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Abstract. Tetrahedral discretizations of the multielectron Schrödinger operator are

suggested. They is based on tetrahedral triangulations of domains in R
3. Theoretical

results proving that these discretizations are able to approximate energy levels of

electrons in atoms and molecules are obtained.

1. Introduction.

Let’s consider a molecule. It is a quantum system composed by several positively
charged atomic nuclei each of which brings the appropriate number of negatively
charged electrons so that the system is electrically neutral as a whole. The ground
state and excited states of any molecule are described by wave-functions which are
eigenfunctions of the energy operator

H Ψ = EΨ. (1.1)

The energy operator H in (1.1) is called the Hamilton operator or the Hamiltonian.
The equation (1.1) itself is called the Schrödinger equation.

Atomic nuclei are composed by protons and neutrons which are approximately
1840 times as heavier than electrons. They constitute the heavy and slow subsystem
of a molecule. Electrons constitute the light and fast subsystem. The Born-Oppen-
heimer approximation is based on this subdivision of a molecule into a fast and a
slow subsystem (see [1]). In this approximation

Ψ = Ψnuc · Ψelec, H = Hnuc +Helec. (1.2)

The electron wave function Ψelec obeys its own Schrödinger equation:

Helec Ψelec = Eelec Ψelec. (1.3)

Assume that we have n nuclei in a molecule and let’s denote through R1, . . . , Rn

their radius-vectors determining their spacial positions. The nuclei radius-vectors
R1, . . . , Rn play the role of parameters in the equation (1.3). This means that Ψelec

and Eelec depend on R1, . . . , Rn. The operator Helec also depend on R1, . . . , Rn.
However it does not comprise any differentiation with respect to R1, . . . , Rn.
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The equation for Ψnuc is derived by substituting (1.2) into (1.1), taking into
account (1.3), and omitting those terms where Ψelec is differentiated with respect
to R1, . . . , Rn. This equation looks like

Hnuc Ψnuc + Eelec Ψnuc = EΨnuc. (1.4)

The operator Hnuc in (1.4) presents the kinetic energy of the nuclear subsystem of
a molecule and the Coulomb repulsion of its nuclei. It is given by the formula

Hnuc = −
n∑

i=1

~2 4Ri

2Mi
+

n∑

i6=j

QiQj
|Ri − Rj|

, (1.5)

where M1, . . . , Mn are masses of the nuclei, Q1, . . . , Qn are their charges, and ~

is the Planck constant. Its value, according to Wikipedia [2], is

~ ≈ 1.05457180013 · 10−27 erg · sec. (1.6)

The triangle 4Ri
in the operator (1.5) stands for the Laplace operator with respect

to the coordinates of the i-th nucleus:

4Ri
=

∂2

∂R1
i
2 +

∂2

∂R2
i
2 +

∂2

∂R3
i
2 . (1.7)

In (1.7) and in what follows we use upper indices for the coordinates of vectors
relying on the convention which is known as the Einstein’s tensorial notation (see
§ 20 of Chapter I in [3]).

The term with Eelec in (1.4) is very important. The energy

Eelec = Eelec(R1, . . . ,Rn) (1.8)

in it should be negative in order to produce attractive forces that withstand Cou-
lomb repulsion in (1.5), form chemical bonding and thus hold nuclei together in a
molecule. Computing the energy (1.8) is the main problem of quantum chem-

istry. It is solved by solving the eigenvalue problem (1.3). The Hamilton operator
Helec in (1.3) is given by the formula

Helec = −
N∑

i=1

~2 4ri

2me
−

N∑

i=1

n∑

j=1

eQj
|ri −Rj |

+

N∑

i6=j

e2

|ri − rj|
, (1.9)

where me is the mass of electron and e is the absolute value of its charge. According
to Wikipedia [4], the values of these two constants are

me ≈ 9.1093835611 · 10−28 g,

e ≈ 4.8032045110 · 10−10 esu.
(1.10)

Let’s denote through ν1, . . . , νn the atomic numbers of the nuclei in our mole-
cule. Then Q1, . . . , Qn are expressed through e in (1.10) as follows:

Qi = νi e, where i = 1, . . . , n. (1.11)
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Substituting (1.11) into (1.9) we derive

Helec = −
N∑

i=1

~2 4ri

2me
−

N∑

i=1

n∑

j=1

νj e
2

|ri −Rj|
+

N∑

i6=j

e2

|ri − rj|
. (1.12)

The atomic numbers ν1, . . . , νn in (1.12) are integers. Therefore in (1.12) we have
exactly three fundamental physical constants ~, e, and me. Their values are given
in (1.6) and (1.10) above.

The equation (1.3) with the operator (1.12) is the basic equation of quantum
chemistry. By its form it is a Schrödinger equation. The Hamilton operator Helec

of the form (1.12) in it is often called the Schrödinger operator. It can be further
specified by adding terms responsible for spin-spin and spin-orbital interactions.
Building a certain tetrahedral discretization for the Schrödinger operator (1.12) is
the main goal of the present paper.

