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Abstract 

Doppler effect has been applied to study the accelerating universe and to daily life. We believe that 

to describe non-uniform moving system, physics laws should include terms of acceleration/deceleration 

for accuracy and completeness. In this article, we study systematically the effects of non-uniform 

motion of either source, or observer, or mirror on Doppler effect, called it the Extended Doppler effect. 

We show that, indeed, the non-uniform motion not only shifts wavelength/frequency but also changes 

wavelength/frequency and Extended Doppler shift continuously. There is no transformation between 

non-uniform moving reference frames. We derived Extended Doppler effect for non-uniform moving 

source, observer, and mirror based on (1) the speed of light wave is the same for all non-uniform 

moving frames; (2) geometric optical principles hold. We show that, for slow non-uniform motion, the 

shifts of wavelength/frequency depend on the relative velocity and relative acceleration/deceleration. 
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1. Introduction 

The classical Doppler effect is a shift in wavelength/frequency, which is caused by velocity of 

uniformly moving either source, or observer, or mirror. Doppler shift of wavelength/frequency is 

applied fruitfully in many fields including astronomy and Doppler radar. In the 1998, Scientists 

reported a revolutionary discovery that the expansion of the universe is accelerating [1]. In the 2017, 

for explaining the accelerating universe, Doppler effect and Hubble law is extended to include 

acceleration [2]. It is shown that acceleration of either source, or observer, or both does affect the shifts 

of wavelength/frequency. In	 automobile	 application,	 to	 avoid	 accident	 more	 effectively,	 it	 is	

important	to	detect	the	change	of	car’s	velocity,	i.e.,	acceleration/deceleration. 

We believe that to describe an accelerating system, physical laws must include terms of 

acceleration/deceleration for accuracy and completeness. It is nature to expect to extend Doppler’s 

velocity-shift relation to include acceleration/deceleration. Note for accelerating/deceleration systems, 

both Galileo transformation and Lorentz transformation do not hold. Thus, we don’t take into account 

effects of Special Relativity in this article, even we study light wave. One needs to distinguish whether 

a source is moving or an observer is moving, or both are moving. We introduce a coordinate system in 

which both an observer and a source are accelerating/decelerating arbitrarily. We restrict to (1) low 

speed of source, observer and mirror; (2) constant acceleration/deceleration; (3) the speed of light is the 

same for all of accelerating/decelerating sources, observers and mirrors. 

Doppler effect does not change with time. On the contrary, we show that the shift of 

wavelength/frequency due to acceleration/deceleration does change with time. The time changes of 

shifts are important in applications of the accelerating expansion of universe and of automatic drive of 

cars. In latter application, finding time change can predict the trend of movement of cars for better 

prevention of collision. 

 

2. Extended Doppler Effect of Non-Uniformly Moving Source and/or Observer 

The mechanism of Doppler effect is that when the source is emitting, each successive wave crest 

is emitted from a position farther or closer to the observer than the previous wave crest. Therefore, 

each wave crest takes longer or shorter time to reach the observer than the previous one, i.e., increasing 

or reducing the wavelength. We argue that, for an accelerating/decelerating moving source, the same 

mechanism holds.  

First lets summarize notations. Velocity of receding motion is defined as positive, and velocity of 

approaching movement is defined as negative. Subscript “o” and “s” denote the parameters related to 

observer and source respectively. Subscript “ED” denotes the Extended Doppler parameters. We derive 
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shifts of wavelength/frequency, and time change of those shifts for each special situation. 

 

2.1.  Source is non-uniformly moving, Observer is stationary 

2.1.1. Source is receding with acceleration/deceleration 

Case (1): Source is receding with acceleration. Considering a situation that a wave source is receding 

from an observer with velocity (slower than the speed of wave), v!, and acceleration, a!. The speed of 

light is c = !!
∆!!

, which is a constant for both the source and the observer. Where λ! is emitted 

wavelength and measured in the source coordinate system. ∆t! is the time interval that wave takes to 

move one wavelength λ!, ∆t! ≡ (t!" − t!") =
λ! c. Considering two consecutive wave crests #1 and 

#2 emitted at time t!" and t!" respectively. During the time interval ∆t!, the source moves a distance 

D!, 

   D! = v!∆t! +
!
!
a! ∆t! !.            (1)   

Thus, when the source is moving away from the observer, the wavelength is stretched from λ! to λ!,  

 λ! = λ! + D!.              (2) 

We obtain observed wavelength λ! , Extended Doppler shift cz!" , frequency f! , and Extended 

Doppler frequency f!" ≡ f! − f!, respectively, 

 λ! = λ! 1 +
!!
!
+ !!!!

!"!
,            (3) 

 cz!" ≡
!!
!!
−1 = v! + a!

!!
!"

.           (4) 

     f! =
!!

!!!!! !
!!!!
!"!

,              (5) 

     f!" = −
!!
! !!!

!!
!!!

!!!!! !
!!!!
!"!

f!.            (6) 

Indeed the acceleration of a receding source does shift the wavelength/frequency. The first terms 

on the right hand sides of Eq. (4) is Doppler redshift; the second term is redshift due to acceleration, 

denoted as “Acceleration-redshift”. 

Time Changes. A significant difference between Doppler effect and Extended Doppler effect is that 

the Extended Doppler frequency and Extended Doppler shift are time dependent. Taking derivative 

with respect to time, we obtain, 

!
!!

!"!"
!"

= − !!

!!!!! !
!!!!
!"!

!,            (7) 

c !"!"
!"

= a!.              (8) 

From the definitions of Extended Doppler frequency and Extended Doppler shift, we have respectively  

 !"!
!"
= !"!"

!"
,              (9) 
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 !
!!

!!!
!"
= c !"!"

