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Abstract. In this paper, The powers of fuzzy neutrosophic soft square matrices (FNSSMs)
under the operations ⊕(= max) and ⊗(= min) are studied. We show that the powers of a
given FNSM stabilize if and only if its orbits stabilize for each starting fuzzy neutrosophic
soft vector (FNSV) and prove a necessary and sufficient condition for this property using the
associated graphs of the FNSM. Applications of the obtained results to several spacial classes
of FNSMs (including circulants) are given.
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1. Introduction

In 1965, Zadeh [24] used membership degree µA(x) ∈ [0, 1] to find the belongingness of
an element to a set. When µA(x) itself becomes uncertain, then it is hard to define by a
crisp value for it. This was solved by using interval-valued fuzzy sets (IVFSs) by Turksen
[22]. In some real life applications, one has to consider not only the truth membership
supported by the evidence but also the falsity membership against the evidence, which is
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beyond the scope of fuzzy sets and IVFSs. Atanassove [2] introduced intuitionistic fuzzy
set (IFS) as a generalization of fuzzy sets to consider the both truth membership and
falsity membership. Later IFS was extended to the interval-valued intuitionistic fuzzy stes
(IVIFSs) by Atanassov [3] for generalization purpose. A bibliometric analysis on fuzzy
decision-related research and a scientometric review on IFS studies can be respectively
found in Liu and Liao [13] and Yu and Liao. Due to some restriction on truth and falsity
membership values, fuzzy set and its extensions can only handle uncertain information
but not the indeterminate and inconsistent information, which may exist in reality. For
example where 10 voters are participating in a voting process. In time t1, three vote
“yes”, two vote “no” and five are undecided. In neutrosophic notation, it is expressed
as (0.3 0.5 0.2). In time t2, three vote “yes”, two vote “no”, two give up and three
are undecided, then it can be expressed as (0.3 0.3 0.2), which is beyond the scope of
intuitionistic fuzzy set. This type of situations is well managed by the neutrosophic set
(NS), where indeterminancy is quantified explicity an truth, indeterminancy, and falsity
membership are independent to each other NS provides a more reasonable mathematical
framework to deal with indeterminate and inconsistent information. During the last
decade, the concept of NS and inteval neutrosophic set (INS) have been used in various
application such as medical diagnosis, database, topology, image processing (see, Guo
and Sengur [9]) and decision making problems (see, Broumi and Smarandache [4]).

Smarandache [19] introduced neutrosophy as a branch of philosophy which studies the
origin, nature, and scope of neutralities. Smarandache defined indeterminacy explicitly
and stated that truth, indeterminacy and falsity membership are independent and lies
within ]−0, 1+[, which is the non-standard unit interval and an extension of the standard
interval [0, 1]. Maji [16] introduced neutrosophic soft set (NSS) as a combination of NS
and soft set defined by Molodtsov [17].

An algebraic structure (N ,⊕,⊗) where N is a bounded linearly ordered set with the
upper bound denoted by 1 and the lower bound by 0, ⊕ = max, and ⊗ = min is called by
some authors a bottleneck algebra (Cechlarova [5]) and by others a fuzzy algebra [11, 12].
The important property of the operations ⊕ and ⊗ is that they are both idempotent.
moreover, for every a, b ∈ N , a⊕ b ∈ {a, b} and a⊗ b ∈ {a, b}.

The set of all n-tuples (n-vectors) over N will be denoted by Nn and the set of all
square matrices of order n by N (n, n). The operations ⊕ and ⊗ are extended to vectors
(fuzzy vector, intuitionistic fuzzy vector) and matrices (fuzzy matrices, intuitionistic
fuzzy matrices) in the usual way, i.e., for A,B ∈ N(n,n) we have A ⊗ B = C ∈ N(n,n),
where

Cij =

n∑
k=1

aik ⊗ bkj .

If we create the sequence of powers A, A2 = A ⊗ A, A3 = A2 ⊗ A, ... of a given matrix
A, then no entry different from the entries in the original A can be obtained. Hence
although the sequence of powers is infinite, it contains only a finite number of different
members. That means that at some point a repetition must occur, resulting in some
periodic behavior or stabilization.

This phenomenon has already been observed in [21], where a condition for stabilization
of compact matrices has been derived. In [11, 12], it was shown that the period of a square
matrix divides [n], the least common multiple of the integers 1, 2, ..., n and an algorithm
for computing this period was given. Some other works concentrate on periodicity and
stabilization of powers of special matrices; one of the most recent papers is [10], where a
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sufficient condition for stabilization of powers of circulant matrices is proved.
All the above papers use purely algebraic methods. However, for computations in ex-

tremal algebraic structure like the bottleneck /fuzzy algebra, the language of graph theory
has been used since, say, the 1960s. It has proved to be useful in both directions: matrix
operations can be used for designing some graph-theoretical algorithms, and graphs shed
light on some questions formulated for matrices. From an extensive literature on this
topic let us mention [5, 7, 25].

