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Abstract
The main purpose of this paper is to study the inclusion relations of neutrosophic sets and some applications in multiple 
attribute decision making. At first, the existing two definitions of inclusion relation (called type-1 and type-2 inclusion 
relation, respectively) of neutrosophic sets are analyzed, and the deficiencies of type-1 and type-2 inclusion relations are 
illustrated by examples (in fact, they are actually two extreme cases). Second, a new definition of inclusion relation of neu-
trosophic sets (call it type-3 inclusion relation) is introduced, and a new method of ranking of neutrosophic sets is given. 
The effectiveness of the ranking method is presented by some application examples in multiple attribute decision making. 
Finally, type-3 inclusion relation of neutrosophic sets and related lattice structure are investigated in a systematic way, the 
definitions of type-3 union and type-3 intersection operations are proposed, and the following important result is proved: 
all of neutrosophic sets based on a certainty domain constitute a generalized De Morgan algebra (non-distributive lattice) 
with respect to type-3 union, type-3 intersection and complement operations. From this, the essential difference between 
neutrosophic set and fuzzy set (and intuitionistic fuzzy set) is clarified theoretically.

Keywords Neutrosophic set · Fuzzy set · Inclusion relation · Multiple attribute decision · Lattice

1 Introduction

The notion of neutrosophic set is proposed by Smarandache 
in 1998 (see [20–22]). Now, neutrosophic set is gaining sig-
nificant attention in solving many real life problems that 
involve uncertainty, impreciseness, incompleteness, incon-
sistent, and indeterminacy. The theory of netrosophic set has 
been applied in multiple attribute decision making, compu-
tational intelligence, machine learning, image processing, 
medical diagnosis, fault diagnosis, optimization design, 
algebraic systems and so on (see [2, 7, 8, 11–17, 28–33, 
35–39]). Moreover, a lot of new neutrosophic theories have 
been proposed, for examples, neutrosophic cubic set (see 
[9, 10, 34]), neutrosophic soft set and neutrosophic rough 
set (see [3, 6, 25]).

The core idea of neutrosophic theory is to describe the 
uncertainty of concepts from three mutually independent 
aspects. In fact, this idea has many different forms of expres-
sion in the academic circle. For examples: (1) from the rough 
set, interval set, granular computing and other research 
nutrition, the famous scholar Yao creatively put forward 
three-way decision theory, has become a hot research topic 
in related fields (see [26, 27]). A very interesting research 

 * Xiaohong Zhang 
 zhangxiaohong@sust.edu.cn; zhangxh@shmtu.edu.cn

 Chunxin Bo 
 201640311001@stu.shmtu.edu.cn

 Florentin Smarandache 
 smarand@unm.edu

 Jianhua Dai 
 david.joshua@qq.com

1 School of Arts and Sciences, Shaanxi University of Science 
and Technology, Xi’an 710021, People’s Republic of China

2 College of Arts and Sciences, Shanghai Maritime University, 
Shanghai 201306, People’s Republic of China

3 College of Information Engineering, Shanghai Maritime 
University, Shanghai 201306, People’s Republic of China

4 Department of Mathematics, University of New Mexico, 
Gallup, NM 87301, USA

5 Key Laboratory of High Performance Computing 
and Stochastic Information Processing (Ministry 
of Education of China), Hunan Normal University, 
Changsha 410081, Hunan, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-018-0817-6&domain=pdf


 International Journal of Machine Learning and Cybernetics

1 3

trend is that the connection between neutrosophic theory and 
three-way decision theory is concerned in [18]. (2) A picture 
fuzzy set (proposed by Cuong, see [1, 4–6]) can be regarded 
as a special neutrosophic set, so relevant research can be 
incorporated into the framework of neutrosophic theory. In 
fact, the notion of picture fuzzy set is called standard neutro-
sophic set in [6]. (3) Wang et al. introduced the new notions 
of ternary fuzzy set and ternary fuzzy number in [23]; by 
simple comparison, we find that the two concepts of picture 
fuzzy set and ternary fuzzy set are essentially equivalent. 
We believe that the integration of these theories will provide 
more effective methods and tools for solving uncertainty 
problems.

In the neutrosophic set, truth-membership, indetermi-
nacy-membership, and falsity-membership are represented 
independently. If U is a set, a neutrosophic set defined on 
the universe U assigns to each element x ∈ U , a triple 
(T(x), I(x), F(x)), where T(x), I(x) and F(x) are standard 
or non-standard elements of non-standard unit interval 
]0−, 1+[= 0−

⋃
[0. 1]

⋃
1+ . T is the degree of truth-mem-

bership in the set U, I is the degree of indeterminacy-mem-
bership in the set U and F is the degree of non-membership 
in the set U. In this paper we work with special neutro-
sophic sets that their degrees of memberships are standard 
real numbers in [0, 1], they are called single valued neutro-
sophic set (see [24]). It can be seen from this, neutrosophic 
set is a powerful general formal framework that generalizes 
the concepts of fuzzy set and intuitionistic fuzzy set.

For a set theory, inclusion relation is a basic concept; it 
plays a fundamental role in defining the union and intersec-
tion operations between sets, as well as the basis for related 
applications. From the existing literature, there are two dif-
ferent definitions of the inclusion relation of neutrosophic 
sets. In this paper, we gave some examples to illustrate the 
shortcomings of the two inclusion relations, and then pro-
pose a new inclusion relation (call it type-3 inclusion rela-
tion). Based on type-3 inclusion relation, we establish a new 
ranking method of neutrosophic sets and apply it to multi-
ple attribute decision making problems. At the same time, 
this paper also studies the union and intersection operations 
corresponding to type-3 inclusion relation and the related 
lattice structure. Using these research results, we reveal the 
essential difference between neutrosophic set and fuzzy set 
(interval-valued fuzzy set, intuitionistic fuzzy set, and so on) 
from an algebraic point of view.

2  Neutrosophic sets and type‑1 (type‑2) 
inclusion relations

Definition 2.1 [20, 21] Let X be a space of points (objects), 
with a generic element in X denoted by x. A neutrosophic 
set A in X is characterized by a truth-membership function 

TA(x), an indeterminacy-membership function IA(x), and a 
falsity- membership function FA(x). The functions TA(x), 
IA(x), and FA(x) are real standard or non-standard subsets of 
 ]−0,  1+[. That is, TA(x): X → ]−0 ,  1+[, IA(x): X → ]−0 ,  1+[, 
and FA(x): X → ]−0 ,  1+[. Thus, there is no restriction on the 
sum of TA(x), IA(x), and FA(x), so −0 ≤ supTA(x) + supIA(x) 
+ supFA(x) ≤ 3+.