!"
.              (10) 

Note, therefore, in the rest of the article, we will not write formulas of !"!
!"

 and !!!
!"

. 

Approximation. For slow moving source, keeping the first order terms, we obtain, 

    f! ≈ f! 1 − !!
!
− !!!!

!"!
,            (5a) 

 f!" ≈ − !!
!
+ a!

!!
!!!

f!,           (6a)   

 !
!!

!"!"
!"

≈ −a!.              (7a) 

The acceleration of a source may be measured by detecting the time change of shifts of 

wavelength/frequency. 

Case (2): Source is receding with deceleration. For this case, the formulas of observed wavelength 

λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time change of 

cz!" and f!", have the same form as that of Case (1), but replacing a! with −d!. The deceleration of 

a source may be measured by detecting the time change of shifts of wavelength/frequency.  

 

2.1.2. Source is approaching with acceleration/deceleration 

Case (1): Source is approaching with acceleration. During the time interval ∆t!, the source moves a 

distance D! = v!
!!
!
+ !

!
a!

!!
!

!
. We obtain, 

λ! = λ! − D! = λ! 1 −
!!
!
− !!!!

!"!
,          (11) 

cz!" = −v! − a!
!!
!"

,            (12) 

f! =
!!

!!!!!  ! !!!!
!"!

 
,              (13) 

f!" =
!!
! !

!!!!
!!!

!!!!!  ! !!!!
!!!

 
f!.             (14) 

Time Change. Taking derivative with respect to time, we obtain, 

c !"!"
!"

= −a!.              (15) 

!
!!

!"!
!"
= !!

!! !!!  ! !!!!
!"!

!.             (16) 

Approximation. For slow moving source, keeping first order terms, we obtain, 

    f! ≈ f! 1 + !!
!
+ !!!!

!"!
,            (13a) 

    f!" ≈
!!
!
+ !!!!

!"!
f!.             (14a) 

 !
!!

!"!"
!"

≈ a!,              (16a) 

Case (2): Source is approaching with Deceleration. For this case, the formulas of observed 

wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for acceleration, but replacing a! with −d!.  
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2.2.  Observer is non-uniformly moving, Source is stationary 

2.2.1. Observer is receding with acceleration/deceleration 

Case (1): Observer is receding with acceleration. Considering two consecutive wave crests #1 and 

#2 received by the observer at time t!" and t!" respectively; and ∆t! ≡ (t!" − t!") =
λ! c. The 

wave velocity is: c = !!
∆!!

. Where λ! is the observed wavelength measured in the observer coordinate 

system. ∆t! is the time interval that wave takes to move one wavelength λ!. During the time 

interval ∆t!, the observer moves a distance 

D! = v!
!!
!

+ !
!
a!  !!

!

!
.           (17)  

The wavelength is,  

λ! = λ! + D! = λ! + v!
!!
!

+ !
!
a!  !!

!

!
.        (18)   

For simplicity, we resolve Eq. (30) by the following approach. We obtain, 

λ! =
!!

!! !!
! !!!!

!!
!!

,              (19) 

f! = f! 1 −
!!
!

− !!
!
!!
!!

 .            (20) 

f!" = −f!
!!
!
+ !!

!
!!
!!

 .            (21) 

cz!" =
!!!

!!!!
!"

!! !!
! !!!!

!!
!!

.             (22) 

Time Change. Taking derivative with respect to time, we obtain, 

!
!!

!"!"
!"

= −a!.              (23) 

c !"!"
!"

= !!

!! !!
! !!!!

!!
!!

!.            (24) 

Approximation. For slowly moving observer, keeping first order terms and taking λ!/𝑐 ≈ λ!/𝑐, we 

obtain 

    λ! ≈ λ! 1 + !!
!
+ !!!!

!!!
.            (19a) 

    f! ≈ f! 1 −
!!
!

− !!
!
!!
!!

 .            (20a) 

 f!" ≈ −f!
!!
!
+ !!

!
!!
!!

 .            (21a) 

 cz!" ≈ v! +
!!!!
!"

.             (22a) 

 c !"!"
!"

≈ a!.              (23a) 

It is straightforwardly to show that for slow motion, the results obtained above are the same as that 

obtained from directly resolve Eq. (18) as a non-linear equation. Throughout this article，we use the 

above approach.  

Case (2): Observer is receding with Deceleration. For this case, the formulas of observed 
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wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for acceleration, but replacing a! with −d!. 

 

2.2.2. Observer is approaching with acceleration/deceleration 

Case (1): Observer is approaching with acceleration. The observer moves a distance D!, 

   D! = v!
!!
!

+ !
!
a!  !!

!

!
.            (25)  

We obtain,  

    λ! = λ! − D! =
!!

!! !!
! !!!!

!!
!!
，           (26)  

 f! = f! 1 +
!!
!

+ !!
!
!!
!!
，           (27) 

 f!" = f!
!!
!

+ !!
!
!!
!!

.            (28) 

 cz!" = −
!!!  !!!!!"

!! !!
! !!!!

!!
!!

.            (29) 

Time Change. Taking time derivative, we obtain, 

!
!!

!"!"
!"

= a!.              (30) 

c !"!"
!"

= − !!

!! !!
! !!!!

!!
!!

!.            (31) 

Approximation. For slow moving observer, keeping first order terms and taking !!
!
≈ !!

!
, we obtain 

λ! ≈ λ! 1 −
!!
!

− !!
!
!!
!!

,            (26a) 

f! ≈ f! 1 +
!!
!

+ !!
!
!!
!!
，           (27a) 

f!" ≈ f!
!!
!

+ !!
!
!!
!!

.            (28a) 

cz!" ≈ −v! −
!!!!
!"

.             (29a) 

c !"!"
!"

≈ −a!.              (31a) 

Case (2): Observer is approaching with Deceleration. For this case, the formulas of observed 

wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for acceleration, but replacing a! with −d!.  