Using the idea of intuitionistic fuzzy sets Im and Lee have defined the concept of intu-
itionistic fuzzy matrix as a natural generalization of fuzzy matrices and they introduced
the determinant of square intuitionistic fuzzy matrices. Rajarajeswari and Dhanalakshimi
have [18] recently introduced intuitionistic fuzzy soft matrices (IFSMs) that has been an
effective tool in the application of medical diagnosis. Arockiarani and Sumathi have [20]
recently investigated some new operation on FNSMs. Uma et al [23] introduced FNSMs
of Type-I and Type-II. Also, for more details about fuzzy neutrosophic soft matrix, see
[8, 14, 15]

The aim of the present paper is to introduce digraphs into the study of powers of
FNSMs over bottleneck/ fuzzy algebra and use them to derive a necessary and sufficient
condition for stabilization of power sequence. In the final section we illustrate this theory
by its application to some special classes of FNSMs.

2. Preliminaries

In this section some basic definitions of neutrosophic set (NS), fuzzy neutrosophic soft
set (FNSS), fuzzy neutrosophic soft matrix (FNSM), fuzzy neutrosophic soft matrix of
type-I, and a review of graph-theoretical notions are given.

Definition 2.1 [19] A neutrosophic set A on the universe of discourse X is defined as
A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → ]−0, 1+[ and

−0 ⩽ TA(x) + IA(x) + FA(x) ⩽ 3+. (1)

From philosophical point of view the neutrosophic set takes the value from real standard
or non-standard subsets of ]−0, 1+[. But in real life application especially in scientific
and engineering problems it is difficult to use neutrosophic set with value from real
standard or non-standard subset of ]−0, 1+[. Hence we consider the neutrosophic set
which takes the value from the subset of [0, 1]. Therefore we can rewrite equation (1) as
0 ⩽ TA(x) + IA(x) + FA(x) ⩽ 3. In short an element ã in the neutrosophic set A, can
be written as ã = ⟨aT , aI , aF ⟩, where aT denotes degree of truth, aI denotes degree of
indeterminacy, aF denotes degree of falsity such that 0 ⩽ aT + aI + aF ⩽ 3.

Definition 2.2 [17] Let U be the initial universe set and E be a set of parameter.
Consider a non-empty set A,A ⊂ E. Let P (U) denotes the set of all fuzzy neutrosophic
sets of U . The collection (F,A) is termed to the fuzzy neutrosophic soft set (FNSS) over
U , where F is a mapping given by F : A → P (U). Here after we simply consider A as
FNSS over U instead of (F,A).

Definition 2.3 [1] Let U = {c1, c2, ..., cm} be the universal set and E be the set of
parameters given by E = {e1, e2, ..., em}. Let A ⊂ E. A pair (F,A) be a FNSS over U .
Then the subset of U ×E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)}, which is called a
relation form of (FA, E). The membership function, indeterminacy membership function
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and non membership function are written by TRA
: U × E → [0, 1], IRA

: U × E → [0, 1]
and FRA

: U ×E → [0, 1], where TRA
(u, e) ∈ [0, 1], IRA

(u, e) ∈ [0, 1] and FRA
(u, e) ∈ [0, 1]

are the membership value, indeterminacy value and non membership value respectively
of u ∈ U for each e ∈ E. If [(Tij , Iij , Fij)] = [Tij(ui, ej), Iij(ui, ej) , Fij(ui, ej)] we
define a matrix

[⟨Tij , Iij , Fij⟩]m×n =


⟨T11, I11, F11⟩ · · · ⟨T1n, I1n, F1n⟩
⟨T21, I21, F21⟩ · · · ⟨T2n, I2n, F2n⟩
...

...
...

⟨Tm1, Im1, Fm1⟩ · · · ⟨Tmn, Imn, Fmn⟩


which is called an m× n FNSM of the FNSS (FA, E) over U.

FNSMs of Type-I

Definition 2.4 [23] Let A = (⟨aTij , aIij , aFij⟩), B = ⟨(bTij , bIij , bFij⟩) ∈ Nm×n. The
component wise addition and component wise multiplication defined as

A⊕B = (sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij})
A⊗B = (inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij})

Definition 2.5 [23] Let A ∈ Nm×n, B ∈ Nn×p, the composition of A and B is defined
as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),

n∑
k=1

(aIik ∧ bIkj),

n∏
k=1

(aFik ∨ bFkj)

)
equivalently we can write the same as

=

(
n∨

k=1

(aTik ∧ bTkj),

n∨
k=1

(aIik ∧ bIkj),

n∧
k=1

(aFik ∨ bFkj)

)
.

The product A ◦ B is defined if and only if the number of columns of A is same as
the number of rows of B. Then A and B are said to be conformable for multiplication.
We shall use AB instead of A ◦ B, Where

∑
(aTik ∧ bTkj) means max-min operation and

n∏
k=1

(aFik ∨ bFkj) means min-max operation.