Definition 2.2 [24] Let X be a space of points (objects) 
with generic elements in X denoted by x. A single valued 
neutrosophic set A in X is characterized by truth-membership 
function TA(x), indeterminacy-membership function IA(x), 
and falsity-membership function FA(x). Then, a single valued 
neutrosophic set A can be denoted by

where TA(x), IA(x),FA(x) ∈ [0, 1] for each point x in X. There-
fore, the sum of TA(x), IA(x), and FA(x) satisfies the condition 
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For convenience, “single valued neutrosophic set” is abbre-
viated to “neutrosophic set” later. In this paper, we use the 
symbol NS(X) to denote the set of all single valued neutro-
sophic set in X.

Two single valued neutrosophic sets A and B are equal, 
written as A = B, if and only if TA(x) = TB(x), IA(x) = IB(x) and 
FA(x) = FB(x) for any x in X.

For the inclusion relation of neutrosophic sets, there are 
two different definitions in the literature. An original defi-
nition is proposed by Smarandache (see [20–22]), we call 
it type-1 inclusion relation in this paper, denote it by ⊆1 ; 
another one is used in some papers (see [2, 3, 24]), we call 
it type-2 inclusion relation in this paper, denote it by ⊆2.

Definition 2.3 [20–22] A single valued neutrosophic set 
A is contained in the other single valued neutrosophic set 
B, denote A ⊆1 B, if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), 
FA(x) ≥ FB(x) for any x in X.

It is easy to verify that the above inclusion relation ⊆1 is a 
partial ordered relation on NS(X). We called it type-1 inclu-
sion relation in this paper.

Definition 2.4 [2, 3, 24] A single valued neutrosophic set 
A is contained in the other single valued neutrosophic set 
B, denote A ⊆2 B, if and only if TA(x) ≤ TB(x), IA(x) ≤ IB(x), 
FA(x) ≥ FB(x) for any x in X.

Obviously, the above inclusion relation ⊆2 is also a par-
tial ordered relation on NS(X). We called it type-2 inclusion 
relation in this paper.

A =
�⟨x, TA(x), IA(x),FA(x)⟩�x ∈ X

�
,
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Proposition 2.1 Two single valued neutrosophic sets A and 
B are equal, if and only if A ⊆1 B and B ⊆1 A, if and only if 
A ⊆2 B and B ⊆2 A.

For set theory, union and intersection operations are cor-
responding to inclusion relation. Therefore, there are two 
kinds of union and intersection operations corresponding to 
the two inclusion relations mentioned above. Interestingly, 
the complement operation uses the same definition in this 
paper (in fact, there are indeed different ways of defining 
complement operation in the literature, and we will discuss 
this problem in another paper). The basic definitions of these 
concepts are listed as follows.

Definition 2.5 [20–22] The type-1 union of two neu-
trosophic sets A and B is a neutrosophic set C, written as 
C = A ∪1 B, whose truth-membership, indeterminacy-mem-
bership and falsity-membership functions are related to 
those of A and B by

Definition 2.6 [2, 3, 24] The type-2 union of two neu-
trosophic sets A and B is a neutrosophic set C, written as 
C = A ∪2 B, whose truth-membership, indeterminacy-mem-
bership and falsity-membership functions are related to 
those of A and B by

Definition 2.7 [20–22] The type-1 intersection of two 
neutrosophic sets A and B is a neutrosophic set D, written 
as D = A ∩1 B, whose truth-membership, indeterminacy-
membership and falsity-membership functions are related 
to those of A and B by

Definition 2.8 [2, 3, 24] The type-2 intersection of two 
neutrosophic sets A and B is a neutrosophic set D, written 
as D = A ∩2 B, whose truth-membership, indeterminacy-
membership and falsity-membership functions are related 
to those of A and B by

Definition 2.9 The complement of a neutrosophic set A is 
denote by Ac, is defined as

TC(x) = max
(
TA(x), TB(x)

)
, IC(x) = min

(
IA(x), IB(x)

)
,

FC(x) = min
(
FA(x),FB(x)

)
,∀x ∈ X.

TC(x) = max
(
TA(x), TB(x)

)
, IC(x) = max

(
IA(x), IB(x)

)
,

FC(x) = min
(
FA(x),FB(x)

)
,∀ ∈ X.

TD(x) = min
(
TA(x), TB(x)

)
, ID(x) = max

(
IA(x), IB(x)

)
,

FD(x) = max
(
FA(x),FB(x)

)
,∀ ∈ X.

TD(x) = min
(
TA(x), TB(x)

)
, ID(x) = min

(
IA(x), IB(x)

)
,

FD(x) = max
(
FA(x),FB(x)

)
,∀ ∈ X.

We can prove the following important proposition (the 
proof is omitted).

Definition 2.10 [19] A generalized De Morgan algebra (or 
GM-algebra) is a universal algebra ( M,∨,∧, 0, 1 ) where 
( M,∧,∨, 0, 1 ) is a bounded lattice and the unary operation 
satisfies the identities:

For a generalized De Morgan algebra ( M,∧,∨, −, 0, 1 ), 
if ( M,∧,∨, 0, 1 ) is a bounded distributive lattice, then 
( M,∨,∧, −, 0, 1 ) is a De Morgan algebra.

Proposition 2.2 Let X be a universe. Then (NS(X), ⊆1 , ∪1 , 
∩1 , c, (0, 1, 1), (1, 0, 0)) is a De Morgan algebra, and (NS(X), 
⊆2 , ∪2 , ∩2 , c, (0, 0, 1), (1, 1, 0)) is also a De Morgan algebra.

3  Type‑3 inclusion relation of neutrosophic 
sets

First, we analyze the inadequacies of the type-1 and type-2 
inclusion relations of neutrosophic sets.

For any A, B ∈ NS(X),

By Definition 2.3 and 2.4, we know that

Thus,

This means that type-1 and type-2 inclusion relations 
are actually divided three membership functions into two 
groups, and then determines the order relation using the 
method similar to intuitionistic fuzzy sets; the difference 
between the two types is that one calculates the uncer-
tain part in the truth-part and the other is to calculate the 
uncertain part in the falsity-part. In other words, the two 
inclusion relations do not really take advantage of the 
three membership functions; they are actually two extreme 
ways of handling. From another point of view, since I(x) 

TAc (x) = FA(x), IAc (x) = 1 − IA(x),FAc(x) = TA(x),∀ ∈ X.