 

2.3.  Source is moving, Observer is moving 

In this section, we will show that, for slow motion, the effects of the movement of both a source 

and an observer on the shifts of wavelength/frequency are the same. Namely, the shift of wavelength/ 

frequency is dependent on the relative speed and relative acceleration between the source and observer. 
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2.3.1. Source and Observer are receding with acceleration/deceleration 

There are four cases. 

Case (1): Source and Observer are receding with acceleration. First, the movement of a source 

shifts the wavelength/frequency. Then the shifted wavelength/frequency is shifted further due to the 

movement of the observer. Following above arguments and notations, the moving distances are, 

respectively,  

   D! = v!
!!
!
+ !

!
a!  !!

!

!
,            (32a) 

   D! = v!
!!
!

+ !
!
a!  !!

!

!
.            (32b) 

Let’s consider separately: the wavelength shifted by the movement of the source is λ! = λ! + D!. To 

the observer, the incident wavelength is λ! and λ! = λ! + D!. We obtain   

 λ! =
!!!!! !

!!!! 
!!!

!!!!! !
!!!! 
!!!

λ!,             (33) 

    f! =
!!!!! !

!!!! 
!!!

!!!!! !
!!!! 
!!!

f!.             (34) 

    f!" = − !!!!! /!! !!!!!!!!! /!!!

!!!!! !
!!!! 
!!!

f!.          (35) 

    cz!" =
!!!!!!

!
!" !!!!!!!!!

! ! !!!  ! !!!! 
!!!

 
.           (36) 

Time Change. Taking time derivative, we obtain, 

    !
!!

!"!"
!"

= !!!
!!!!! !

!!!! 
!!!

−
!!!!! !

!!!! 
!!!

!!

!!!!! !
!!!! 
!!!

! ,          (37) 

    c !"!"
!"

= !!!!!
! ! !!!  ! !!!! 

!!!
 
+

!!!!!!
!
!" !!!!!!!!!

! ! !!!  ! !!!! 
!!!

!
 

!!
!

.        (38) 

Approximation. For slow motion, keeping the first order terms and taking λ!/𝑐 ≈ λ!/𝑐, we obtain 

    λ! ≈ 1 + !!!!!
!

+ !!!!! 
!!!

λ! λ!,           (33a) 

    f! ≈ 1 − !!!!!
!

− !!!!! 
!!!

λ! f!,           (34a) 

    f!" ≈ − !!!!!
!

+ !!!!!
!!!

λ! f!,           (35a) 

    cz!" ≈ v! + v! +
!
!"
a! + a! λ!.          (36a) 

 !
!!

!"!"
!"

≈ − a! + a! ,            (37a) 

 c !"!"
!"

≈ a! + a!.              (38a) 

Eq. (33a-38a) implies that for slow motion, the effects of the movements of a source and an 

observer on wavelength/frequency are equivalent. 
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Case (2): Source is receding with acceleration, Observer is receding with decelerating. For this 

case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended 

Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case (1), but 

replacing a! with −d!.  

Case (3): Source is receding with deceleration, Observer is receding with acceleration. For this 

case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended 

Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case (1), but 

replacing a! with −d!.  

Case (4): Source and Observer are receding with deceleration. For this case, the formulas of 

observed wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency 

f!", time change of cz!" and f!", have the same form as that for Case (1), but replacing a! and a! 

with −d! and −d!. 

 

2.3.2. Source is receding with acceleration/deceleration, 

Observer is approaching with acceleration/deceleration 

There are four cases. 

Case (1): Source is receding with acceleration, Observer is approaching with acceleration. 

For	this	case,	the	moving	distances	of	the	source	and	observer	are	respectively, 

    D! = v!
!!
!
+ !

!
a!  !!

!

!
,           (39a) 

    D! = v!
!!
!

+ !
!
a!

!!
!

!
.           (39b) 

The wavelength is λ! = λ! + D! − D!. We obtain, 

 λ! =
!!!!! !

!!!! 
!!!

!!!!! ! !!!! 
!!!

λ!,             (40) 

    f! =
!!!!! ! !!!! 

!!!

!!!!! !
!!!! 
!!!

f!.             (41) 

    f!" = f!
!!
!  ! !!! ! !!!! 

!!!
 ! !!!! 

!!!

!!!!! !
!!!! 
!!!

.           (42) 

    cz!" =
!!! !!!

!
!" !!!!! !!!!

!!!!! !
!!!! 
!!!

 
.	           (43) 

Time Change. Taking derivative with respect to time, we obtain, 

 !
!!

!"!"
!"

= !!
!!!!! !

!!!! 
!!!

−
!! !!

!!
! !

!!!! 
!!!

!!!!! !
!!!! 
!!!

! ,          (44) 
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 c !"!"
!"

= !!!!!
!! !!! ! !!!! 

!!!
 
−

!!!!!!
!
!" !!!!!!!!!

! !! !!! ! !!!! 
!!!

!
 

a!.        (45)  

Approximation. For slow motion, keeping the first order terms and taking λ!/𝑐 ≈ λ!/𝑐, we obtain 

 λ! ≈ 1 + !!!!!
!

+ !!!!! 
!!!

λ! λ!,           (40a) 

    f! ≈ 1 − !!!!!
!

−  !!!!! 
!!!

λ! f!.           (41a) 

    f!" ≈ − !!
!

v!  −  v! + !!
!!

a! − a! .         (42a) 

    cz!" ≈ v! −  v! +
!!
!"
a! −  a! .	          (43a) 

!
!!

!"!"
!"

≈ − a! − a! ,             (44a) 

 c !"!"
!"