A review of graph-theoretical notions [6]
A digraph is a pair G = (V,H) where V is a finite set, called the node set, and H is
a subset of V × V , called the arc set. G′

= (V
′
,H

′
) is a subgraph of G if V

′ ⊆ V and
H

′ ⊆ H. If each arc (i, j) is assigned a weight c(i, j) (sometimes called its capacity), then
the digraph is called a weighted digraph. A sequence of nodes

P = (i0, i1, ..., im) (2)

is called a path, if for all j = 1, ...,m the pair (ij−1, ij) ∈ H; for brevity we shall also
say that the arcs (ij−i, ij) are on the path P. If all the nodes on a path are different, the
path is called elementary. If i0 = im, then the path is a cycle; if all the nodes (except of
the first and last one) on a cycle are different, then the cycle is elementary. The length
of a path or a cycle is equal to the number of arcs on it and denoted by l(P ). Now, for
the present theory the follwing obvious fact is crucial.
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Lemma 2.6 [6] Every path of length at least n in a digraph on n nodes contains a cycle.

A digraph that does not contain any cycle is called acyclic. If for each pair of nodes
u, v in G there is a path from u to v and a path from v to u in G, then G is called strongly
connected. A maximal strongly connected subgraph of a given digraph is its strongly
connected component (SCC for short). Every SCC can contain either several nodes (in
that case it must contain at least one cycle) or a single node u; and in the latter case we
shall call it an acyclic SCC if the loop (u, u) is not its arc.

The greatest common divisor (gcd for short) of all cycle lengths in a non-acyclic digraph
G is called the period of G. Note that in digraphs it makes no difference whether we
consider all cycles or only the elementary ones.

Finally, if G is a weighted digraph and P a path in G of the form (2), then the number
c(P ) = c(i0, i1)⊗ c(i1, i2)⊗ ...⊗ c(im−1, im) is called the capacity of the path P.

3. Two types of digraphs

In this section we discuses about two types of digraphs namely associated digraph and
associated throshold digraph. Then the connection between the entries in powers of A.
Suppose that a square FNSM A of order n is given. We shall define two kinds of digraphs
connected with A. First, the associated digraph of A, denoted by G(A), is the complete
weighted digraph on the node setN with each arc (i, j) assigned the capacity ⟨aTij aIij aFij⟩.
Conversely, for a given weighted digraph G the corresponding FNSM can be created in
the usal way.

Example 3.1 As an illustration, G(A) for the FNSM

A =


⟨0.1 0.2 0.5⟩ ⟨0.8 0.7 0.1⟩ ⟨0 0 1⟩ ⟨0.7 0.6 0.1⟩
⟨0.5 0.4 0.2⟩ ⟨0.1 0.2 0.5⟩ ⟨0.2 0.3 0.4⟩ ⟨0.5 0.4 0.2⟩
⟨0 0 1⟩ ⟨0.4 0.3 0.2⟩ ⟨0.1 0.2 0.5⟩ ⟨0.2 0.3 0.4⟩
⟨0.7 0.6 0.1⟩ ⟨0 0 1⟩ ⟨0.4 0.3 0.2⟩ ⟨0.5 0.4 0.2⟩



is given in Fig-1.
If a value ⟨hT hI hF ⟩ is given together with the FNSM A ∈ N(n,n), then the associated

threshold digraph G(A, ⟨hT hI hF ⟩) = (V,H(⟨hT hI hF ⟩)) is defined by V = N and
(i, j) ∈ H(⟨hT hI hF ⟩) if and only if aTij ⩾ hT ; aIij ⩾ hI ; aFij ⩽ hF . It can be easily seen

that G(A, ⟨hT hI hF ⟩) is a subgraph of G(A, ⟨hT hI hF ⟩′) for ⟨hT hI hF ⟩′ ⩽ ⟨hT hI hF ⟩.
Because as the value of the threshold decreases, some new arcs can be added, but none
will disappear. So, G(A, ⟨hT hI hF ⟩) consists of n isolated nodes for ⟨hT hI hF ⟩ greater
that the maximum entry in A, and as soon as ⟨hT hI hF ⟩ is less than or equal to the
minimum entry of A, G(A, ⟨hT hI hF ⟩) is a complete digraph with loops. We shall imagine
decreasing the threshold later too, so when we say “ the first nontrivial threshold digraph”
we mean the threshold digraph G(A, ⟨hT hI hF ⟩) for ⟨hT hI hF ⟩ equal to the maximum
entry in A. In Fig-2 (a)-(c), the threshold digraphs G(A, ⟨0.8 0.7 0.1⟩),G(A, ⟨0.7 0.6 0.1⟩),
and G(A, ⟨0.5 0.4 0.2⟩) for the above FNSM A are given.