GM1 ∶ x = (x−)−;

GM2 ∶ (x ∧ y)− = x− ∨ y−;

GM3 ∶ 1− = 0.

A = {⟨x, TA(x), IA(x),FA(x)⟩�x ∈ X};

B = {⟨x, TB(x), IB(x),FB(x)⟩�x ∈ X}.

A⊆1B ⇒ TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x),∀x ∈ X.

A⊆2B ⇒ TA(x) ≤ TB(x), IA(x) ≤ IB(x),FA(x) ≥ FB(x),∀x ∈ X.

A⊆1B ⇒ TA(x) ≤ TB(x), IA(x) + FA(x) ≥ IB(x) + FB(x),∀x ∈ X.

A⊆2B ⇒ TA(x) + IA(x) ≤ TB(x) + IB(x),FA(x) ≥ FB(x),∀x ∈ X.
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represent indeterminacy, it should not be added to the T(x) 
or F(x).

Now, we give following example to illustrate the inad-
equacies of the two inclusion relations.

Example 3.1 Let X be a universe, A, B, C, D ∈ NS(X) . If

Then
A ⊆1 B, but B ⊆2 A;
C ⊆1 D, but C ⊊2 D and D ⊊2 C.
Assuming that the three membership functions in the 

neutrosophic sets are understood as the proportion of the 
votes in the voting process that are agreed, neutral (indeter-
minacy) or against votes, the above results show that type-1 
and type-2 inclusion relations are not reasonable:

1. TA(x) = TB(x) = 0.5, FA(x) = FA(x) = 0.1, and the number 
of neutral, IA(x) = 0.4 > 0.3 = IB(x), why A ⊆1 B? This 
is unjustifiable, it follows that the definition of type-1 
inclusion relation is inadequate;

2. TC(x) = TD(x) = 0.6, FC(x) = 0.25 > 0.1 = FD(x), and the 
difference between IC(x) and ID(x) is very small. Intui-
tively, C is less than D, but C and D can not be compared 
by using ⊆2 , it follows that the definition of type-2 inclu-
sion relation is inadequate.

In order to overcome the shortcomings of the above two 
kinds of inclusion relations, we introduce type-3 inclusion 
relation. The main idea is to give full play to the three mem-
bership functions and subdivide various possible situations, 
it can be regarded as the generalization of related methods 
in [1, 5].

Definition 3.1 Let A and B be two neutrosophic sets in the 
universe X. The type-3 inclusion relation ⊆3 is defined as 
follows: A⊆3B if and only if

TA(x) = 0.5, IA(x) = 0.4,FA(x) = 0.1,∀x ∈ X;

TB(x) = 0.5, IB(x) = 0.3,FB(x) = 0.1,∀x ∈ X;

TC(x) = 0.6, IC(x) = 0.1,FC(x) = 0.25,∀x ∈ X;

TD(x) = 0.6, ID(x) = 0.09,FD(x) = 0.1,∀x ∈ X.

∀x ∈ X,
(
TA(x) < TB(x),FA(x) ≥ FB(x)

)
,

or
(
TA(x) = TB(x),FA(x)FB(x)

)
,

or
(
TA(x) = TB(x),FA(x) = FB(x) and IA(x) ≤ IB(x)

)
.

For Example 3.1, we can get that B ⊆3 A and C ⊆3 D.
The following unconventional voting example shows that 

the three independent membership functions in neutrosophic 
sets have practical application background.

Example 3.2 Take a voting of a region’s deputies for exam-
ple, where the voting rules are special, which allows voters 
to choose multiple options at the same time. Assume that 
there are three candidates (A, B, C) determined, and two 
deputies should be chosen. The provisions of the voting are 
given as follows:

1. For each candidate can choose in favor (draw √), neutral 
(draw ○), against (draw ×);

2. You can select multiple options;
3. Do not mark with any symbol if abstain from voting, that 

is, you may not choose any option for any candidate.

In the end, there are 100 valid ballots. The final vote 
count of candidate is given as follows:

A:  75 people vote for, 40 people neutral, 20 people against
B:  40 people vote for, 25 people neutral, 50 people against
C:  60 people vote for, 60 people neutral, 75 people against

We used three neutrosophic sets to represent the voting 
results, that is, A, B and C are regarded as neutrosophic sets 
in the single point set X = {x0 : ideal candidate}:

By Definition 3.2, we have

Then the candidates A and B win two of the three 
qualifications.

Proposition 3.1 Let X be a universe, A, B, C ∈ NS(X) . 
Then, (1) A ⊆3 A; (2) (A⊆3B, B⊆3A) ⇒ A = B; (3) (A⊆3B, B⊆3

C) ⇒ A⊆3C.

Definition 3.2 Let A and B be neutrosophic sets in X. 
The type-3 union, type-3 intersection and complement are 
defined as follows:

TA(x0) = 0.75, IA(x0) = 0.4,FA(x0) = 0.2;

TB(x0) = 0.6, IB(x0) = 0.25,FB(x0) = 0.5;

TC(x0) = 0.6, IC(x0) = 0.6,FC(x0) = 0.75

B⊆3A,C⊆3A, andC⊆3B.
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1. A ∪3 B = 

⎧
⎪⎨⎪⎩

A =
��

x, TA(x), IA(x),FA(x)
��x ∈ X

�
, ifB⊆3A

B =
��

x, TB(x), IB(x),FB(x)
��x ∈ X

�
, if A⊆3B��

x, max
�
TA(x), TB(x)

�
, 0, min

�
FA(x),FB(x)

���x ∈ X
�
, otherwise

2. A ∩3 B = 

⎧
⎪⎨⎪⎩

A =
��

x, TA(x), IA(x),FA(x)
��x ∈ X

�
, ifA⊆3B

B =
��

x, TB(x), IB(x),FB(x)
��x ∈ X

�
, if B⊆3A��

x, min
�
TA(x), TB(x)

�
, 1, max

�
FA(x),FB(x)

�� � x ∈ X
�
, otherwise

3. Ac = 
{(

x,FA(x), 1 − IA(x), TA(x)
) |x ∈ X )}.