≈ a! − a!.              (45a) 

Case (2): Source is receding with acceleration, Observer is approaching with deceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (3): Source is receding with deceleration, Observer is approaching with acceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (4): Source is receding with deceleration, Observer is approaching with deceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! and a! with −d! and −d!, respectively. 

 

2.3.3. Source is approaching with acceleration/deceleration, 

Observer is receding with acceleration/deceleration 

There are four cases. 

Case (1): Source is approaching with acceleration, Observer is receding with acceleration. 

Source’s and observer’s moving distances are, respectively,  

   D! = v!
!!
!
+ !

!
a!  !!

!

!
,            (46a) 

   D! = v!
!!
!

+ !
!
a!  !!

!

!
.            (46b) 

The observed wavelength is changed, λ! = λ! − D! + D!. We obtain,  

λ! =
!! !! 

! ! !!!! 
!!!

!!!!! !
!!!! 
!!!

λ!,             (47) 
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    f! =
!!!!! !

!!!! 
!!!

!! !!!  ! !!!! 
!!!

f!.             (48) 

    f!" = − !!! !! /!! !!!!! !!!! /!!!

!! !!!  ! !!!! 
!!!

f!.          (49) 

  cz!" = −
!!! !!!

!
!" !!!!! !!!!

! ! !!!  ! !!!! 
!!!

 
.           (50) 

Time Change. taking time derivative, we obtain, 

    !
!!

!"!"
!"

= !!!
!!!!! !

!!!! 
!!!

+
!!!!! !

!!!! 
!!!

!!

!! !!!  ! !!!! 
!!!

! ,          (51) 

    c !"!"
!"

= − !!!!!
! ! !!!  ! !!!! 

!!!
 
−

!!!!!!
!
!" !!!!!!!!!

! ! !!!  ! !!!! 
!!!

!
 

!!
!

.       (52) 

Approximation. For slow motion and acceleration, keeping the first order terms and taking λ!/𝑐 ≈

λ!/𝑐, we obtain 

    λ! ≈ 1 − !!!!!
!

− !!!!! 
!!!

λ! λ!,           (47a) 

    f! ≈ 1 + !!!!!
!

+ !!!!! 
!!!

λ! f!,           (48a) 

    f!" ≈ − !!!!!
!

+ !!!!!
!!!

λ! f!,           (49a) 

    cz!" ≈ v! − v! +
!
!"
a! − a! λ!.          (50a) 

 !
!!

!"!"
!"

≈ − a! − a! ,            (51a) 

 c !"!"
!"

≈ a! − a!.              (52a) 

Case (2): Source is approaching with acceleration, Observer is receding with deceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (3): Source is approaching with deceleration, Observer is receding with acceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (4): Source is approaching with deceleration, Observer is receding with deceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! and a! with −d! and −d!, respectively. 
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2.3.4. Source and observer are approaching with acceleration/deceleration 

There are four cases. 

Case (1): Both approaching with acceleration. Source’s and observer’s moving distances are, 

respectively,  

   D! = v!
!!
!
+ !

!
a!  !!

!

!
,            (53a) 

   D! = v!
!!
!

+ !
!
a!  !!

!

!
.            (54b) 

The wavelength is changed, λ! = λ! − D! − D!. We obtain,  

λ! =
!! !! 

! ! !!!! 
!!!

!!!!! !
!!!! 
!!!

λ!,             (55) 

    f! =
!!!!! !

!!!! 
!!!

!! !!!  ! !!!! 
!!!

f!,             (56) 

    𝑐f!" =
!!! !! ! !!!!! !!!! /(!!)

!! !!!  ! !!!! 
!!!

f!,          (57) 

    cz!" = −
!!! !!!

!
!" !!!!! !!!!

!! !!! ! !!!! 
!!!

 
,           (58) 

    !
!!

!"!"
!"

= !!
!!!!! !

!!!! 
!!!

+
!!!!! !

!!!! 
!!!

!!

!! !!!  ! !!!! 
!!!

! ,          (59) 

    c !"!"
!"

= − !!!!!
!! !!! ! !!!! 

!!!
 
−

!!!!!!
!
!" !!!!!!!!!

!! !!! ! !!!! 
!!!

!
 

!!
!

,       (60) 

    λ! ≈ 1 − !!!!!
!

− !!!!! 
!!!

λ! λ!,           (55a) 

    f! ≈ 1 + !!!!!
!

+ !!!!! 
!!!

λ! f!,           (56a) 

    f!" ≈
!!!!!
!

+ !!!!!
!!!

λ! f!,           (57a) 

  cz!" ≈ − v! + v! − !
!"
a! + a! λ!.         (58a) 

     !
!!

!"!"
!"

≈ a! + a! ,             (59a) 

  c !"!"
!"

≈ −(a! + a!).             (60a) 

Case (2): Source is approaching with acceleration, Observer is approaching with deceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (3): Source is approaching with deceleration, Observer is approaching with acceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 
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(1), but replacing a! with −d!. 

Case (4): Source is approaching with deceleration, Observer is approaching with deceleration. 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! and a! with −d! and −d!, respectively. 

 

3. Doppler Effect of Light from Non-uniformly Moving Mirror 

By employing the Lorentz transformation to convert from a reference frame where the mirror is 

stationary to the reference frame where the mirror is in uniform motion, Einstein derived the Doppler 

formula from a uniformly moving mirror. However Lorentz transformation cannot be applied to a 

non-uniformly moving frame. We will derive the extended Doppler formula for a non-uniformly 

moving mirror for a special case that an observer and a source are at the same location and are at rest to 

each other (we call it the source/observer), and that the moving directions of source/observer and the 

mirror are along the same axis. We assume that, during the reflection, the wavelength is the same. 

Notations: Subscripts “OS” and “M” denotes the quantities of source/observer and mirror 

respectively.  