138 M. Kavitha et al. / J. Linear. Topological. Algebra. 07(02) (2018) 133-147.

1 2

34

(0.1 0.2 0.5)
(0.8 0.7 0.1)

(0
.7

0.
6

0.
1)

(0.5 0.4 0.2)

(0
.2

0.
3

0.
4)

(0.4
0.3

0.2)

(0 0 1)

(0.1 0.2 0.5)

(0.5
0.4

0.2)

(0 0 1)

(0.1 0.2 0.5)
(0.2 0.3 0.4)

(0
.7

0.
6

0.
1)

(0
0 1)

(0.4 0.3 0.2)

(0.5 0.4 0.2)

Fig-1

1 2

34

1 2

3

4

1 2

3

4

a) G(A, ⟨0.8 0.7 0.1⟩) b) G(A, ⟨0.7 0.6 0.1⟩)

c) G(A, ⟨0.5 0.4 0.2⟩)

Fig-2

Now we shall examine the connection between the entries in powers of A and the paths in
the associated digraph. First of all, the entry ⟨aTij aIij aFij⟩ can be viewed as the capacity

of the (unique) path of length 1 from node i to node j. The entries of A2 are of the form
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(aTij)
2 =

n∑
k=1

aTik ⊗ aTkj ,

(aIij)
2 =

n∑
k=1

aIik ⊗ aIkj ,

(aFij)
2 =

n∏
k=1

aFik ⊕ aFkj .

which can be recognized as the maximum capacity of a path of length 2 beginning at
node i and ending at node j. By induction, for Am we get

(aTij)
m =

n∑
k=1

(aTik)
m−1 ⊗ aTkj ,

(aIij)
m =

n∑
k=1

(aIik)
m−1 ⊗ aIkj ,

(aFij)
m =

n∏
k=1

(aFik)
m−1 ⊕ aFkj ,

(3)

where ⟨aTik aIik aFik⟩m−1 is the maximum capacity of a path of length m − 1 from node
i to node k. Now, each path P of length m that begins at node i and ends at node j
can be split into a path of length m− 1 from i to some intermediate node k and then a
single arc from k to j. Clearly, for P to have the maximum capacity, it is necessary that
such a partition will result in a maximum capacity path of length m− 1 from i to k. We
see (3) computes the maximum of such partitions over all possible intermediate nodes k,
showing that ⟨aTij aIij aFij⟩m is the maximum capacity of a path of length m from i to j.

Lemma 3.2 For a given FNSM A ∈ N(n,n) the following conditions are equivalent:

(i) (aTij)
m ⩾ hT ; (aIij)

m ⩾ hI ; (aFij)
m ⩽ hF .

(ii) In the threshold digraph G(A, ⟨hT hI hF ⟩) there exists a path of length m from node
i to node j.

If, moreover, m ⩾ n, then these conditions are equivalent withthe following

(iii) In the threshold digraph G(A, ⟨hT hI hF ⟩) there is a path from node i to node j
containing a cycle.

Proof. If (aTij)
m ⩾ hT , (aIij)

m ⩾ hI and (aFij)
m ⩽ hF , then there exists a path P from

node i to node j with length m and capacity at least ⟨hT hI hF ⟩. But, due to the
properties of the operation ⊗, for each arc (k, l) on P we have c(k, l) = (aTkl) ⩾ hT ,
(aIkl) ⩾ hI and (aFkl) ⩽ hF . However, this is exactly the condition for the pair (k, l) to be
in the arc set of G(A, ⟨hT hI hF ⟩). Therefore P itself is the sought path.

Conversely, any path P in G(A, ⟨hT hI hF ⟩) corresponds to the same path in G(A),
but here its capacity is at least ⟨hT hI hF ⟩, since P contains only arcs of weight at least
⟨hT hI hF ⟩). So any path P from i to j in G(A, ⟨hT hI hF ⟩) with length m will ensure
(aTij)

m ⩾ hT ; (aIij)
m ⩾ hI ; (aFij)

m ⩽ hF .
For the equivalence with (iii) simply use Lemma 2.6 ■
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4. Orbits of a fuzzy neutrosophic soft matrix and their interpretation
in digraphs

In this section we discuss about the orbits of a fuzzy neutrosophic soft matrix and
their interpretation in digraphs. Let a FNSM A ∈ N(n,n) and a FNSV b ∈ Nn be given.

Definition 4.1 The sequence of FNSVs ⟨xT xI xF ⟩(0), ⟨xT xI xF ⟩(1),
⟨xT xI xF ⟩(2),...,⟨xT xI xF ⟩(k), ..., where ⟨xT xI xF ⟩(0) = ⟨bT bI bF ⟩ and
⟨xT xI xF ⟩(k + 1) = A⊗ ⟨xT xI xF ⟩(k) is called the orbit of the FNSM A generated
by the FNSV ⟨bT bI bF ⟩. We shall denote it by orb(A, ⟨bT bI bF ⟩).

