)}.
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Similarly, for LNSRA operator R̃(D),

TR̃(D)(uiuj) ≤ min{TR̃(C)(ui), TR̃(C)(uj)},
IR̃(D)(uiuj) ≤ max{IR̃(C)(ui), IR̃(C)(uj)},
FR̃(D)(uiuj) ≤ max{FR̃(C)(ui).FR̃(C)(uj)}.

Example 5. Let Y = {u1, u2, u3} be a universal set and M = {k1, k2, k3} a set of parameters. A neutrosophic
soft set (P̃, M) on Y can be defined in tabular form (see Table 5) as follows:

Table 5. Neutrosophic soft set (P̃, M).

P̃ u1 u2 u3

k1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.2) (0.6, 0.3, 0.4)
k2 (0.5, 0.3, 0.6) (0.3, 0.4, 0.3) (0.7, 0.2, 0.3)
k3 (0.7, 0.2, 0.3) (0.6, 0.5, 0.4) (0.7, 0.2, 0.4)

Let E = {u1u2, u2u3, u2u2, u3u2} ⊆ Ý and L = {k1k3, k2k1, k3k2} ⊆ Ḿ.

Then, a soft relation R̃ on E (from L to E) can be defined in tabular form (see Table 6) as follows:

Table 6. Neutrosophic soft relation R̃.

R̃ u1u2 u2u3 u2u2 u3u2

k1k3 (0.4, 0.4, 0.5) (0.6, 0.3, 0.4) (0.5, 0.4, 0.2) (0.5, 0.4, 0.3)
k2k1 (0.3, 0.3, 0.4) (0.3, 0.2, 0.3) (0.2, 0.3, 0.3) (0.7, 0.2, 0.2)
k3k2 (0.3, 0.3, 0.2) (0.5, 0.3, 0.2) (0.2, 0.4, 0.4) (0.3, 0.4, 0.4)

Let C = {(k1, 0.2, 0.4, 0.6), (k2, 0.4, 0.5, 0.2), (k3, 0.1, 0.2, 0.4)} be an NS on M, then
R̃(C) = {(u1, 0.4, 0.2, 0.4), (u2, 0.3, 0.4, 0.3), (u3, 0.4, 0.2, 0.3)},
R̃(C) = {(u1, 0.3, 0.5, 0.4), (u2, 0.2, 0.5, 0.6), (u3, 0.4, 0.5, 0.6)},
Let B = {(k1k3, 0.1, 0.3, 0.5), (k2k1, 0.2, 0.4, 0.3), (k3k2, 0.1, 0.2, 0.3)} be an NS on L, then
R̃(D) = {(u1u2, 0.2, 0.3, 0.3), (u2u3, 0.2, 0.3, 0.3), (u2u2, 0.2, 0.4, 0.3), (u3u2, 0.2, 0.4, 0.3)},
R̃(D) = {(u1u2, 0.2, 0.4, 0.4), (u2u3, 0.2, 0.4, 0.5), (u2u2, 0.3, 0.4, 0.5), (u3u2, 0.2, 0.4, 0.5)}.
Hence, R̃(D) = (R̃(D), R̃(D)) is NSRR.

Theorem 5. Let P̃1, P̃2 be two NSRRs from universal Y to a parameter set M; for all C ∈ N (M), we have

(i) P̃1 ∪ P̃2(C) = P̃1(C) ∩ P̃2(C),

(ii) P̃1 ∪ P̃2(C) = P̃1(C) ∪ P̃2(C).

Theorem 6. Let P̃1, P̃2 be two neutrosophic soft relations from universal Y to a parameter set M; for all
C ∈ N (M), we have

(i) P̃1 ∩ P̃2(C) ⊇ P̃1(C) ∪ P̃2(C) ⊇ P̃1(C) ∩ P̃2(C),

(ii) P̃1 ∩ P̃2(C) ⊆ P̃1(C) ∩ P̃2(C).
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4. Application

In this section, we apply the concept of NSRSs to a decision-making problem. In recent times,
the object recognition problem has gained considerable importance. The object recognition problem
can be considered as a decision-making problem, in which final identification of object is founded on
a given amount of information. A detailed description of the algorithm for the selection of the most
suitable object based on an available set of alternatives is given, and the proposed decision-making
method can be used to calculate lower and upper approximation operators to address deep concerns
of the problem. The presented algorithms can be applied to avoid lengthy calculations when dealing
with a large number of objects. This method can be applied in various domains for multi-criteria
selection of objects. A multicriteria decision making (MCDM) can be modeled using neutrosophic soft
rough sets and is ideally suited for solving problems.