2. Conversion to atomic units.

Atomic units are especially designed for describing atoms and molecules. They
are based on the fundamental physical constants (1.6) and (1.10):

1 au of charge = e, 1 au of mass = me, 1 au of action = ~. (2.1)

In the equation (1.3) we need the atomic units for length and energy. From (2.1)
we derive the following relationships:

1 au of velocity =
e2

~
, 1 au of energy =

me e
4

~2
,

(2.2)

1 au of time =
~3

me e4
, 1 au of length =

~2

me e2
.

Applying the relationships (2.2) to the Schrödinger equation (1.3), we find that the
Schrödinger operator (1.12) in atomic units is written as

Helec = −
N∑

i=1

4ri

2
−

N∑

i=1

n∑

j=1

νj
|ri −Rj|

+

N∑

i6=j

1

|ri − rj|
. (2.3)

The Schrödinger equation (1.3) itself is transformed to

Helec Ψ = E Ψ, (2.4)

where Helec is given by the formula (2.3). Like Eelec in (1.8), the eigenvalue E in
(2.4) depends on the radius-vectors of the nuclei R1, . . . , Rn:

E = E(R1, . . . ,Rn). (2.5)

The values of the functions (1.8) and (2.5) are related to each other as follows:

Eelec =
me e

4

~2
E . (2.6)
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However the arguments of the functions Eelec and E in (2.6) are different since they
are given in different units.

The wave function Ψ in (2.4) depends on the electron radius-vectors r1, . . . , rN
and on the radius-vectors of the nuclei R1, . . . , Rn as well:

Ψ = Ψ(r1, . . . , rN ,R1, . . . ,Rn). (2.7)

Moreover, it can depend on spin states of both. However we shall not consider spins
in this paper. The number of electrons N in (2.7) is calculated through the atomic
numbers of the nuclei in the case of a neutral molecule:

N =

n∑

j=1

νj. (2.8)

The number N can be different from (2.8) if we deal with an ion.
The values of the wave function Ψ in (2.7) and the wave function Ψelec in (1.3)

are related to each other by means of the formula

Ψelec =
(me e

2

~2

)3N/2

Ψ. (2.9)

However, like in (2.6), the arguments of the functions in (2.9) are different since
they are given in different units.

The wave function Ψ in (2.7) is normalized by the condition

∫

|Ψ|2 d3r1. . .d
3rN = 1. (2.10)

Due to (2.10) we say that the Schrödinger operator (2.3) is an operator in the
Hilbert space of square-integrable complex functions L2(C,R

3N ), see [5–7].

3. Closed and self adjoint operators.

The Schrödinger operator (2.3) is a differential operator. However a typical
square-integrable function from L2(C,R

3N ) is not differentiable. This means that
the domain of the operator (2.3) is smaller than L2(C,R

3N). The Coulomb po-
tentials of (2.3) are locally square integrable. Therefore initially Helec is defined
on the set of smooth functions with compact support D(C,R3N ) (see [8]). The set
D(C,R3N ) is dense in L2(C,R

3N ), while Helec is symmetric in D(C,R3N ):

〈ϕ|Helecψ〉 = 〈Helecϕ|ψ〉 for all ϕ, ψ ∈ D(C,R3N ). (3.1)

Therefore Helec has a unique minimal closed extension (see [9]) with the domain
D(Helec). Below, referring to the Schrödinger operator (2.3) and writing Helec, we
shall implicitly assume this unique minimal closed extension of Helec. Now let’s
recall some definitions from [9].

Definition 3.1. A linear operator F in a Hilbert space H is called a closed operator
if its graph Γ(F ) is a closed subspace in the Cartesian product H ×H.

The domain D(F ) of an operator F is the projection of its graph Γ(F ) onto the
first component of the Cartesian product H ×H. The minimal closed extension of
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the Schrödinger operator (2.3) is constructed through the closure of its graph on
smooth functions with compact support D(C,R3N ):

Γ((Helec) = Γ((Helec). (3.2)

Due to (3.2) we have the following lemma which is immediate from (3.2).

Lemma 3.1. A square integrable complex function Ψ ∈ L2(C,R
3N) belongs to

D(Helec) if and only if there is a sequence ψn of smooth complex functions with

compact support in R3N such that

lim
n→∞

ψn = Ψ, ∃ lim
n→∞

Helecψn = Φ. (3.3)

Limits in (3.3) are understood in the sense of the strong convergence in the space
L2(C,R

3N), i. e. with respect to the norm of L2(C,R
3N). The function Φ in (3.3)

is taken for the value HelecΨ of the minimal closed extension Helec.