 

3.1. Source/Observer is moving, mirror is stationary 

3.1.1. Source/Observer is receding with acceleration/deceleration 

There are two cases. 

Case (1): Source/Observer is receding with acceleration. We separate the process into two phases.  

First Phase.  

    Mirror        #1 crest       

 

     vOS, aOS    

      source/observer      (A) 

           #1 crest      #2 crest    

        

             λ!       D!     (B)                 

       

Fig. 1 

Consider wavelength before reflected by mirror (Fig. 1 (A) and (B)). The source/observer recedes 

from the mirror with velocity vOS and acceleration aOS and emits wave of wavelength λ!.  
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This case is equivalent to the case that a source is receding from an observer. Now the mirror 

plays the role of “observer”. The source/observer moves a distance during the emission,  

    D! = v!"
!!
!
+ !

!
a!"

!!
!

!
.            (61a) 

The wavelength arrived at the mirror is λ! = λ! + D! = λ! + v!"
!!
!
+ !

!
a!"

!!
!

!
. We assume that 

during the reflection, the wavelengths keep the same before and after. 

Second Phase. Consider wavelength after reflecting by mirror. This case is equivalent to the case an 

observer is receding from a source where the mirror plays the role of “source” that “emitting” the wave 

of wavelength 𝜆! (Fig. 1(C). When crest #2 reaches the source/observer, the source/observer moves a 

distance D2 (Fig. 1(D), 

 D! = v!"
!!
!
+ !

!
a!"

!!
!

!
.           (61b) 

          #2 crest        #1 crest    

 

        𝜆!      (C)   

    

                     #2 crest 

  

                         D2   (D) 

  

Fig. 1 

The received wavelength is λ! = λ! + D!, we obtain, 

    λ! = λ!
!!

!!"
! !

!!"!!
!!!

!!!!"! !!!"!!
!!!

.             (62) 

    f! = f!
!!

!!"
! !

!!"!!
!!!

!!!!"! !!!"!!
!!!

,             (63) 

    cf!" = −
!!!"!

!!"(!!!!!)
!!

!!!!"! !!!"!!
!!!

f!,           (64) 

 𝑐z!" =
!!!"!

!!"(!!!!!)
!!  

!!!!"! !!!"!!
!!!

,            (65) 

Time change. Taking	time	derivative,	we	obtain,	

 !
!!

!"!"
!"

= !!!"
!!!!"! !!!"!!

!!!
−

!!
!!"
! !

!!"!!
!!!

!!"

!!!!"! !!!"!!
!!!

! ,         (66) 

 𝑐 !"!"
!"

= !!!"
!!!!"! !!!"!!

!!!
−

!!!"!
!!"(!!!!!)

!! !!!"!

!!!!"! !!!"!!
!!!

! ,        (67) 
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Approximation. for slow moving source/observer, keeping first order terms only and taking !!
!
≈ !!

!
, 

we obtain the received wavelength and frequency, 

 λ! ≈ λ! 1 + 2
!!"
!
+ !!"

!!
λ! ,           (62a) 

 f! ≈ f! 1 − 2
!!"
!
− !!"

!!
λ! ,           (63a) 

    !
!!
f!" ≈ − 2v!" + a!"

!!
!

,           (64a) 

 𝑐z!" ≈ 2v!" +
!!"!!
!

,            (65a) 

 !
!!

!"!"
!"

≈ −2a!",             (66a) 

 𝑐 !"!"
!"

≈ 2a!".              (67a) 

Case (2): Source/Observer receding with deceleration.  For this case, the formulas of observed 

wavelength λ!, Extended Doppler shift cz!!, frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for Case (1), but replacing a!" with −d!". 

 

3.1.2. Source/Observer is approaching with acceleration/deceleration 

There are two cases. 

Case (1): Source/Observer is approaching with acceleration. We separate into two phases. 

First Phase. The source/observer moves a distance during the emission,  

    D! = v!"
!!
!
+ !

!
a!"

!!
!

!
.            (68a) 

The wavelength arrived at the mirror is λ! = λ! − D!. 

Second Phase. When crest #2 reaches the source/observer, the source/observer moves a distance D2, 

 D! = v!"
!!
!
+ !

!
a!"

!!
!

!
,           (68b) 

and λ! = λ! − D!. We obtain, 

    λ! = λ!
!! 

!!"
! ! !!"!!

!!!

!!!!"! !!!"!!
!!!

.             (69) 

    f! = f!
!!

!!"
! !!!"!!

!!!

!! !!"!  ! !!"!!
!!!

,             (70) 

    !
!!
f!" =

!!!"!
!!"(!!!!!)

!!

!!!!"! !!!"!!
!!!

,            (71) 

 𝑐z!" = −
!!!"!

!!"(!!!!!)
!!  

!!!!"! !!!"!!
!!!

,            (72) 

 !"!"
!"

= f!
!!"
!

!! !!"! ! !!"!!
!!!

+
!!

!!"
! !

!!"!!
!!!

!!"
!

!! !!"! ! !!"!!
!!!

! ,        (73) 

 𝑐 !"!"
!"

= − !!!"
!!!!"! !!!"!!

!!!
−

!!!"!
!!"(!!!!!)

!!
!!"
!

!!!!"! !!!"!!
!!!

! ,       (74) 
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 λ! ≈ λ! 1 − 2
!!"
!
− !!"

!!
λ! ,           (69a) 

 f! ≈ f! 1 + 2
!!"
!
+ !!"

!!
λ! ,           (70a) 

    !
!!
f!" ≈ 2v!" + a!"

!!
!

,            (71a) 

 𝑐z!" ≈ − 2 !!"
!
+ !!"!!

!!
,            (72a) 

 !
!!

!"!"
!"

≈ 2a!",              (73a) 

 𝑐 !"!"
!"