It is easy to verify the following conclusions (the proofs 
are omitted here, in Sect. 5, we will give the proof in a more 
general framework).

Proposition 3.2 Let A, B be neutrosophic sets in X, then

1. A ∪3 B is the least upper bound (supremum) of A and B 
under the order relation ⊆3;

2. A ∩3 B is the greatest lower bound (infimum) of A and B 
under the order relation ⊆3.

Proposition 3.3 Let A, B, C be neutrosophic sets in X, then

1. A ∩3 A = A, A ∪3 A = A;
2. A ∩3 B = B ∩3 A, A ∪3 B = B ∪3 A;
3. (A ∩3 B) ∩3 C = A ∩3 (B ∩3 C), (A ∪3 B) ∪3 C=A ∪3 (B ∪3 C);
4. A ∩3 (B ∪3 A) = A, A ∪3 (B ∩3 A) = A;
5. A ⊆3 B ⇔ A ∪3 B = B; A ⊆3 B ⇔ A ∩3 B = A.

Proposition 3.4 Let A and B be neutrosophic sets in X, then

1. (Ac)c = A;
2. (A ∩3 B)c = Ac ∪3 Bc;
3. (A ∪3 B)c = Ac ∩3 Bc.

Theorem 3.1 Let NS(X) be the set of all neutrosophic sets 
in universe X. Denote

Then (NS(X), ∪3 , ∩3 , c,  0type-3,  1type-3) is a generalized De 
Morgan algebra.

4  A new ranking method with applications

The inclusion relations of neutrosophic sets are closely 
related to the ranking methods of the neutrosophic numbers, 
and the ranking methods play a basic important role in the 
application of neutrosophic sets in multi attribute decision 
making. In [22], using three functions: neutrosophic score 

0type−3 = {(x, 0, 0, 1) |x ∈ X},

1type−3 = {(x, 1, 1, 0) |x ∈ X}.

function, neutrosophic accuracy function, and neutrosophic 
certainty function, Smarandache define a total order on the 
set of neutrosophic numbers. In this section, a new ranking 
method will be given with the help of the idea of type-3 
inclusion relation in Sect. 3.

As a preparation, the concept of neutrosophic number and 
the order relation on it will be introduced.

If t, i, f ∈ [0, 1] , then (t, i, f) is called a single-valued 
neutrosophic number. Similar to [5], we consider the set D* 
defined by

From now on, we will assume that if x, y ∈ D∗ or 
(t, i, f ) ∈ D∗ , then x1 (or t), x2 (or i) and x3 (or f) denote, 
respectively, the first, the second and the third component. 
We denote the units of D*  by1D* = (1, 1, 0) and  0D* = (0, 0, 
1), respectively.

Obviously, for every neutrosophic set

It correspond with an D*-fuzzy set, i.e., a mapping

By Definition 2.3 and 2.4, the type-1 and type-2 inclusion 
relation of neutrosophic sets are based on the following order 
relation on D*:

By Definition 3.1, type-3 inclusion relation is based on 
the following order relation on D*:

Remark 4.1 In next section, we will give a rigorous proof 
of the lattice properties of type-3 order relation on D*. Note 
that, if for x, y ∈ D∗ that neither x ≤ 3y nor y ≤ 3x, then x and 
y are incomparable, denoted as x||≤3

y. Similar symbols are 
also applicable to type-1 and type-2 order relations.

D∗ =
{
x =

(
x1, x2, x3

) ||x1, x2, x3 ∈ [0, 1]
}
.

A =
{(

x, TA(x), IA(x),FA(x)
)|x ∈ X

}
,

A ∶ X → D∗ ∶ x ↦
(
TA(x), IA(x),FA(x)

)
.

∀x, y ∈ D∗, x≤1y ⇔
(
x1 ≤ y1

)
and

(
x2 ≥ y2

)
and

(
x3 ≥ y3

)
.

∀x, y ∈ D∗, x≤2y ⇔
(
x1 ≤ y1

)
and

(
x2 ≤ y2

)
and

(
x3 ≥ y3

)
.

x≤3y ⇔
((
x1 < y1

)
and

(
x3 ≥ y3

))
,

or
((
x1 = y1

)
and

(
x3 > y3

))
,

or
((
x1 = y1

)
and

(
x3=y3

)
and

(
x2 ≤ y2

))
.
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Definition 4.1 Let (t, i, f) be a single-valued neutrosophic-
number. The type-3 score function is defined by

The type-3 accuracy function is defined by

It is easy to verify the following conclusion which shows 
that type-3 score function and type-3 ordered relation are 
compatible.

Proposition 4.1 Let (t1, i1, f1) and (t2, i2, f2) be two single-
valued neutrosophic numbers. Then

It is easy to verify the following conclusion which shows 
that type-3 score function and type-3 accuracy function 
determine the 1, 3 component of the neutrosophic number 
(not related to the second component).

Proposition 4.2 Let (t1, i1, f1) and (t2, i2, f2) be two single-
valued neutrosophic numbers. Then

Now, we propose a new ranking method of the neutro-
sophic numbers.

Definition 4.2 Let (t1, i1, f1) and (t2, i2, f2) be two single-
valued neutrosophic numbers. Then

1. if s(t1, i1, f1) < s(t2, i2, f2) , then (t1, i1, f1) ≺ (t2, i2, f2);
2. if s(t1, i1, f1) = s(t2, i2, f2), h(t1, i1, f1) < h(t2, i2, f2), then 

(t1, i1, f1) ≺ (t2, i2, f2);
3. i f  s(t1, i1, f1) = s(t2, i2, f2), h(t1, i1, f1) = h(t2, i2, f2), 

i1 < i2, then (t1, i1, f1) ≺ (t2, i2, f2); i1 = i2, then (t1, i1, f1)= 
(t2, i2, f2).

It is easy to verify the following conclusions which show 
that the relation ≼ (≺ or =) is a total order on D*.