Definition 3.2. Let F be a linear operator with the dense domain D(F ) in a
Hilbert space H. The operator F ∗ with the domain

D(F ∗) = {Ψ ∈ H : ∃Θ ∈ H : 〈Ψ|FΦ〉 = 〈Θ|Φ〉 ∀Φ ∈ D(F )} (3.4)

defined by the formula F ∗Ψ = Θ, where a unique Θ is given by (3.4), is called the
adjoint operator for F .

The following theorem is proved in [9] (see § 1 of Chapter VIII therein).

Theorem 3.1. Let F be a linear operator with the dense domain D(F ) in a Hilbert

space H. Then for this operator:

(1) the adjoint operator F ∗ is closed;

(2) the operator F admits a closed extension if and only if D(F ∗) is dense in H
and in this case F̄ = F ∗∗;

(3) if the operator F admits a closed extension then (F̄ )∗ = F ∗.

Definition 3.3. A linear operator F with the dense domain D(F ) in a Hilbert
space H is called a symmetric operator if its adjoint operator F ∗ extends F , i. e. if
D(F ) ⊆ D(F ∗) and F ∗Ψ = FΨ for all Ψ ∈ D(F ).

Actually an operator F is symmetric in the sense of Definition 3.3 if and only if

〈Φ|FΨ〉 = 〈FΦ|Ψ〉 for all Φ,Ψ ∈ D(F ). (3.5)

It is easy to see that (3.1) is a version of the formula (3.5) specified to the case of
the Schrödinger operator (2.3) in D(C,R3N ).

Definition 3.4. A linear operator F with the dense domain D(F ) in a Hilbert
space H is called self-adjoint if F ∗ = F , i. e. if F is symmetric and D(F ) = D(F ∗).

Definition 3.5. A symmetric linear operator F in a Hilbert space H is called
essentially self-adjoint if its closure F̄ is self adjoint.
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4. Sesquilinear forms and matrix elements.

For any two functions Ψ and Φ from the Hilbert space of square-integrable
complex functions L2(C,R

3N) the sesquilinear form

〈Φ|Ψ〉 =

∫

Φ Ψ d3r1. . .d
3rN (4.1)

is defined. The form (4.1) is a basic scalar product of this Hilbert space. Overlined
functions in (4.1) and in what follows mean complex conjugates. Norms of functions
in the Hilbert space L2(C,R

3N ) are defined through (4.1) as follows:

‖Ψ‖ =
√

〈Ψ|Ψ〉. (4.2)

Lemma 4.1. The domain D(Helec) of the Schrödinger operator (2.3) is a dense

subspace in the Hilbert space L2(C,R
3N ).

Indeed, applying Lemma 3.1, we find that D(C,R3N ) ⊂ D(Helec), while the set
of smooth functions with compact support D(C,R3N ) is dense in L2(C,R

3N ).
In quantum mechanics the sesquilinear form (4.1) is used for defining other

sesquilinear forms associated with linear operators (see [10] or [11]). In the case of
the Schrödinger operator (2.3) we have

〈Φ|HelecΨ〉 =

∫

ΦHelecΨ d3r1. . . d
3rN . (4.3)

The sesquilinear form (4.3) is known as the matrix element of the operator Helec

(see [10] or [11]).
Assume that Ψ ∈ D(C,R3N ) and Φ ∈ D(C,R3N ). Then, applying integration

by parts, we can derive the following expression for the matrix element (4.3):

〈Φ|HelecΨ〉 =

∫ N∑

i=1

(∇ri
Φ,∇ri

Ψ)

2
d3r1. . . d

3rN −

−
∫ N∑

i=1

n∑

j=1

νj Φ Ψ

|ri −Rj |
d3r1. . .d

3rN +

∫ N∑

i6=j

Φ Ψ

|ri − rj|
d3r1. . . d

3rN .

(4.4)

From (4.4) one can easily derive that

〈Φ|HelecΨ〉 = 〈Ψ|HelecΦ〉. (4.5)

Substituting Φ = Ψ into (4.4) we obtain a diagonal matrix element of Helec:

〈Ψ|HelecΨ〉 =

∫ N∑

i=1

|∇ri
Ψ|2

2
d3r1. . . d

3rN −

−
∫ N∑

i=1

n∑

j=1

νj |Ψ|2
|ri −Rj |

d3r1. . .d
3rN +

∫ N∑

i6=j

|Ψ|2
|ri − rj|

d3r1. . . d
3rN .

(4.6)

Due to (4.5) the diagonal matrix element (4.6) is a real number. In quantum
mechanics diagonal matrix elements of operators are interpreted as probabilistic
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expectation values of the corresponding physical observables (see [10], [11], and
[12]). In particular, (4.6) is the expectation value of energy for the quantum state
of a molecule given by the wave function Ψ.