≈ −2a!".             (74a) 

Case (2): Source/Observer is approaching with deceleration. For this case, the formulas of observed 

wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for Case (1), but replacing a!" with −d!". 

 

3.2.  Mirror is moving, Source/Observer is stationary 

3.2.1. Mirror is receding with acceleration/deceleration 

There are two cases. A mirror is moving at a velocity “vM” and acceleration “aM” to the right (Fig. 2).  

Case (1): Mirror receding with acceleration 

         #2 crest     #1 crest   Mirror: velocity “vM”, acceleration “aM” 

 

    

 source/observer           (A) 

               #2 crest   #1 crest 

              

   

        H    F       (B) 

                  #1 crest    #2 crest 

  

          

     H    F       (C)   

   𝜆!  

           #1 crest                   #2 crest 

 

  J   H              DM     

          G   (D) 

Fig. 2 

The source emits a light wave incident on the mirror that reflects light. Wave crest #1 and #2 are 
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emitted towards to the mirror (Fig. 2(A). Crest #1 reaches the mirror at position F and reflected back to 

source/observer while crest #2 at position H as shown in Fig. 2(B). The distance HF is equal to the 

wavelength 𝜆!. For this simplest situation, we assume that the angles of incidence and reflection of the 

light is equal to each other. Fig. 2(C) shows that when crest #2 reaches the position F, crest #1 reaches 

to the position H, and the mirror moves away from the position F. In Fig. 2(D) crest #2 moves an 

additional distance to reach the mirror at the position G and reflected back towards to the 

source/observer. Denote the distance FG ( = HJ) as DM, then  

D! = v!∆t! +
!
!
a! ∆t! ! = v!

!!
!
+ !

!
a!

!!
!

!
       (75) 

and λ! = λ! + 2D!. We obtain 

λ! =
!!

!!!!!! !
!!
!!
!!

,             (76) 

f! = f! 1 − 2
!!
!
− !!

!!
λ! ,            (77) 

f!" = −f! 2
!!
!
+ !!

!!
λ! ,            (78) 

cz!" =
!!!!

!!
! !!

!!!!!! !
!!
!!
!!

,             (79) 

Time Derivative. Taking time derivative, we obtain, 

    !
!!

!"!"
!"

= −2a!,              (80) 

    𝑐 !"!"
!"

= !!!
!!!!!! !

!!
!!
!!
−

!!!!
!!
! !! !!!!!

!!!!!! !
!!
!!
!!

! ,         (81) 

Approximation. For slow motion, keep the first order terms only and taking !!
!
≈ !!

!
, we obtain, 

λ! ≈ λ! 1 + 2
!!
!
+ !!

!!
λ! ,           (76a) 

f! ≈ f! 1 − 2
!!
!
− !!

!!
λ! ,            (77a) 

f!" ≈ −f! 2
!!
!
+ !!

!!
λ! ,            (78a) 

cz!" ≈ 2v! +
!!
!
λ!.             (79a) 

    𝑐 !"!"
!"

≈ 2a!.              (81a) 

Case (2): Mirror is receding with Deceleration. For this case, the formulas of observed wavelength 

λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time change of 

cz!" and f!", have the same form as that for Case (1), but replacing a! with −d!. 

 

3.2.2. Mirror is approaching with acceleration/deceleration 

There are two cases. 

Case (1): Mirror is approaching with acceleration. By simply replacing λ! = λ! + 2D! with 

λ! = λ! − 2D! in formulas of section 3.2.1, where 
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D! = v!
!!
!
+ !

!
a!

!!
!

!
,            (82) 

we obtain 

λ! =
!!

!!!!!! !
!!
!!
!!

,             (83) 

f! = f! 1 + 2
!!
!
+ !!

!!
λ! ,            (84) 

f!" = f! 2
!!
!
+ !!

!!
λ! ,            (85) 

cz!" = −
!!!!

!!
! !!

!!!!!! !
!!
!!
!!

,            (86) 

Time Derivative. Taking time derivative, we obtain, 

    !
!!

!"!"
!"

= 2a!,              (87) 

    𝑐 !"!"
!"

= !!!!
!!!!!! !

!!
!!
!!
+

!!!!
!!
! !! !!!!

!!!!!! !
!!
!!
!!

! ,         (88) 

Approximation. For slow motion, keep the first order terms only and taking λ! ≈ λ!, we obtain, 

λ! ≈ λ! 1 − 2
!!
!
− !!

!!
λ! ,           (83a) 

f! ≈ f! 1 + 2
!!
!
+ !!

!!
λ! ,            (84a) 

f!" ≈ f! 2
!!
!
+ !!

!!
λ! ,            (85a) 

cz!" ≈ −2v! −
!!
!
λ!.            (86a) 

    𝑐 !"!"
!"

≈ −2a!.              (88a) 

Case (2): Mirror is approaching with deceleration. For this case, the formulas of observed 

wavelength λ!, Extended Doppler shift cz!", frequency f!, Extended Doppler frequency f!", time 

change of cz!" and f!", have the same form as that for Case (1), but replacing a! with −d!. 

 

3.3.  Source/Observer is moving, Mirror is moving 

The mirror moves with velocity v! and acceleration/deceleration, a!/d!. The source/observer 

moves with velocity v! and acceleration/deceleration, a!/d!. Let’s set a coordinate system, in which 

both a mirror and a source/observer are accelerating separately.  

 

3.3.1. Source/Observer and Mirror are receding with acceleration/deceleration 

There are four cases. For each case, we separate the process into three phases. 

Case (1): Source/Observer and Mirror receding with acceleration.  

First phase: 

The wavelength become 𝜆!, 

    λ! = λ! + D! = λ! + v!
!!
!
+ !

!
a!

!!
!

!
= λ! 1 +

!!
!
+ !!!!