Definition 4.2 The orbit orb(A, ⟨bT bI bF ⟩) is said to stabilize if there exists an integer
k0 such that for k ⩾ k0 we have ⟨xT xI xF ⟩(k+1) = ⟨xT xI xF ⟩(k). orb(A, ⟨bT bI bF ⟩)
oscillates if it does not stabilize but there exists two integers k0 and t > 1 such that
⟨xT xI xF ⟩(k+ t) = ⟨xT xI xF ⟩(k) for each k ⩾ k0. The smallest t with this property
is called the period of the orbit.

Example 4.3 If we take the FNSM A from Example3.1 and the starting FNSV
⟨bT bI bF ⟩ = (⟨0.5 0.4 0.2⟩, ⟨0.4 0.3 0.2⟩, ⟨0.8 0.7 0.1⟩, ⟨0.3 0.2 0.5⟩)t, then we
obtain the following orbit:

⟨xT xI xF ⟩(0) =


⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.8 0.7 0.1⟩
⟨0.3 0.2 0.5⟩

, ⟨xT xI xF ⟩(1) =


⟨0.4 0.5 0.2⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.2 0.2⟩
⟨0.5 0.4 0.2⟩

,

⟨xT xI xF ⟩(2) =


⟨0.5 0.4 0.2⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.5 0.4 0.2⟩

, ⟨xT xI xF ⟩(3) =


⟨0.5 0.4 0.2⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.5 0.4 0.2⟩

,...,

which clearly stabilizes; whereas for

⟨bT bI bF ⟩ = (⟨0.7 0.6 0.1⟩, ⟨0 0 1⟩, ⟨0 0 1⟩, ⟨0 0 1⟩)t

we get

⟨xT xI xF ⟩(0) =


⟨0.7 0.6 0.1⟩
⟨0 0 1⟩
⟨0 0 1⟩
⟨0 0 1⟩

, ⟨xT xI xF ⟩(1) =


⟨0.1 0.2 0.6⟩
⟨0.5 0.4 0.2⟩
⟨0 0 1⟩
⟨0.7 0.6 0.1⟩

,

⟨xT xI xF ⟩(2) =


⟨0.7 0.6 0.1⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.5 0.4 0.2⟩

, ⟨xT xI xF ⟩(3) =


⟨0.5 0.4 0.2⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.7 0.6 0.1⟩

,

⟨xT xI xF ⟩(4) =


⟨0.7 0.6 0.1⟩
⟨0.5 0.4 0.2⟩
⟨0.4 0.3 0.2⟩
⟨0.5 0.4 0.2⟩

,

and we see that the period of this orbit is 2.

We can argue, as in the beginning of this paper, that each orbit must either stabilize
or oscillate, since no new entries are generated in the process. Moreover, it was show
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that for each FNSM A there is at least one nonzero starting FNSV ⟨bT bI bF ⟩ causing
orb(A, ⟨bT bI bF ⟩) to stabilize, in which case the FNSV we arrive at is clearly an fuzzy
neutrosophic soft eigen vector of the FNSM A.

Definition 4.4 A FNSM A ∈ N(n,n) is called strongly stable if orb(A, ⟨bT bI bF ⟩)
stabilizes for each ⟨bT bI bF ⟩ ∈ Nn.

Theorem 4.5 For given A FNSM A ∈ N(n,n) is strongly stable if and only if the powers
of A stabilize.

Proof. The sufficient condition is implied by the definition of the orbit, since
⟨xT xI xF ⟩(k) = Ak ⊗ ⟨bT bI bF ⟩. For the converse implication notice that pow-
ers of A are nothing but FNSM whose columns are in fact orbits, generated by columns
of A as starting FNSVs. Hence if each orbit stabilizes, the powers of A will eventually
stabilize too. ■

Now, let us look at the interpretation of orbits in the associated digraph. Let
⟨xT xI xF ⟩(m)i = (Am ⊗ ⟨bT bI bF ⟩)i, where

xT (m)i =

n∑
j=1

(aTij)
m ⊗ bTj ,

xI(m)i =

n∑
j=1

(aIij)
m ⊗ bIj ,

xF (m)i =

n∏
j=1

(aFij)
m ⊕ bFj .

(4)

We already know that ⟨aTij aIij aFij⟩m is the maximum capacity of a path of length m

from node i to node j. The FNSV ⟨bT bI bF ⟩ can be viewed as assigning capacities to
nodes; let us call the value ⟨bTj bIj bFj ⟩ the terminal capacity at node j. Then, since in
(4) the maximum is taken over all terminal nodes j of the paths, we can interpret this as
the maximum capacity of a terminated path of length m, starting at node i. That means
that the capacity of a terminated path is computed by multiplying the capacity of the
path itself by the capacity of the node it terminates at. The capacity of a terminated
path P will be denoted by ct(P ).

Now take a fixed i ∈ N and denote

⟨hT hI hF ⟩ = lim sup
k→∞

{⟨xT xI xF ⟩(k)i}.