Note that the equality (4.5) can be rewritten in the form of the equality (3.1).
Applying Lemma 3.1 to the equality (3.1), we derive

〈Φ|HelecΨ〉 = 〈HelecΦ|Ψ〉 = 〈Ψ|HelecΦ〉 for all Φ,Ψ ∈ D(Helec). (4.7)

The equality (4.7) is a particular case of the general theorem.

Theorem 4.1. The closure F̄ of a symmetric operator F in a Hilbert space is a

symmetric operator.

Definition 4.1. A symmetric operator F with the domainD(F ) in a Hilbert space
H is called lower semi-definite if there is a real constant C such that

〈Ψ|FΨ〉 > C ‖Ψ‖2 for all Ψ ∈ D(F ), (4.8)

where ‖Ψ‖ is given by the formula (4.2). If C = 0 in (4.8), then the operator F is
called semi-positive.

Relying on Definition 4.1, we subdivide the Schrödinger operator (2.3) into sev-
eral parts the sum of which is equal to Helec:

H
[i]
attr = −4ri

2
−

n∑

j=1

νj
|ri − Rj|

, (4.9)

Hrep =
N∑

i6=j

1

|ri − rj|
, (4.10)

Helec =

N∑

i=1

H
[i]
attr +Hrep. (4.11)

Note that the space R3N is the direct sum of N copies of R3:

R3N = R3 ⊕ . . . ⊕ R3. (4.12)

The i-th operator H
[i]
attr in (4.9), being restricted to i-th copy of R3 in (4.12),

produces the following operator in R3:

Hattr = −4r

2
−

n∑

j=1

νj
|r−Rj |

. (4.13)

Lemma 4.2. The 3-dimensional Schrödinger operator (4.13) is a lower semi-de-

finite operator in the Hilbert space L2(C,R
3).

Lemma 4.2 is immediate from the results given in [13]. In the simplest case n = 1
the eigenvalues and eigenfunctions of the operator (4.13) are explicitly known (see
[10] or [11]). Therefore in this case we can write the inequality

〈Ψ|HattrΨ〉 > −ν2
1 ‖Ψ‖2/2,
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which is in agreement with Lemma 4.2 and Definition 4.1. The following lemma is
a corollary of Lemma 4.2.

Lemma 4.3. The 3N -dimensional attractive Schrödinger operators (4.9) are lower

semi-definite operators in the Hilbert space L2(C,R
3N ).

The scalar repulsive operator Hrep in (4.10) is obviously semi-positive. As a
result from Lemma 4.3 we derive the following lemma for the sum (4.11).

Lemma 4.4. The 3N -dimensional Schrödinger operator (2.3) represented as the

sum (4.11) is a lower semi-definite operator in the Hilbert space L2(C,R
3N ).

Theorem 4.2. The closed Schrödinger operator (2.3) with the domain D(Helec)
described in Lemma 3.1 is a self-adjoint operator.

Theorem 4.2 is proved in [14] starting with the Schrödinger operator defined on
quasi-polynomials, i. e. functions of the form

p(r) = P (r1, . . . , rN ) exp(−|r1|2 − . . .− |rN |2), (4.14)

where r ∈ R3N and P (r1, . . . , rN ) is a polynomial of the components of the three-
dimensional radius vectors r1, . . . , rN . Actually, if we set µ0 = 0 in [14], the
self-adjoint Schrödinger operator defined in [14] through quasi-polynomials (4.14)
coincides with the closed Schrödinger operator (2.3) whose domain D(Helec) is
described in Lemma 3.1. In order to prove this fact we need to show that

p(r) ∈ D(Helec). (4.15)

Let’s consider some smooth function U (x) in R whose graph is shown in Fig. 4.1.

Using the function U (x) and the function (4.14), we define another function:

pθ(r) = U (θ |r|) p(r) where θ > 0. (4.16)

It is clear that the function (4.16) obeys the following relationship:

lim
θ→0

pθ = p. (4.17)
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The function (4.16) belongs to D(C,R3N), i. e. it is a smooth function with compact
support. Applying the operator (2.3) to it, we derive

Helecpθ = U (θ |r|)Helecp−
N∑

i=1

θ U ′(θ |r|) (ri,∇ri
p)

|r| −

−
N∑

i=1

θ U ′(θ |r|) (3N − 1) p

2 |r| −
N∑

i=1

θ2 U ′′(θ |r|) p
2

.

(4.18)

Through (•, •) in the second term of the right hand side of (4.18) we denote the
regular scalar product (dot product) in R3. From (4.18) we derive

lim
θ→0

(Helecpθ) = Helecp. (4.19)

Both limits in (4.17) and (4.19) are understood in the sense of strong convergence
with respect to the norm in the Hilbert space L2(C,R

3N ).
Applying Lemma 3.1 to (4.17) and (4.19) we derive the required relationship

(4.15). This relationship means that Theorem 4.2 is proved.