In the pharmaceutical industry, different pharmaceutical companies develop, produce and
discover pharmaceutical medicines (drugs) for use as medication. These pharmaceutical companies
deal with “brand name medicine” and “generic medicine”. Brand name medicine and generic medicine
are bioequivalent, have a generic medicine rate and element of absorption. Brand name medicine and
generic medicine have the same active ingredients, but the inactive ingredients may differ. The most
important difference is cost. Generic medicine is less expensive as compared to brand names in
comparison. Usually, generic drug manufacturers have competition to produce products that cost less.
The product may possibly be slightly dissimilar in color, shape, or markings. The major difference is
cost. We consider a brand name drug “u = Claritin (loratadink)” with an ideal neutrosophic value
number nu = (1, 0, 0) used for seasonal allergy medication. Consider

Y = {u1 = Nasacort Aq (Triamcinolone), u2 = Zyrtec D (Cetirizine/Pseudoephedrine),

u3 = Sudafed (Pseudoephedrine), u4 = Claritin-D (loratadine/pseudoephedrine),

u5 = Flonase (Fluticasone)}

is a set of generic versions of “Clarition”. We want to select the most suitable generic version of Claritin
on the basis of parameters e1 = Highly soluble, e2 = Highly permeable, e3 = Rapidly dissolving.
M = {e1, e2, e3} be a set of paraments. Let P̃ be a neutrosophic soft relation from Y to parameter set
M as shown in Table 7.

Table 7. Neutrosophic soft set (P̃, M).

P̃ e1 e2 e3

u1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.2) (0.6, 0.3, 0.4)
u2 (0.5, 0.3, 0.6) (0.3, 0.4, 0.3) (0.7, 0.2, 0.3)
u3 (0.7, 0.2, 0.3) (0.6, 0.5, 0.4) (0.7, 0.2, 0.4)
u4 (0.5, 0.7, 0.5) (0.8, 0.4, 0.6) (0.8, 0.7, 0.6)
u5 (0.6, 0.5, 0.4) (0.7, 0.8, 0.5) (0.7, 0.3, 0.5)

Suppose C = {(e1, 0.2, 0.4, 0.5), (e2, 0.5, 0.6, 0.4), (e3, 0.7, 0.5, 0.4)} is the most favorable object
that is an NS on the parameter set M under consideration. Then, (P̃(C), P̃(C)) is an NSRS in
NSAS (Y, M, P̃), where

P̃(C) = {(u1, 0.6, 0.5, 0.4), (u2, 0.7, 0.4, 0.4), (u3, 0.7, 0.4, 0.4), (u4, 0.7, 0.6, 0.5), (u5, 0.7, 0.5, 0.5)},
P̃(C) = {(u1, 0.5, 0.6, 0.4), (u2, 0.5, 0.6, 0.5), (u3, 0.3, 0.3, 0.5), (u4, 0.5, 0.6, 0.5), (u5, 0.4, 0.5, 0.5)}.
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In [6], the sum of two neutrosophic numbers is defined. The sum of LNSRA and the UNSRA
operators P̃(C) and P̃(C) is an NS P̃(C)⊕ P̃(C) defined by

P̃(C)⊕ P̃(C) = {(u1, 0.8, 0.3, 0.16), (u2, 0.85, 0.24, 0.2), (u3, 0.79, 0.2, 0.2), (u4, 0.85, 0.36, 0.25),

(u5, 0.82, 0.25, 0.25)}.