Proposition 4.3 For any (t1, i1, f1), (t2, i2, f2), and (t3, i3, f3) 
in D*, the following assertions hold:

1. (t1, i1, f1) ≼ (t1, i1, f1);
2. if (t1, i1, f1) ≼ (t2, i2, f2) and (t2, i2, f2) ≼ (t1, i1, f1), then (t1, 

i1, f1) = (t2, i2, f2);
3. if (t1, i1, f1) ≼ (t2, i2, f2) and (t2, i2, f2) ≼ (t3, i3, f3), then (t1, 

i1, f1) ≼ (t3, i3, f3);
4. if (t1, i1, f1) ⋠ (t2, i2, f2), then (t2, i2, f2) ≺ (t1, i1, f1).

s ∶ D∗
→ [0, 1], s(t, i, f ) =

t + (1 − f )

2
.

h ∶ D∗
→ [0, 1], h(t, i, f ) =

t

t + (1 − f )
.

(t1, i1, f1)≤3(t2, i2, f2) ⇒ s(t1, i1, f1) ≤ s(t2, i2, f2).

s(t1, i1, f1) = s(t2, i2, f2) and h(t1, i1, f1) = h(t2, i2, f2)

⇒ (t1 = t2, f1 = f2).

Example 4.1 Let us consider two single-valued neutrosophic 
numbers:

By Definition 4.1 and 4.2, we have

Hence, β ≺ α. This is in accordance with the conclusion 
by using neutrosophic score function, neutrosophic accuracy 
function, and neutrosophic certainty function in [22] (see 
Page 23, 24 in second extended and improved edition).

Now, we discuss some examples for multi-criteria deci-
sion-making problem of engineering alternatives by using 
the above ranking method of the neutrosophic numbers.

Example 4.2 Let us consider the decision-making problem 
adapted from [31]. There is an investment company, which 
wants to invest a sum of money in the best option. There is 
a panel with four possible alternatives to invest the money: 
(1) A1 is a car company; (2) A2 is a food company; (3) A3 is 
a computer company; (4) A4 is an arms company. The invest-
ment company must take a decision according to the follow-
ing three criteria: (1) C1 is the risk; (2) C2 is the growth; (3) 
C3 is the environmental impact. Then, the weight vector of 
the criteria is given by W = (0.35, 0.25, 0.4).

For the evaluation of an alternative Ai (i = 1, 2, 3, 4) with 
respect to a criterion Cj (j = 1, 2, 3), it is obtained from the 
questionnaire of a domain expert. For example, when we 
ask the opinion of an expert about an alternative A1 with 
respect to a criterion C1, he or she may say that the possibil-
ity in which the statement is good is 0.4 and the statement 
is poor is 0.3 and the degree in which he or she is not sure 
is 0.2. For the neutrosophic notation, it can be expressed as 
α11 = (0.4, 0.2, 0.3). Thus, when the four possible alterna-
tives with respect to the above three criteria are evaluated 
by the expert, we can obtain the following simplified neu-
trosophic decision matrix D.

In [31], the author obtains the weighted arithmetic aver-
age value (aggregating simplified neutrosophic value) αi for 
Ai (i = 1, 2, 3, 4):

� = (0.6, 0.1, 0.4), b = (0.5, 0.1, 0.3).

s(�) = 0.6, s(�) = 0.6;

h(�) = 0.5, h(�) = 0.417.

�1 = (0.3268, 0.2000, 0.3881),

�2 = (0.5627, 0.1414, 0.2000),

�3 = (0.4375, 0.2416, 0.2616),

�4 = (0.5746, 0.1555, 0.1663).

D =

⎡⎢⎢⎢⎣

(0.4, 0.2, 0.3) (0.4, 0.2, 0.3) (0.2, 0.2, 0.5)

(0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.5, 0.2, 0.2)

(0.3, 0.2, 0.3) (0.5, 0.2, 0.3) (0.5, 0.3, 0.2)

(0.7, 0.0, 0.1) (0.6, 0.1, 0.2) (0.4, 0.3, 0.2)

⎤⎥⎥⎥⎦
.
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By Definition 4.1 and 4.2, we have
s(α1) = 0.4694, s(α2) = 0.6814, s(α3) = 0.5880, 

s(α4) = 0.7042;
α1 ≺ α3 ≺ α2 ≺ α4.
Therefore, the alternative A4 is the best choice among all 

the alternatives.
Moreover, by the weighted geometric average operator, 

we can obtain the following computational results:

By Definition 4.1 and 4.2, we have
s(�1) = 0.4676, s(�2) = 0.6789, s(�3) = 0.5815, s(�4) = 0.6908; 

α1 ≺ α3 ≺ α2 ≺ α4.
Thus, the alternative A4 is the best choice.
Hence, we get exactly the same results as in [31].

Example 4.3 Let us consider the multi-attribute group deci-
sion making problem (about the air quality evaluation) 
adapted from [12]. To evaluate the air quality of Guangzhou 
for the 16th Asian Olympic Games, the air quality in Guang-
zhou for the Novembers of 2006, 2007, 2008 and 2009 were 
collected in order to find out the trends and to forecast the 
situation in 2010. There are three air-quality monitoring sta-
tions which can be seen as decision makers. There are three 
measured indexes, namely,  SO2 (C1),  NO2 (C2) and  PM10 
(C3). The measured values from air-quality monitoring sta-
tions under these indexes are shown in Tables 1, 2 and 3 
in [12], and they can be expressed by neutrosophic num-
bers. Let {S1, S2, S3, S4} = {November of 2006, November 
of 2007, November of 2008, November of 2009} be the set 
of alternatives, please give the rank of air quality from 2006 
to 2009.

According the method in [12], derive the collective over-
all values:

By Definition 4.1 and 4.2, we have
s(r1) = 0.492, s(r2) = 0.5095, s(r3) = 0.5675, s(r4) = 0.617;
r1 ≺ r2 ≺ r3 ≺ r4.
So, the best alternative is S4, i.e., the best air quality 

Guangzhou is November of 2009 among the Novembers of 
2006, 2007, 2008, and 2009. This is in accordance with the 
conclusion in [12].

�1 = (0.3031, 0.2000, 0.3680),

�2 = (0.5578, 0.1320, 0.2000),

�3 = (0.4181, 0.2352, 0.2551),

�4 = (0.5385, 0, 0.1569).

r1 = (0.288, 0.396, 0.304),

r2 = (0.329, 0.344, 0.310),

r3 = (0.345, 0.430, 0.210),

r4 = (0.417, 0.367, 0.183).

5  The related lattice structure

In this section, we discuss the lattice structures (D*, ≤3) and 
(NS(X), ⊆3), where ≤ 3 is defined as follows: ∀x, y∈D*,

Proposition 5.1 Type-3 ordering relation ≤ 3 on D* is a 
partial ordering relation.