5. Quadratic forms.

The left hand side of the formula (4.8) is the quadratic form of the operator
F . It is produced from the sesquilinear form 〈Φ|FΨ〉 by setting Φ = Ψ. General
quadratic forms q(Ψ) are also produced from the corresponding sesquilinear forms
q(Φ,Ψ) by setting Φ = Ψ, i. e. q(Ψ) = q(Ψ,Ψ).

Definition 5.1. A sesquilinear form q in a Hilbert space H is complex-valued
numeric function q(Φ,Ψ) with two vectorial arguments Φ and Ψ in some dense
subspace Q(q) of H obeying the relationships

(1) q(Φ,Ψ1 + Ψ2) = q(Φ,Ψ1) + q(Φ,Ψ2) for all Φ,Ψ1,Ψ2 ∈ Q(q);
(2) q(Φ, αΨ) = αq(Φ,Ψ) for all Φ,Ψ ∈ Q(q) and α ∈ C;
(3) q(Φ1 + Φ2,Ψ) = q(Φ1,Ψ) + q(Φ2,Ψ) for all Φ1,Φ2,Ψ ∈ Q(q);
(4) q(αΦ,Ψ) = ᾱ q(Φ,Ψ) for all Φ,Ψ ∈ Q(q) and α ∈ C.

The subspace Q(q) is called the domain of the sesquilinear form q.

Definition 5.2. A sesquilinear form q in a Hilbert space H is called symmetric if

q(Ψ,Φ) = q(Φ,Ψ) for all Φ,Ψ ∈ Q(q).

Quadratic forms are in one-to-one correspondence with the corresponding sesqui-
linear forms due to the following formula:

q(Φ,Ψ) =
q(Φ + Ψ)

4
− q(Φ − Ψ)

4
+
q(Φ + ıΨ)

4 ı
− q(Φ − ıΨ)

4 ı
. (5.1)

Here ı =
√
−1. The formula (5.1) is called the polarization formula or the recovery

formula. It is used to recover the information lost by setting Φ = Ψ in q(Φ,Ψ).

Definition 5.3. A symmetric sesquilinear form q with the domainQ(q) in a Hilbert
space H is called lower semi-definite if there is a real constant C such that

q(Ψ,Ψ) > C 〈Ψ|Ψ〉 for all Ψ ∈ Q(q). (5.2)
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If C = 0 in (5.2), then the form q is called semi-positive.

Let F be a self-adjoint linear operator with the dense domain D(F ) in a Hilbert
space H. Then we have the sesquilinear form

qF (Φ,Ψ) = 〈Φ|FΨ〉, where Φ,Ψ ∈ D(F ). (5.3)

The sesquilinear form (5.3) is symmetric in the sense of Definition 5.2 since F is
self-adjoint and we have 〈Φ|FΨ〉 = 〈FΦ|Ψ〉. The quadratic form qF (Ψ) = qF (Ψ,Ψ)
associated with (5.3) is a real-valued function in D(F ).

It turns out that the form (5.3) can be extended to a larger domain Q(F ) such
that D(F ) ⊂ Q(F ). This domain is defined as follows:

Q(F ) = D(
√

|F | ). (5.4)

The form (5.3) is extended from D(F ) to Q(F ) using the spectral theorem for
self-adjoint operators (see § 6 of Chapter VIII in [9]).

Definition 5.4. For any self-adjoint operator F in a Hilbert space H the sesquili-
near form (5.3) extended to the domain (5.4) is called the sesquilinear form associ-
ated with this operator.

The Schrödinger operator (2.3) is not only a self-adjoint operator, but also a
semi-definite operator (see Definition 4.1). Therefore its form 〈Φ|HelecΨ〉 is semi-
definite in the sense of Definition 5.3. Relying on (5.2), we introduce the norm

‖Ψ‖+1 =
√

〈Ψ|HelecΨ〉 + (1 − C) ‖Ψ‖2. (5.5)

The norm (5.5) is stronger than the standard norm (4.2) of the Hilbert space of

square integrable functions L2(C,R
3N ). The domain Q(Helec) = D(

√

|Helec| ) is
the closure of the domain D(Helec) with respect to the norm (5.5) in the sense of
the following theorem (see § 53 of Part XV in [15] and § 6 of Chapter VIII in [9]).

Theorem 5.1. A function Ψ belongs to the domain Q(Helec) if and only if there

is a sequence of functions Ψn from the domain D(Helec) such that

(1) ‖Ψn − Ψ‖ → 0 as n→ ∞;

(2) 〈Ψn − Ψm|Helec(Ψn − Ψm)〉 → 0 as n,m→ ∞.

Combining Theorem 5.1 with Lemma 3.1 one can prove the following theorem.

Theorem 5.2. A function Ψ belongs to the domain Q(Helec) if and only if there

is a sequence Ψn of smooth functions with compact support such that

(1) ‖Ψn − Ψ‖ → 0 as n→ ∞;

(2) 〈Ψn − Ψm|Helec(Ψn − Ψm)〉 → 0 as n,m→ ∞.