!!!
. 
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             #1 crest   Mirror: v! and a! 

 

   

             source/observer : v! and a!    (A)       

    

          #2 crest    #1 crest   

 

D!   λ!                      (B) 

     

Fig. 3 

Second phase: The incident wave of wavelength λ! reflected by moving mirror. In this phase the 

motion of the source/observer has no effect on the wavelength.  

                #2 crest    #1 crest 

 

   

       A  𝜆!   B        (C) 

       

                 #1 crest     #2 crest 

 

          

       A   B  C      (D) 

 

                         𝜆!!         #2 crest 

         #1 crest         𝜆!                     

 

    D2                      D2 

     E   A     B    D     (E) 

Fig. 3 

Crest #1 reaches the mirror at point B and reflected back towards the source/observer while crest 

#2 reaches at the point A (Fig. 3(C)). When crest #2 reaches the point B, crest #1 reaches the point A, 

and the mirror moves to the point C (Fig. 3(D)). Crest #2 needs to move an extra distance D2 to reaches 

the mirror at the point D and reflected back, while crest #1 moves to the point E (Fig. 3(E)), so  

BD = EA = D! and λ!! = λ! + D!. We have 
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    D! = v!
!!!

!
+ !

!
a!

!!!

!

!
 and λ!! =

!! !!
!!
! !

!!!!
!!!

!!!!! !
!
!!!

!!
!

!!

.  

The wavelength of the reflected wave is 

    λ! = λ!! + D! =
!! !!

!!
! !

!!!!
!!!

! !!
!!
!

! !
!
!!!

!!
!

!

!
!!!!! !

!
!!!

!!
!

!!

!!!!! !
!
!!!

!!
!

!!

. 

Third phase: The receding source/observer receives the reflected wave of wavelength λ!. Fig. 3(F)) 

shows crest #1 reaches the source/observer at the point F. When crest #2 reaches the point F, crest #1 

reaches the point K, and the source/observer has moved to the point H (Fig. 3(G)). Crest #2 reaches the 

source/observer at the point J, while crest #1 reaches the point L, while the observer has moved a 

distance D! = FJ,  

    D! = v!
!!
!

+ !
!
a!  !!

!

!
.   

                      #1 crest  λ!    #2 crest 

 

   

             F         G  (F) 

         Observer  

              #1 crest           #2 crest 

 

          

      K        H   F          (G) 

  #1 crest           #2 crest 

 

                       

       λ!       D! 

  L       J     F            (H) 

Fig. 3 

Therefore the wavelength is stretched from λ! to λ!, λ! = λ! + D!, 

    λ! =
!! !!

!!
! !

!!!!
!!!

! !!
!!
!

! !
!
!!!

!!
!

!

!
!!!!! !

!
!!!

!!
!

!!

!!!!! !
!
!!!

!!
!

!!
!!!!! !

!!
!!!

!! 
,       (89)  

    z!" =  
!! !!

!!
! !

!!!!
!!!

! !!
!!
!

! !
!
!!!

!!
!

!

!
!!!!! !

!
!!!

!!
!

!!

!! !!
!!
! !

!
!!!

!!
!

!!
!!!!! !

!!
!!!

!! 
− 1,      (90) 
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 f! =
!!!!! !

!
!!!

!!
!

!!
!!!!! !

!!
!!!

!! 

!! !!
!!
! !

!!!!
!!!

! !!
!!
!

! !
!
!!!

!!
!

!

!
!!!!! !

!
!!!

!!
!

!!

,        (91) 

    f!" =
!!!!! !

!
!!!

!!
!

!!
!!!!! !

!!
!!!

!! 

!! !!
!!
! !

!!!!
!!!

! !!
!!
!

! !
!
!!!

!!
!

!

!
!!!!! !

!
!!!

!!
!

!!

− f!,      (92) 

Time Derivative. The expressions of time derivatives of above parameters are complicated and not 

necessary for slow moving source/observer and mirror. Thus we only take time derivative of the 

approximation of those parameters as shown below. 

Approximation. For slow motion, we can keep first order terms and take !!
!
≈ !!

!
≈ !!

!
≈ !!!

!
, then 

obtain, 

 λ! ≈ λ! 1 + 2
!!!!!

!
+ !!!!!

!!
λ! ,          (89a) 

 cz!" ≈ 2(v! + v!) + (a! + a!)
!!
!

,          (90a) 

    f! ≈ f! 1 − 2
!!!!!

!
− (a! + a!)

!!
!!

,         (91a) 

 f!" ≈ −f! 2 !!!!!
!

+ (a! + a!)
!!
!!

,          (92a) 

 !
!!

!"!"
!"

≈ −2(a! + a!),            (93) 

 𝑐 !"!"
!"

≈ 2(a! + a!).            (94) 

Case (2): Source/Observer is receding with acceleration, Mirror is receding with deceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case（3）：Source/Observer is receding with deceleration, Mirror is receding with acceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" with −d!". 

Case（4）：Source/Observer and Mirror are receding with deceleration.  

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" and a! with −d!" and −d!. 

 

3.3.2. Source/Observer is receding with acceleration/deceleration,  

Mirror is approaching with acceleration/deceleration 

There are four cases. 
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Case (1): Source/Observer is receding with acceleration, Mirror is approaching with acceleration. 

Following the same argument above, for slow motion, we take !!
!
≈ !!

!
≈ !!

!
≈ !!!

!
, obtain, 

 λ! ≈ λ! 1 + 2
!!!!!

!
+ !!!!!

!!
λ! ,          (95) 

 cz!" ≈ 2 v! − v! + (a! − a!)
!!
!

,          (96) 

    f! ≈ f! 1 − 2
!!!!!

!
− (a! − a!)

!!
!!

,         (97) 

 f!" ≈ −f! 2 !!!!!
!