That means that ⟨hTj hIj hFj ⟩ is the maximum number that appears in the sequence

{⟨xT xI xF ⟩(k)i}∞k=1 infinitely many times, or that for each k0 ∈ N there exists an
integer k ⩾ k0 such that ⟨xT xI xF ⟩(k)i = ⟨hT hI hF ⟩. The significance of the value
⟨hT hI hF ⟩ in the associated digraphs is summarized in the following Lemma, whose
proof follows easily from the definitions.

Lemma 4.6 Let A ∈ N(n,n), ⟨bT bI bF ⟩ ∈ Nn, and i ∈ N be given. The following
conditions are equivalent:

(i) ⟨hT hI hF ⟩ = lim sup
k→∞

{⟨xT xI xF ⟩(k)i};
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(ii) ⟨hT hI hF ⟩ is the greatest value such that for every k0 ∈ N there is k ⩾ k0 such that
G(A) contains a path P starting at i with l(P ) = k and ct(P ) ⩾ ⟨hT hI hF ⟩;

(iii) ⟨hT hI hF ⟩ is the greatest value such that for each k0 ∈ N, G(A, ⟨hT hI hF ⟩) contains
a path P with length l(P ) ⩾ k0 begining at node i and ending at some node j with
⟨bTj bIj bFj ⟩ ⩾ ⟨hT hI hF ⟩;

(iv) ⟨hT hI hF ⟩ is the greatest value such that in G(A, ⟨hT hI hF ⟩) there is a path P from
i to some node j with ⟨bTj bIj bFj ⟩ ⩾ ⟨hT hI hF ⟩ such that P contains a cycle.

Lemma 4.7 If c1, c2, ..., cm are integers with gcd(c1, c2, ..., cm) = 1, then there exists k0 ∈
N such that each integer k ⩾ k0 can be expressed as a nonnegative linear combination
of c1, c2, ..., cm, i.e., there exist nonnegative integers α1, α2, ..., αm, such that k = α1c1+
α2c2 + ...+ αmcm.

Definition 4.8 A digraph G is strongly stable if each strongly connected component of
G either is acyclic or has period 1.

Theorem 4.9 A FNSM A ∈ N(n,n) is strongly stable if and only if each threshold

digraph G(A, ⟨hT hI hF ⟩) is strongly stable.

Proof. Let us fix ⟨bTj bIj bFj ⟩ and i. Take ⟨hT hI hF ⟩ = lim sup
k→∞

{⟨xT xI xF ⟩(k)i} and

look at the digraph G(A, ⟨hT hI hF ⟩). Due to Lemma 4.6, there is a path P begin-
ning at i and ending at some node j with ⟨bTj bIj bFj ⟩ ⩾ ⟨hT hI hF ⟩ such that P

contains a cycle, say G. Look at the SCC G′
of G(A, ⟨hT hI hF ⟩) containing G. Now

G(A, ⟨hT hI hF ⟩) is strongly stable by the assumption. Therefore, G′
contains cycles

G1,G2, ...,Gm with lengths c1, c2, ..., cm such that gcd(c1, c2, ..., cm) = 1. As they are all
in the same SCC, it is possible to pick a path (say P

′
) that starts at i, meets each

of the cycles G1,G2, ...,Gm and ends at j. Then, by Lemma 4.7, there exists k0 ∈ N
such that one can find in G(A, ⟨hT hI hF ⟩) a path from i to j of length k for any
k ⩾ k0, traversing the cycles G1,G2, ...,Gm suitable numbers of times. That means
that ⟨xT xI xF ⟩(k)i ⩾ ⟨hT hI hF ⟩ for all k ⩾ k0. However, the same cannot be said
about any ⟨hT hI hF ⟩′ > ⟨hT hI hF ⟩, since ⟨hT hI hF ⟩ was chosen to be the greatest
value appearing in the sequence {⟨xT xI xF ⟩(k)i}∞k=1 infinitely many times. Therefore,
{⟨xT xI xF ⟩(k)i}∞k=1 stabilizes for each i, implying that {⟨xT xI xF ⟩(k)}∞k=1 stabilizes
too.

Conversely, suppose that the orbit orb(A, ⟨bT bI bF ⟩) stabilizes for each starting FNSV
⟨bT bI bF ⟩, but G(A, ⟨hT hI hF ⟩) is not strongly stable for some ⟨hT hI hF ⟩ > ⟨0 0 1⟩. Then
there is a SCC G′

of G(A, ⟨hT hI hF ⟩), containing a cycle, but such that the gcd of all the
cycle lengths in G′

is d > 1. Now, take an arbitrary node i from G′
and define a starting

FNSV by ⟨bT bI bF ⟩i = ⟨hT hI hF ⟩, ⟨bTj bIj bFj ⟩ = ⟨0 0 1⟩ for all the remaining nodes.