Theorem 5.3. Let Φ and Ψ be two functions from the domain Q(Helec) and let

Φn and Ψn be the approximating sequences for them in the sense of Theorem 5.1

or Theorem 5.2. Then the sesquilinear form of the operator Helec for these two

functions is given by the formula

〈Φ|HelecΨ〉 = lim
n→∞

〈Φn|HelecΨn〉. (5.6)
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Theorem 5.3 is immediate from the fact that (5.5) is a norm producing the
structure of a Hilbert space in Q(Helec) (see § 53 of Part XV in [15] and § 6 of
Chapter VIII in [9]).

6. Minimax principle.

In [16] one can find the following theorem (see § 1 of Chapter XIII therein).

Theorem 6.1. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H. For some positive integer n denote

µn(F ) = sup
ϕ1, ... , ϕn−1

UF (ϕ1, . . . , ϕn−1), (6.1)

where
UF (φ1, . . . , ϕm) = inf

ψ∈D(F ), ‖ψ‖=1
ψ⊥ϕ1, ... , ψ⊥ϕm

〈ψ|Fψ〉. (6.2)

Then exactly one of the two options holds:

(1) there exist n eigenvalues of the operator F below the lower limit of its essential

spectrum σess(F ), each being counted with its multiplicity, and λ = µn(F ) is

n-th eigenvalue of the operator F ;

(2) µn(F ) coincides with the lower limit of the essential spectrum σess(F ) of the

operator F . In this case there are at most n − 1 eigenvalues below the lower

limit of the essential spectrum σess(F ), each being counted with its multiplicity,

and µm(F ) = µn(F ) for all m > n.

Theorem 6.1 presents the minimax principle for operators in Hilbert spacers.
Note that ϕ1, . . . , ϕn−1 in Theorem 6.1 are arbitrary elements of the Hilbert space
H. They need not be linearly independent.

The case n = 1 in Theorem 6.1 is exceptional. In this case two formulas (6.1)
and (6.2) reduce to one formula:

µ1(F ) = inf
ψ∈D(F ), ‖ψ‖=1

〈ψ|Fψ〉. (6.3)

The following theorem is a corollary of Theorem 6.1.

Theorem 6.2. If lower semi-definite self-adjoint operator F with the domain D(F )
in a Hilbert space H has the discrete spectrum, then the smallest eigenvalue of this

operator λmin = µ1(F ) is given by the formula (6.3).

In quantum chemistry the wave function Ψ in (2.4) associated with the smallest
eigenvalue Emin of the Schrödinger operator Helec is called the ground state wave
function. The smallest eigenvalue Emin is called the ground state energy level.

Typically the domain Q(F ) of the form 〈Φ|FΨ〉 is larger than the domain D(F )
of the operator F itself. For this case in [16] we find the following theorem.

Theorem 6.3. If F a lower semi-definite self-adjoint operator in a Hilbert space

H, then µn(F ) is given by the formula

µn(F ) = sup
ϕ1 , ... , ϕn−1

inf
ψ∈Q(F ), ‖ψ‖=1
ψ⊥ϕ1, ... , ψ⊥ϕn−1

〈ψ|Fψ〉, (6.4)

where Q(F ) is the domain of the sesquilinear form 〈ϕ|Fψ〉.
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The formula (6.4) looks like a combination of the formulas (6.1) and (6.2) except
for D(F ) is replaced by Q(F ). For the case n = 1 it reduces to

µ1(F ) = inf
ψ∈Q(F ), ‖ψ‖=1

〈ψ|Fψ〉. (6.5)

The next theorem is a corollary of Theorem 6.3.

Theorem 6.4. If lower semi-definite self-adjoint operator F in a Hilbert space H
has the discrete spectrum, then its smallest eigenvalue λmin = µ1(F ) is given by the

formula (6.5), where Q(F ) is the domain of the sesquilinear form 〈ϕ|Fψ〉.

7. Rayleigh-Ritz method.

In [16] one can find the following theorem (see § 2 of Chapter XIII therein).

Theorem 7.1. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H, let V ⊂ D(F ) be an n-dimensional subspace in D(F ),
and let P be the orthogonal projector onto V . The composite operator P ◦F ◦P is

lower semi-definite and self-adjoint. It has n eigenvalues µ̂1, . . . , µ̂n that can be

enumerated in a non-decreasing order

µ̂1 6 . . . 6 µ̂n. (7.1)

Under these assumptions the following inequalities hold:

µm(F ) 6 µ̂m, where m = 1, . . . , n. (7.2)

The quantities µm(F ) in (7.2) coincide with those in (6.1) and (6.4). Note that V
is an invariant space of the composite operator P ◦F ◦P in Theorem 7.1. Therefore
we can restrict the composite operator P ◦F ◦P to V :

FV = P ◦F ◦P
V

(7.3)

The eigenvalues (7.1) coincide with the eigenvalues of the linear operator (7.3) in
the finite-dimensional space V .