+ (a! − a!)
!!
!!

,          (98) 

 !
!!

!"!"
!"

≈ −2(a! − a!),            (99) 

 𝑐 !"!"
!"

≈ 2(a! − a!).            (100) 

Case (2): Source/Observer is receding with acceleration, Mirror is approaching with deceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a! with −d!. 

Case (3): Source/Observer is receding with deceleration, Mirror is approaching with acceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" with −d!".  

Case (4): Source/Observer is receding with deceleration, Mirror is approaching with deceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" and a! with −d!" and −d!, respectively. 

 

3.3.3. Source/Observer is approaching with acceleration/deceleration, Mirror is receding with 

acceleration/deceleration 

There are four cases. 

Case (1): Source/Observer is approaching with acceleration, Mirror is receding with acceleration 

For slow motion, we obtain, 

    λ! ≈ λ! 1 − 2
!!!!!

!
− !!!!!

!!
λ! ,          (101) 

 cz!" ≈ −2 v! − v! − (a! − a!)
!!
!

,         (102) 

    f! ≈ f! 1 + 2
!!!!!

!
+ (a! − a!)

!!
!!

,         (103) 

 f!" ≈ f! 2 !!!!!
!

+ (a! − a!)
!!
!!

,          (104) 

 !
!!

!"!
!"
≈ 2(a! − a!),             (105) 

 𝑐 !"!"
!"

≈ −2(a! − a!).            (106) 

Case (2): Source/Observer is approaching with acceleration, Mirror is receding with deceleration 
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 For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency 

f!, Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for 

Case (1), but replacing a! with −d!. 

Case (3): Source/Observer is approaching with deceleration, Mirror is receding with acceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!", time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" with −d!".  

Case (4): Source/Observer is approaching with deceleration, Mirror is receding with deceleration 

For this case, the formulas of observed wavelength λ!, Extended Doppler shift cz!", frequency f!, 

Extended Doppler frequency f!!, time change of cz!" and f!", have the same form as that for Case 

(1), but replacing a!" and a! with −d!" and −d!, respectively. 

 

3.3.4. Source and Mirror are approaching with acceleration/deceleration 

There are four cases. 

Case (1): Source and Mirror are approaching with acceleration.  

    λ! ≈ λ! 1 − 2
!!!!!

!
− !!!!!

!!
λ! ,          (107) 

 cz!" ≈ −2 v! + v! − (a! + a!)
!!
!

,         (108) 

    f! ≈ f! 1 + 2
!!!!!

!
+ (a! + a!)

!!
!!

,         (109) 

 f!" ≈ f! 2 !!!!!
!

+ (a! + a!)
!!
!!

,          (110) 

 !
!!

!"!
!"
≈ 2(a! + a!),             (111) 

 𝑐 !"!"
!"

≈ −2(a! + a).            (112) 

Case (2): Source/Observer is approaching with acceleration, Mirror is approaching with 

deceleration. For	this	case,	the	formulas	of	observed	wavelength	 λ!,	Extended	Doppler	shift	 cz!",	

frequency	 f!,	 Extended	 Doppler	 frequency	 f!",	 time	 change	 of	 cz!"	 and	 f!",	 have	 the	 same	

form	as	that	for	Case	(1),	but	replacing	 a!	 with	 −d!.	 	  

Case (3): Source/Observer is approaching with deceleration, Mirror is approaching with 

acceleration. For	this	case,	the	formulas	of	observed	wavelength	 λ!,	Extended	Doppler	shift	 cz!",	

frequency	 f!,	 Extended	 Doppler	 frequency	 f!",	 time	 change	 of	 cz!"	 and	 f!",	 have	 the	 same	

form	as	that	for	Case	(1),	but	replacing	 a!"	 with	 −d!". 

Case (4): Source/Observer and Mirror are approaching with deceleration. For	 this	 case,	 the	

formulas	 of	 observed	 wavelength	 λ! ,	 Extended	 Doppler	 shift	 cz!" ,	 frequency	 f! ,	 Extended	

Doppler	 frequency	 f!",	 time	change	of	 cz!"	 and	 f!",	 have	 the	 same	 form	as	 that	 for	Case	 (1),	

but	replacing	 a!"	 and	 a!	 with	 −d!"	 and	 −d!,	respectively. 
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4. Conclusion and Discussion 

We study systematically the effects of acceleration and deceleration of moving source, observer, 

and mirror on wavelength and frequency and show that acceleration and deceleration causes shifts of 

wavelength and frequency, denoted as “Acceleration-deceleration-shift”. The total shift, denoted as the 

Extended Doppler shift, is a summation of Doppler shift and Acceleration-deceleration-shift. Moreover 

acceleration and deceleration changes Doppler shift and total shift continuously, which implies that one 

can measure the time changes of both wavelength/frequency and shift of them to detect acceleration 

and/or deceleration of either source, or observer, or mirror/reflector. Also we show that only for slow 

moving case, the wavelength/frequency and shift are determined by the relative velocity and relative 

acceleration/deceleration.  

We summarize the Extended Doppler shift formulas for the simplest cases of the non-uniformly 

moving observer, source/observer, and Mirror/reflector variations. The formulas for the more complex 

cases of non-uniformly motions are out scope of this article. 

Reference 

1. A. G. Riess et al., Astron. J. 116, 1009 (1998), 

S. Perlmutter et al., Astrophys. J. 517, 565 (1999). 

2.  Hui Peng, “Extended Hubble Law for the Accelerating and Jerking Universe”, Open-Science-Repository/physics-45011861. 

Hui Peng, “On Discrepancy in Hubble Constant”, Open-Science-Repository/physics-45011863 (2017). 

  Hui Peng, “Acceleration Shifts Wavelength”, Open-Science-Repository/physics-45011868 (2018). 

5.  