Proof Assume that x, y, z∈D*.

 i. Reflexivity: x ≤ 3x, it is obvious.
 ii. Ant-symmetry: if x ≤ 3y and y ≤ 3x, then

1. Case 1: x1 < y1 and x3 ≥ y3. By the definition of y ≤ 3x, 
we can get x1 ≥ y1, this is contradictory.

2. Case 2: x1 = y1 and x3 > y3. By the definition of y ≤ 3x, 
we can get x3 ≤ y3, it is contradictory.

3. Case 3: x1 = y1 and x3 = y3. By x ≤ 3y, we have x2 ≤ y2; 
also using y ≤ 3x, we have x2 ≥ y2. Thus x2 = y2.

Summing up the above, if x ≤ 3y and y ≤ 3x, then x1 = y1 
and x2 = y2 and x3 = y3, that is x = y.

 iii. Transitivity: if x ≤ 3y, y ≤ 3z, then

1. Case 1: (x1 < y1, x3 ≥ y3) and (y1 < z1, y3 ≥ z3). It fol-
lows that x1 < z1 and x3 ≥ z3, thus x ≤ 3z.

2. Case 2: (x1 = y1, x3 > y3) and (y1 = z1, y3 > z3). It fol-
lows that x1 = z1 and x3 > z3, thus x ≤ 3z.

3. Case 3: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 = z1, y3 = z3, 
y2 ≤ z2). It follows that x1 = z1, x3 = z3 and x2 ≤ z2, thus 
x ≤ 3z.

4. Case 4: (x1 < y1, x3 ≥ y3) and (y1 = z1, y3 > z3). It fol-
lows that x1 < z1 and x3 > z3, thus x ≤ 3z.

5. Case 5: (x1 < y1, x3 ≥ y3) and (y1 = z1, y3 = z3, y2 ≤ z2). 
It follows that x1 < z1, x3 ≥ z3 and y2 ≤ z2, thus x ≤ 3z.

6. Case 6: (x1 = y1, x3 > y3) and (y1 < z1, y3 ≥ z3). It fol-
lows that x1 < z1 and x3 > z3, thus x ≤ 3z.

7. Case 7: (x1 = y1, x3 > y3) and (y1 = z1, y3 = z3, y2 ≤ z2). 
It follows that x1 = z1, x3 > z3 and y2 ≤ z2, thus x ≤ 3z.

8. Case 8: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 < z1, y3 ≥ z3). 
It follows that x1 < z1, x3 ≥ z3 and x2 ≤ y2, thus x ≤ 3z.

9. Case 9: (x1 = y1, x3 = y3, x2 ≤ y2) and (y1 = z1, y3 > z3), 
then x1 = z1, x3 > z3 and x2 ≤ y2, thus x ≤ 3z.

Summing up the above, if x ≤ 3y and y ≤ 3z, then x ≤ 3z.
The proof is completed.

x≤3y ⇔
((
x1 < y1

)
and

(
x3 ≥ y3

))
,

or
((
x1 = y1

)
and

(
x3 > y3

))
,

or
((
x1 = y1

)
and

(
x3=y3

)
and

(
x2 ≤ y2

))
.
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Proposition 5.2 For any x, y ∈ D*, we define

Then x∧3y is the greatest lower bound (infimum) of x, 
y, denote by inf(x, y); x∨3y is the least upper bound (supre-
mum) of x, y, denote by sup(x, y). That is, (D*, ≤3) is a 
lattice.

Proof If x ≤ 3y or y ≤ 3x, by the definition of “∧3”, x∧3y is the 
greatest lower bound of x, y, that is, x∧3y = inf(x, y). Moreo-
ver, if x ≤ 3y or y ≤ 3x, then x∨3y is the least upper bound of 
x, y, that is, x∨3y = sup(x, y).

Now, we suppose that x||≤3
y . Thus, by the definition of 

“∧3” and “∨3”,

i. To prove x∧3y = inf(x, y): Denote
z = (z1, z2, z3) = (min(x1, y1), 1, max(x3, y3)).
Then x1 ≥ min(x1, y1) = z1, x3 ≤ max(x3, y3) = z3.
If x1 > z1 and x3 ≤ z3, then z ≤ 3x.
If x1 = z1 and x3 < z3, then z ≤ 3x.
If x1 = z1 and x3 = z3, then y1 ≥ x1, y3 ≤ x3, it follows that 

x ≤ 3y or y ≤ 3x. It is a contradiction with the condition x||≤3
y . 

Hence we can get z ≤ 3x. Similarly, we can get z ≤ 3y. This 
means that z is the lower bound of x and y.

Next, we need prove that z is the greatest lower bound 
of x and y.

Assume a = (a1, a2, a3)∈D* such that a ≤ 3x and a ≤ 3y.

1. Case 1: (a1 < x1, a3 ≥ x3) and (a1 < y1, a3 ≥ y3). It follows 
that a1 < min(x1, y1) = z1 and a3 ≥ max(x3, y3) = z3, thus 
a ≤ 3z.

2. Case 2: (a1 = x1, a3 > x3) and (a1 = y1, a3 > y3). It follows 
that a1 = min(x1, y1) = z1 and a3 > max(x3, y3) = z3, thus 
a ≤ 3z.

3. Case 3: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 = y1, a3 = y3, 
a2 ≤ y2). It follows that a1 = min(x1, y1) = z1, a3 = max(x3, 
y3) = z3 and a2 ≤ max(x2, y2) ≤ 1 = z2. Thus a ≤ 3z.

4. Case 4: (a1 = x1, a3 > x3) and (a1 < y1, a3 ≥ y3). It follows 
that a1 = x1 = min(x1, y1) = z1 and a3 ≥ max(x3, y3) = z3. 
If a1 = x1 = min(x1, y1) = z1 and a3 > max(x3, y3) = z3, 

x∧3y =

⎧
⎪⎨⎪⎩

x, if x≤3y

y, if y≤3x�
min(x1, y1), 1, max(x3, y3)

�
, otherwise

x∨3y =

⎧
⎪⎨⎪⎩

y, if x≤3y

x, if y≤3x�
max(x1, y1), 0, min(x3, y3)

�
, otherwise

x∧3y =
(
min(x1, y1), 1, max(x3, y3)

)
,

x∨3y =
(
max(x1, y1), 0, min(x3, y3)

)
.

then a ≤ 3z; If a1 = x1 = min(x1, y1) = z1 and a3 = max(x3, 
y3) = z3, from this and the hidden condition a2 ≤ 1 = z2, 
we get a ≤ 3z.