Here is the next theorem from [16] (see § 2 of Chapter XIII therein).

Theorem 7.2. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H such that its discrete spectrum is not empty and

λmin = µ1(F ) (7.4)

is its smallest eigenvalue. Let Ψ be an eigenvector of F associated with the eigen-

value (7.4) and expanded in some orthonormal basis {hi}i=1, ... ,∞ of the space H:

Ψ = lim
n→∞

Ψn, where Ψn =

n∑

i=1

ψi hi. (7.5)

Assume that hi ∈ D(F ) for all i = 1, . . . , ∞ and assume that

∃ lim
n→∞

〈Ψn|FΨn〉 = λmin ‖Ψ‖2. (7.6)
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Under these assumptions we have the equality

λmin = lim
n→∞

µ̂
(n)
1 , (7.7)

where µ̂
(n)
1 is the smallest eigenvalue of the Hermitian n × n matrix Φ(n) with the

elements Φij = 〈hi|Fhj〉.
The equalities (7.5) in Theorem 7.2 express the convergence of the series

Ψ =

∞∑

i=1

ψi hi (7.8)

with respect to the norm of the Hilbert space H. The coefficients ψi in (7.5) and
(7.8) are designated according to Einstein’s tensorial notation (see (1.7) and § 20 of
Chapter I in [3]), i. e. using the upper index i for the coordinates of Ψ.

Actually, the matrix Φ(n) in Theorem 7.2 does not depend on the eigenfunction
Ψ. Indeed, let’s consider the following subspace:

Vn = Span(h1, . . . , hn) (7.9)

and denote through Pn the orthogonal projector onto it. Then Φ(n) is the matrix
of the composite operator similar to (7.3):

FVn
= Pn ◦F ◦Pn

Vn

, (7.10)

Φij = 〈hi|Fhj〉 = 〈hi|FVn
hj〉. The subspaces (7.9) constitute an infinite sequence

of finite-dimensional subspaces of H enclosed in each other:

V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ . . . . (7.11)

Definition 7.1. A growing sequence V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ . . . of finite-dimen-
sional subspaces of a Hilbert space H is called exhaustive if the closure of their
union coincides with H.

The sequence of subspaces (7.11) is exhaustive in the sense of the definition 7.1.
Each such sequence is backward associated with some (not unique) orthonormal
basis in H so that Vn are spans of basis vectors. However, we cannot avoid the
basis {hi}i=1, ... ,∞ and the eigenvector Ψ at all in Theorem 7.2 since (7.6) is an
auxiliary condition for both of them.

Proof of Theorem 7.2. Applying Theorem 7.1 to the subspace (7.9), we get

λmin = µ1(F ) 6 µ̂
(n)
1 . (7.12)

Then we apply Theorem 6.2 to the operator (7.10) in Vn and from (6.3) we derive

µ̂
(n)
1 = inf

ψ∈Vn, ‖ψ‖=1
〈ψ|FVn

ψ〉 = inf
ψ∈Vn, ‖ψ‖=1

〈ψ|Fψ〉. (7.13)
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The approximate eigenvector Ψn in (7.5) is one of the elements of the space Vn.
Therefore, taking into account that ‖Ψn‖ 6= 1, from (7.13) we obtain

µ̂
(n)
1 6

〈Ψn|FΨn〉
‖Ψn‖2

(7.14)

Combining (7.14) with (7.12), we produce the inequalities

λmin 6 µ̂
(n)
1 6

〈Ψn|FΨn〉
‖Ψn‖2

. (7.15)

Due to the convergence of the series (7.8) we have

lim
n→∞

‖Ψn‖ = ‖Ψ‖. (7.16)

Now, applying (7.6) and (7.16) to (7.15), we derive the required result (7.7). The-
orem 7.2 is proved. �

Remark. Like in Theorems 6.3 and 6.4, the domain D(F ) of the operator F
in the above two Theorems 7.1 and 7.2 can be replaced by the domain Q(F ) of its
sesquilinear form 〈ϕ|Fψ〉.

Theorems 7.1 and 7.2 constitute a base for the Rayleigh-Ritz method (see [17]).
Its application to the experimental confirmation of the Lamb shift [18] is described
in [16] (see § 3 of Chapter XIII therein). See also [19–26].

8. Minimum principle.

Note that the minimax principle for µ1(F ) expressed by the formulas (6.3) and
(6.5) looks different from that of (6.1) and (6.4). In this reduced form it can be
called the minimum principle. A similar minimum principle can be formulated for
other µn(F ) as well. It is expressed by the following theorem.