Let nui = (Tnui
, Inui

, Fnui
) be a neutrosophic value number of generic versions medicine ui. We can

calculate the cosine similarity measure S(nui , nu) between each neutrosophic value number nui of
generic version ui and ideal value number nu of brand name drug u, and the grading of all generic
version medicines of Y can be determined. The cosine similarity measure is calculated as the inner
product of two vectors divided by the product of their lengths. It is the cosine of the angle between
the vector representations of two neutrosophic soft rough sets. The cosine similarity measure is
a fundamental measure used in information technology. In [3], the cosine similarity is measured
between neutrosophic numbers and demonstrates that the cosine similarity measure is a special case
of the correlation coefficient in SVNS. Then, a decision-making method is proposed by the use of
the cosine similarity measure of SVNSs, in which the evaluation information for alternatives with
respect to criteria is carried out by truth-membership degree, indeterminacy-membership degree,
and falsity-membership degree under single-valued neutrosophic environment. It defined as follows:

S(nu, nui ) =
Tnu · Tnui

+ Inu · Inui
+ Fnu · Fnui√

T2
nu + Tn2

u
+ F2

nu +
√

T2
nui

+ Tn2
ui
+ F2

nui

. (1)

Through the cosine similarity measure between each object and the ideal object, the ranking order
of all objects can be determined and the best object can be easily identified as well. The advantage is
that the proposed MCDM approach has some simple tools and concepts in the neutrosophic similarity
measure approach among the existing ones. An illustrative application shows that the proposed
method is simple and effective.

The generic version medicine ui with the larger similarity measure S(nui , nu) is the most suitable
version ui because it is close to the brand name drug u. By comparing the cosine similarity measure
values, the grading of all generic medicines can be determined, and we can find the most suitable
generic medicine after selection of suitable NS of parameters. By Equation (1), we can calculate the
cosine similarity measure between neutrosophic value numbers nu of u and nui of ui as follows:

S(nu, nu1) = 0.9203, S(nu, nu2) = 0.9386, S(nu, nu3) = 0.9415,

S(nu, nu4) = 0.8888 S(nu, nu5) = 0.9183.

We get S(nu, nu3) > S(nu, nu2) > S(nu, nu1) > S(nu, nu5) > S(nu, nu4). Thus, the optimal decision
is u3, and the most suitable generic version of Claritin is Sudafed (Pseudoephedrine). We have used
software MATLAB (version 7, MathWorks, Natick, MA, USA) for calculations in the application. The
flow chart of the algorithm is general for any number of objects with respect to certain parameters.
The flow chart of our proposed method is given in Figure 1. The method is presented as an algorithm
in Algorithm 1.
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Srart

Read the number of elements in universal setY
and number of elements in parameter setM.

Read neutrosophic soft relatioñP
and neutrosophic setC onM .

T
P̃ (C)

= zeros(n, 1)

I
P̃ (C)

= ones(n, 1)
F
P̃ (C)

= ones(n, 1)

TP̃ (C) = ones(n, 1)
IP̃ (C) = zeros(n, 1)
FP̃ (C) = zeros(n, 1)

if

P̃ (C) 6= P̃ (C)

P̃ (C)⊕ P̃ (C) = zeros(n, 3)

nu = (1, 0, 0)

S(nu, nui) = zeros(n,1)

D = max(S)

fprintf(“ you can choice the elementu,j")

Stop

True

False

i = i+ 1

l = l + 1

fprintf(“ it is a neutrosophic set on universal set")

k = k + 1

Figure 1: Flow chart for selection of most suitable objects

22

Figure 1. Flow chart for selection of most suitable objects.
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Algorithm 1: Algorithm for selection of the most suitable objects

1. Begin
2. Input the number of elements in universal set Y = {u1, u2, . . . , un}.
3. Input the number of elements in parameter set M = {e1, e2, . . . , em}.
4. Input a neutrosophic soft relation P̃ from Y to M.
5. Input an NS C on M.
6. if size(P̃) 6= [n, 3 ∗m]

7. fprintf(8 size of neutrosophic soft relation from universal set to parameter
set is not correct, it should be of order %dx%d; ′, n, 3 ∗m)

8. error(8 Dimemsion of neutrosophic soft relation on vertex set is not correct. ’)
9. end
10. if size(C) 6= [m, 3]
11. fprintf(8 size of NS on parameter set is not correct,

it should be of order %dx3; ’,m)
12. error(’Dimemsion of NS on parameter set is not correct.’)
13. end
14. TP̃(C) = zeros(n, 1);