5. Case 5: (a1 < x1, a3 ≥ x3) and (a1 = y1, a3 > y3). It follows 
that a1 = y1 = min(x1, y1) = z1 and a3 ≥ max(x3, y3) = z3. 
Similar to Case 4, we can get a ≤ 3z.

6. Case 6: (a1 < x1, a3 ≥ x3) and (a1 = y1, a3 = y3, a2 ≤ y2). It 
follows that y1 < x1 and y3 ≥ x3, so y ≤ 3x, it is a contradic-
tion with hypothesis x||≤3

y.
7. Case 7: (a1 = x1, a3 > x3) and (a1 = y1, a3 = y3, a2 ≤ y2). It 

follows that y1 = x1 and y3 > x3, so y ≤ 3x, it is a contradic-
tion with hypothesis x||≤3

y.
8. Case 8: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 < y1, a3 ≥ y3). It 

follows that x1 < y1 and x3 ≥ y3, so x ≤ 3y, it is a contradic-
tion with hypothesis x||≤3

y.
9. Case 9: (a1 = x1, a3 = x3, a2 ≤ x2) and (a1 = y1, a3 > y3). It 

follows that x1 = y1 and x3 > y3, so x ≤ 3y, it is a contradic-
tion with hypothesis x||≤3

y.

Therefore, we always have a ≤ 3z. That is, z = (min(x1, y1), 
1, max(x3, y3)) is the greatest lower bound of x, y.

 ii. To prove x∨3y = sup(x, y): Denote

w = (w1, w2, w3) = (max(x1, y1), 0, min(x3, y3)).
Then x1 ≤ max(x1, y1) = w1, x3 ≥ min(x3, y3) = w3.
If x1 < w1 and x3 ≥ w3, then x ≤ 3w.
If x1 = w1 and x3 > w3, then x ≤ 3w.
If x1 = w1 and x3 = w3, then y1 ≤ x1, y3 ≥ x3, so y ≤ 3x or 

x ≤ 3y, it is a contradiction with hypothesis x||≤3
y . Hence we 

always have x ≤ 3w.
Similarly, we can prove y ≤ 3w. Therefore, w is an upper 

bound of x and y.
Next, we need prove w is the least upper bound of x and y.
Suppose b = (b1, b2, b3) ∈ D* such that x ≤ 3b, y ≤ 3b.

1. Case 1: (x1 < b1, x3 ≥ b3) and (y1 < b1, y3 ≥ b3). It follows 
that b1 > max(x1, y1) = w1 and b3 ≤ min(x3, y3) = w3. Thus 
w ≤ 3b.

2. Case 2: (b1 = x1, x3 > b3) and (b1 = y1, y3 > b3). It follows 
that b1 = max(x1, y1) = w1, b3 < min(x3, y3) = w3, thus 
w ≤ 3b.

3. Case 3: (b1 = x1, b3 = x3, x2 ≤ b2) and (b1 = y1, b3 = y3, 
y2 ≤ b2). It follows that b1 = max(x1, y1) = w1, b3 = min(x3, 
y3) = w3 and b2 ≥ max(x2, y2) ≥ 0 = w2, thus w ≤ 3b.

4. Case 4: (b1 = x1, x3 > b3) and (y1 < b1, y3 ≥ b3). It follows 
that b1 ≥ max(x1, y1) = w1 and b3 ≤ min(x3, y3) = w3. 
If (b1 > max(x1, y1) = w1, b3 ≤ min(x3, y3) = w3) or 
(b1 = max(x1, y1) = w1, b3 < min(x3, y3) = w3), then w ≤ 3b; 
If b1 = max(x1, y1) = w1 and b3 = min(x3, y3) = w3, accord-
ing the hidden condition b2 ≥ 0 = w2, we can get w ≤ 3b.

5. Case 5: (x1 < b1, x3 ≥ b3) and (b1 = y1, y3 > b3). It follows 
that b1 ≥ max(x1, y1) = w1 and b3 ≤ min(x3, y3) = w3, simi-
lar to Case 4, we can get w ≤ 3b.
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6. Case 6: (x1 < b1, x3 ≥ b3) and (b1 = y1, b3 = y3, y2 ≤ b2). It 
follows that x1 < y1 and x3 ≥ y3, so x ≤ 3y, it is a contradic-
tion with hypothesis x||≤3

y.
7. Case 7: (b1 = x1, x3 > b3) and (b1 = y1, b3 = y3, y2 ≤ b2). It 

follows that y1 = x1 and y3 < x3, so x ≤ 3y, it is a contradic-
tion with hypothesis x||≤3

y.
8. Case 8: (b1 = x1, b3 = x3, x2 ≤ b2) and (y1 < b1, y3 ≥ b3). It 

follows that y1 < x1 and y3 ≥ x3, so y ≤ 3x, it is a contradic-
tion with hypothesis x||≤3

y.
9. Case 9: (b1 = x1, b3 = x3, x2 ≤ b2) and (b1 = y1, y3 > b3). It 

follows that y1 = x1 and y3 > x3, so y ≤ 3x, it is a contradic-
tion with hypothesis x||≤3

y.

Therefore, we always have w ≤ 3b. This means that 
w = (max(x1, y1), 0, min(x3, y3)) is the least upper bound 
of x, y.

Combing (i) and (ii), we get that x∧3y = inf(x, y),

x∨3y = sup(x, y), and(D∗,≤3) is a lattice. The proof is 
completed.

Definition 5.1 For any x, y ∈ D∗ , the type-3 unionx∨3yand 
type-3 intersection x∧3y are defined as Proposition 5.2; the 
complement is defined as following:

It is easy to verify the following conclusions.

Proposition 5.3 For any x, y, z ∈ D∗ , we have

1. x∧3x = x, x∨3x = x;

2. x∧3y = y∧3x, x∨3y = y∨3x;

3. (x∧3y)∧3z = x∧3(y∧3z), (x∨3y)∨3z = x∨3(y∨3z); 
x∧3(y∨3x) = x, x∨3(y∧3x) = x;

4. x≤3y ⇔ x∨3y = y; x≤3y ⇔ x∧3y = x;

5. (xc)c = x.