Using ⟨hT hI hF ⟩ > ⟨0 0 1⟩, it is easy to see that to get ⟨xT xI xF ⟩(k)i = ⟨hT hI hF ⟩
for some k ∈ N, it is necessary and sufficient that there be a cycle G (not necessarily
elementary) of length k from i to i in G(A, ⟨hT hI hF ⟩). In fact that means that G is in G′

.
But since d divides the lengths of all such cycles, d divides k too. We can conclude that
⟨xT xI xF ⟩(k)i = ⟨hT hI hF ⟩ will occur infinitely many times, but only for k a multiple
of d. Therefore orb(A, ⟨bT bI bF ⟩) does not stabilize. ■

Example 4.10 For the FNSM A from Example 3.1 we conclude that it is not strongly
stable by looking at its threshold digraphs. G(A, ⟨0.7 0.6 0.1⟩) contains a strong compo-
nent formed by nodes 1 and 4, which consists of the only cycle of length 2, and therefore
its period is 2. The associated threshold digraphs G(A, ⟨0.7 0.6 0.1⟩), G(A, ⟨0.5 0.4 0.2⟩)
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and G(A, ⟨0.4 0.3 0.2⟩) for

A =


⟨0 0 1⟩ ⟨0.7 0.6 0.1⟩ ⟨0 0 1⟩ ⟨0 0 1⟩
⟨0 0 1⟩ ⟨0 0 1⟩ ⟨0.7 0.6 0.1⟩ ⟨0.7 0.6 0.1⟩
⟨0 0 1⟩ ⟨0 0 1⟩ ⟨0 0 1⟩ ⟨0.7 0.6 0.1⟩
⟨0.4 0.3 0.2⟩ ⟨0.5 0.4 0.2⟩ ⟨0 0 1⟩ ⟨0 0 1⟩


are given in Fig-3. Notice that all the other threshold digraphs for this FNSM are either
equal to one of those, or complete, or containing no arcs, therefore it is sufficient to
examine the above three.

G(A, ⟨0.7 0.6 0.1⟩) is acyclic. G(A, ⟨0.5 0.4 0.2⟩) separates into two SCCs. The one con-
taining only node 1 is acyclic, while the one formed by nodes 2, 3, 4 contains two elemen-
tary cycles: (2, 4) and (2, 3, 4). Their lengths are comprime; therefore G(A, ⟨0.5 0.4 0.2⟩)
is strongly stable. G(A, ⟨0.4 0.3 0.2⟩) is strongly connected itself with the lengths of its
elementary cycles equal to 2,3,4 hence strongly stable. Therefore, we can conclude that
A is strongly stable, which also means that its powers will stabilize.

1 2

34

1 2

3

4

1 2

3

4

a) G(A, ⟨0.7 0.6 0.1⟩) b) G(A, ⟨0.5 0.4 0.2⟩)

c) G(A, ⟨0.4 0.3 0.2⟩)

Fig - 3

5. Applications to special classes of fuzzy neutrosophic soft matrices

In this section we show that the powers of an upper triangular FNSM with always
stablizes provided necessary and sufficient condition for a symmetric FNSM to be strongly
stabilizes and obtain condition under which a circulent FNSM is strongly stable.
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Definition 5.1 A FNSM A ∈ N(n,n) is called upper triangular if each entry over the
main diagonal is not less than any entry below the main diagonal, i.e.,

min{aTij ; i ⩽ j} ⩾ max{aTij ; i > j},
min{aIij ; i ⩽ j} ⩾ max{aIij ; i > j},
max{aFij ; i ⩽ j} ⩽ min{aFij ; i > j}.

Note that this definition includes the classical upper triangular FNSMs, i.e. such that
below the main diagonal there are only zero entries.

Theorem 5.2 The powers of an upper triangular FNSM always stabilize.

Proof. Notice that if any cycle containing at least two nodes appears in a threshold
digraph G(A, ⟨hT hI hF ⟩) of an upper triangular FNSM A, then this means that some
entry ⟨aTij aIij aFij⟩ below the main diagonal of the FNSM has been involved as the capacity
of an arc on this cycle. But due to the definition of upper triangular FNSMs, that means
that all the main-diagonal entries fulfill ⟨aTkk aIkk aFkk⟩ ⩾ ⟨aTij aIij aFij⟩ ⩾ ⟨hT hI hF ⟩.
Therefore, G(A, ⟨hT hI hF ⟩) contains all the loops and each SCC in it has period 1. ■

Definition 5.3 A FNSM A ∈ N(n,n) is symmetric if ⟨aTij aIij aFij⟩ = ⟨aTji aIji aFji⟩ for all
i, j ∈ N .

Note that all the associated digraphs of a symmetric FNSM are symmetric. So, we can
consider just their undirected versions and condition for stabilization becomes simpler.

Theorem 5.4 A symmetric FNSM A is strongly stable if and only if in each undirected
threshold graph G(A, ⟨hT hI hF ⟩) each SCC either contains an odd cycle or is an isolated
node.