15. IP̃(C) = ones(n, 1);

16. FP̃(C) = ones(n, 1);

17. TP̃(C) = ones(n, 1);
18. IP̃(C) = zeros(n, 1);
19. FP̃(C) = zeros(n, 1);
20. if size(P̃) == [n, 3 ∗m]

21. if size(C) == [m, 3]
22. if P̃ >= 0 && P̃ <= 1
23. if C >= 0 && C <= 1
24. for i = 1 : n
25. for k = 1 : m
26. j=3*k-2;
27. TP̃(C)(i, 1) = max(TP̃(C)(i, 1), min(P̃(i, j), C(k, 1)));

28. IP̃(C)(i, 1) = min(IP̃(C)(i, 1), max(P̃(i, j + 1), C(k, 2)));

29. FP̃(C)(i, 1) = min(FP̃(C)(i, 1), max(P̃(i, j + 2), C(k, 3)));

30. TP̃(C)(i, 1) = min(TP̃(C)(i, 1), max(P̃(i, j + 2), C(k, 1)));
31. IP̃(C)(i, 1) = max(IP̃(C)(i, 1), min((1− P̃(i, j + 1)), C(k, 2)));
32. FP̃(C)(i, 1) = max(FP̃(C)(i, 1), min(P̃(i, j), C(k, 3)));
33. end
34. end
35. P̃(C) = (TP̃(C), IP̃(C), FP̃(C))

36. P̃(C) = (TP̃(C), IP̃(C), FP̃(C))

37. if P̃(C) == P̃(C)
38. fprintf(8 it is a neutrosophic set on universal set. ′)
39. else
40. fprintf(8it is an NSRS on universal set. ′)
41. P̃(C)⊕ P̃(C) = zeros(n, 3);
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42. for i=1:n
43. TP̃(C)(i)⊕ TP̃(C)(i) = TP̃(C)(i) + TP̃(C)(i)

− TP̃(C)(i). ∗ TP̃(C)(i);

44. IP̃(C)(i)⊕ IP̃(C)(i) = IP̃(C)(i). ∗ IP̃(C)(i);

45. FP̃(C)(i)⊕ FP̃(C)(i) = FP̃(C)(i). ∗ FP̃(C)(i);

46. end
47. nu = (1, 0, 0);
48. S(nu, nui ) = zeros(n, 1);
49. for i=1:n

50. S(nu, nui ) =
Tnu · Tnui

+ Inu · Inui
+ Fnu · Fnui√

T2
nu + Tn2

u
+ F2

nu +
√

T2
nui

+ Tn2
ui
+ F2

nui

;

51. end
52. S(nu, nui )

53. D=max(S);
54. l=0;
55. m=zeros(n,1);
56. D2=zeros(n,1);
57. for j=1:n
58. if S(j,1)==D
59. l=l+1;
60. D2(j,1)=S(j,1);
61. m(j)=j;
62. end
63. end
64. for j = 1 : n
65. if m(j) = 0
66. fprintf(8 you can choice the element u%d

′,j)
67. end
68. end
69. end
70. end
71. end
72. end
73. end
74. End

5. Conclusions and Future Directions

Rough set theory can be considered as an extension of classical set theory. Rough set theory
is a very useful mathematical model to handle vagueness. NS theory, RS theory and SS theory are
three useful distinguished approaches to deal with vagueness. NS and RS models are used to handle
uncertainty, and combining these two models with another remarkable model of SSs gives more
precise results for decision-making problems. In this paper, we have first presented the notion of
SRNSs. Furthermore, we have introduced NSRSs and investigated some properties of NSRSs in detail.
The notion of NSRS can be utilized as a mathematical tool to deal with imprecise and unspecified
information. In addition, a decision-making method based on NSRSs has been proposed. This research
work can be extended to (1) rough bipolar neutrosophic soft sets; (2) bipolar neutrosophic soft rough
sets; (3) interval-valued bipolar neutrosophic rough sets; and (4) neutrosophic soft rough graphs.
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