Proposition 5.4 Let x, y∈D*, then

1. (x∧3y)
c = xc∨3y

c;

2. (x∨3y)
c = xc∧3y

c.

Proof Assume that x = (x1, x2, x3), y = (y1, y2, y3) ∈ D*. By 
Definition 5.1, we have

xc = (x3, 1 − x2, x1), yc = (y3, 1 − y2, y1).
If y ≤ 3x, then
Case 1: y1 < x1 and y3 ≥ x3. It follows that xc ≤3 yc. Thus 

(x∨3y)
c = yc = xc∨3y

c.
Case 2: y1 = x1 and y3 > x3. It follows that xc ≤3 yc. 

Thus(x∨3y)
c = yc = xc∨3y

c.
Case 3: y1 = x1, y3 = x3 and y2 ≤ x2. It follows that 

1 − x2 ≤ 1 − y2. Thus xc ≤3 yc, and (x∨3y)
c = yc = xc∨3y

c.

xc = (x1, x2, x3)
c = (x3, 1 − x2, x1).

Similarly, if x ≤ 3y, then (x∨3y)
c = xc = xc∨3y

c.
If neither y ≤ 3x nor x ≤ 3y, then

Thus

Hence (x∧3y)
c = xc∨3y

c.

By (1) and Proposition 5.3 (5), we can get that 
(x∨3y)

c = xc∧3y
c.

Theorem 5.1 Denote 1D* = (1, 1, 0) and 0D* = (0, 0, 1). 
Then (D∗,∨3,∧3,

c, 0D∗, 1D∗) is a generalized De Morgan 
algebra.

Proof By Proposition 5.1–5.4 and Definition 2.10, we can 
get that (D∗,∨3,∧3,

c, 0D∗, 1D∗) is a generalized De Morgan 
algebra.

The following example shows that (D∗,∨3,∧3,
c, 0D∗, 1D∗) 

is not a De Morgan algebra, since distributive law is not true.

Example 5.1 Let

Then

Therefore,

This means that the distributive law is not satisfied in 
the generalized De Morgan algebra (D∗,∨3,∧3,

c, 0D∗, 1D∗).
By Definition 4.1 and Proposition 3.2, we have
For any neutrosophic sets A and B in X, by Definition 3.1 

we have

x∧3y =
(
min

(
x1, y1

)
, 1, max

(
x3, y3

))

(x∧3y)
c =

(
max

(
x3, y3

)
, 0, min

(
x1, y1

))
,

xc∨3y
c = (x3, 1 − x2, x1)∨3(y3, 1 − y2, y1)

=
(
max

(
x3, y3

)
, 0, min

(
x1, y1

))
.

x = (0.2, 0.8, 0.3),

y = (0.6, 0.3, 0.4),

z = (0.5, 0.9, 0.38).

(x∧3y)∨3z = (0.2, 1, 0.4)∨3(0.5, 0.9, 0.38) = (0.5, 0.9, 0.38);

(x∨3z)∧3(y∨3z) = (0.5, 0, 0.3)∧3(0.6, 0, 0.38) = (0.5, 1, 0.38);

(x∨3y)∧3z = (0.6, 0, 0.3)∧3(0.5, 0.9, 0.38) = (0.5, 0.9, 0.38);

(x∧3z)∨3(y∧3z) = (0.2, 1, 0.3)∨3(0.5, 1, 0.4) = (0.5, 0, 0.3).

(x∧3y)∨3z ≠ (x∨3z)∧3(y∨3z),

(x∨3y)∧3z ≠ (x∧3z)∨3(y∧3z).

A⊆3B if and only if(
TA(x), IA(x),FA(x)

)
≤3

(
TB(x), IB(x),FB(x)

)
,∀x ∈ X.
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From this, using Proposition 5.1, we can easy to prove 
Proposition 3.1.

Moreover, for any neutrosophic sets A and B in X, by 
Definition 3.2 and 5.1 we have

From this, using Proposition 5.2–5.4, we can easy to 
prove Proposition 3.2–3.4. It follows that Theorem 3.1 is a 
corollary of Theorem 5.1.

Finally, from Example 5.1 we can get that (NS(X),∪3,∩3) 
is not a distribute lattice, that is, there exits A, B, C in NS(X) 
such that

This result shows that neutrosophic set is different from 
the fuzzy set and intuitionistic fuzzy set from the algebraic 
structure.

6  Conclusion

In this paper, the inclusion relation between neutrosophic 
sets is deeply analyzed and studied. Two basic definitions 
of inclusion relation (type-1 and type-2 inclusion relations) 
are summarized, and their shortcomings are pointed out. 
The definition of type-3 inclusion relation of neutrosophic 
sets is proposed. The difference between type-3 and type-1 
(type-2) inclusion relation is mainly reflected in the pro-
cessing method of second component of neutrosophic set. 
For the original definitions (type-1 and type-2), the second 
component of neutrosophic set is rigidly assigned to first or 
third components, which does not really reflect the original 
meaning of second component. The type-3 inclusion relation 
proposed in this paper overcomes this shortcoming.

Moreover, applying the new inclusion relation and its 
basic idea, this paper also proposes a new ranking method 
of neutrosophic sets, and illustrates its application in multi-
attribute decision making by some examples.

Finally, based on type-3 inclusion relation, the lattice 
structure of neutrosophic set is analyzed, the type-3 union 
and intersection operations are established, and the basic 
algebraic properties are proved. In particular, we get the fol-
lowing important conclusions: all of neutrosophic sets in a 
certainty universe along with type-3 union, type-3 intersec-
tion and the complement constitute a generalized De Mor-
gan algebra (non-distribute), which in theory clearly distin-
guishes the essential difference between neutrosophic set 
and fuzzy set (intuitionistic fuzzy set), since one can obtain 
distributive De Morgan algebras for fuzzy set, intuitionistic 

A∪3B = {
(
TA(x), IA(x),FA(x)

)
∨3

(
TB(x), IB(x),FB(x)

)|x ∈ X};

A∩3B = {
(
TA(x), IA(x),FA(x)

)
∧3

(
TB(x), IB(x),FB(x)

)|x ∈ X}.

(A∩3B)∪3C ≠ (A∪3C)∩3(B∪3C),

(A∪3B)∩3C ≠ (A∩3C)∪3(B∩3C).

fuzzy set and so on. This can be seen as a meaningful result 
of this paper.
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