Definition 5.5 A FNSM A ∈ N(n,n) is called a circulant FNSM, or simply a circulant,
if it is of the form

A =


⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ · · · ⟨aTn−1 aIn−1 aFn−1⟩ ⟨aTn aIn aFn ⟩
⟨aTn aIn aFn ⟩ ⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ · · · ⟨aTn−2 aIn−2 aFn−2⟩ ⟨aTn−1 aIn−1 aFn−1⟩

...
...

... · · ·
...

...
⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩ · · · ⟨aTn aIn aFn ⟩ ⟨aT1 aI1 aF1 ⟩


The set of entries with the same index is called a stripe; the entries ⟨aTi aIi aFi ⟩ form the
ith stripe. In the associated digraph G(A) each stripe i defines a set of arcs of the form
(k, k+ i− 1) for k = 1, 2, ..., n. Obviously, all the numbers here are considered modulo n.
We shall say that the span of an arc in the ith stripe is i− 1; that is, these arcs fall into
a set of disjoint cycles (all with the same length equal to n/gcd(n, i − 1) for i = 2, ..., n
and 1 for the first stripe).

Example 5.6 As an illustration, consider the circulant

A =


⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩ ⟨aT5 aI5 aF5 ⟩ ⟨aT6 aI6 aF6 ⟩
⟨aT6 aI6 aF6 ⟩ ⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩ ⟨aT5 aI5 aF5 ⟩
⟨aT5 aI5 aF5 ⟩ ⟨aT6 aI6 aF6 ⟩ ⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩
⟨aT4 aI4 aF4 ⟩ ⟨aT5 aI5 aF5 ⟩ ⟨aT6 aI6 aF6 ⟩ ⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩
⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩ ⟨aT5 aI5 aF5 ⟩ ⟨aT6 aI6 aF6 ⟩ ⟨aT1 aI1 aF1 ⟩ ⟨aT2 aI2 aF2 ⟩
⟨aT2 aI2 aF2 ⟩ ⟨aT3 aI3 aF3 ⟩ ⟨aT4 aI4 aF4 ⟩ ⟨aT5 aI5 aF5 ⟩ ⟨aT6 aI6 aF6 ⟩ ⟨aT1 aI1 aF1 ⟩


The corresponding digraphs for its individual stripes are given in Fig-4.
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From these pictures we can make the following observations which we later generalize.
If ⟨aT1 aI1 aF1 ⟩ > max{⟨aT2 aI2 aF2 ⟩, ..., ⟨aT6 aI6 aF6 ⟩}, then the first nontrivial threshold
digraph consists of six loops. Hence it consists of six SCCs (each with period 1). For a
lower value of the threshold, some more arcs will appear, causing some SCCs to merge, but
the period of none of them will increase. Thus, in this case, the powers of the circulant will
stabilize. However, if e.g. ⟨aT2 aI2 aF2 ⟩ > max{⟨aT1 aI1 aF1 ⟩, ⟨aT3 aI3 aF3 ⟩, ..., ⟨aT6 aI6 aF6 ⟩},
then the first nontrivial threshold digraph consists of a single cycle of length 6. So, it
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has a single SCC with period 6. Thus the powers of A will oscillate. Denote J(A) =
{j; ⟨aTj aIj aFj ⟩ = max{⟨aT1 aI1 aF1 ⟩, ⟨aT2 aI2 aF2 ⟩, ..., ⟨aTn aIn aFn ⟩}} for a given circulant
A ∈ N(n,n).

Theorem 5.7 If 1 ∈ J(A) for a given circulant A ∈ N(n,n), then A is strongly stable. If
gcd(n, J(A)) = d > 1, then the powers of A oscillate.

Proof. The first assertion follows from the above. For the second one it is sufficient
to show that the period of the first threshold digraph G for A is equal to d > 1. Let
J(A) = {i1, i2, ..., ik} and 1 /∈ J(A). Then G contains arcs with spans i1−1, i2−1, ..., ik−1.
To get a cycle in G we must return to the starting node, traversing only arcs with
these spans. Hence, by adding the spans of the arcs on a cycle together, we must get a
multiple of n or

0 ≡ m1(i1 − 1) +m2(i2 − 1) + ...+mk(ik − 1)(modn), (5)

where m1,m2, ...,mk are the numbers of arcs on the cycle, chosen from strips i1, i2, ..., ik.
(5) is also equivalent to the following congruence:

m1 +m2 + ...+mk ≡ m1i1 +m2i2 + ...+mkik(modn).

Notice that m1 +m2 + ...+mk is the length of the obtained cycle. Elementary number
theory now implies that if i1, i2, ..., ik have a common divisor d with n, then all the cycle
lengths in G will be divisible by d and the proof is complete. ■

6. Conclusion

In this paper, the authors presented two types of digraph, orbits of a fuzzy neutrosophic
soft matrices and their interpretation in digraphs and application to special classes of
fuzzy neutrosophic soft matrices.
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