Theorem 8.1. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H that has the discrete spectrum with at least n eigenvalues

λmin = λ1 6 . . . 6 λn−1 6 λn. (8.1)

Let Ψ1, . . . , Ψn−1 be linearly independent eigenvectors associated with n−1 smallest

eigenvalues λ1 6 . . . 6 λn−1 in (8.1). Them λn = µn(F ) is given by the formula

λn = inf
ψ∈D(F ), ‖ψ‖=1
ψ⊥Ψ1 , ... , ψ⊥Ψn−1

〈ψ|Fψ〉. (8.2)

Remark. Like in Theorems 6.3 and 6.4, the domain D(F ) of the operator F in
Theorems 8.1 can be replaced by the domain Q(F ) of its sesquilinear form 〈ϕ|Fψ〉.

The minimum principle similar to Theorem 8.1 for symmetric operators in finite-
dimensional Euclidean spaces can be found in [27]. For the Laplace operator it is
formulated in [28].

Proof of Theorem 8.1. Since the eigenvectors Ψ1, . . . , Ψn−1 are fixed, let’s consider
the orthogonal complement of these vectors in H:

H̃ = {ψ ∈ H : ψ ⊥ Ψ1, . . . , ψ ⊥ Ψn−1}. (8.3)
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The orthogonal complement (8.3) is a topologically closed linear subspace of the
Hilbert space H. It can be treated as a separate Hilbert space with the induced
sesquilinear form and norm. The restriction

F̃ = F
H̃

(8.4)

of the operator F to H̃ is an operator in H̃ with the domainD(F̃ ) = D(F )∩H̃ . The

operator (8.4) is a lower semi-definite self-adjoint operator in H̃ with the discrete
spectrum that has at least one eigenvalue

λ̃min = λ̃1 = λn. (8.5)

Applying Theorem 6.2 to the operator (8.4) and taking into account (8.5), we get

λn = inf
ψ∈D̃(F̃ ), ‖ψ‖=1

〈ψ|F̃ψ〉 = inf
ψ∈D(F ), ‖ψ‖=1
ψ⊥Ψ1 , ... , ψ⊥Ψn−1

〈ψ|Fψ〉. (8.6)

Comparing (8.6) with (8.2), we see that Theorem 8.1 is proved. �

9. Approximation of several eigenvalues at once

Theorem 9.1. Let F be a lower semi-definite self-adjoint operator with the domain

D(F ) in a Hilbert space H. Assume that the discrete spectrum of the operator F is

not empty and has at least m eigenvalues

λmin = λ1 6 . . .6 λm. (9.1)

Let Ψ1, . . . , Ψm be linearly independent eigenvectors associated with m smallest

eigenvalues λ1 6 . . . 6 λm in (9.1) each of which is expanded in some orthonormal

basis {hi}i=1, ... ,∞ of the Hilbert space H:

Ψk = lim
n→∞

Ψkn, where Ψkn =

n∑

i=1

ψik hi and k = 1, . . . ,m. (9.2)

Assume that hi ∈ D(F ) for all i = 1, . . . , ∞ and assume that

∃ lim
n→∞

〈Ψkn|FΨqn〉 = 〈Ψk|FΨq〉 for 1 6 k, q 6 m. (9.3)

Under these assumptions we have the equalities

λk = lim
n→∞

µ̂
(n)
k for k = 1, . . . ,m, (9.4)

where µ̂
(n)
1 6 . . . 6 µ̂

(n)
m are the first m smallest eigenvalues of the Hermitian n×n

matrix Φ(n) with the elements Φij = 〈hi|Fhj〉.
The equalities (9.2) in Theorem 9.1 express the convergence of the series

Ψk =

∞∑

i=1

ψik hi for k = 1, . . . ,m (9.5)
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with respect to the norm of the Hilbert space H. The coefficients ψik in (9.2) and
(9.5) are the coordinates of the vectors Ψk in the basis {hi}i=1, ... ,∞. They are
designated according to Einstein’s tensorial notation (see (1.7), (7.8), and § 20 of
Chapter I in [3]), i. e. using the upper index i.

The matrix Φ(n) in Theorem 9.1 is the same as in Theorem 7.2. It is associated
with the subspace Vn in (7.9) and with the composite operator FVn

in (7.10).
Apart from Φ(n) there are several other matrices that are implicitly present in
Theorem 9.1. The first of them is the diagonal matrix

F =

∥
∥
∥
∥
∥
∥

λ1 . . . 0
...

. . .
...

0 . . . λm

∥
∥
∥
∥
∥
∥

. (9.6)

The matrix (9.6) is associated with the subspace

V = Span(Ψ1, . . . ,Ψm). (9.7)

Since the eigenvectors Ψ1, . . . , Ψm are linearly independent, the dimension of the
subspace (9.7) ism, i. e. dimV = m. If we denote trough P the orthogonal projector
onto the subspace (9.7) and define the composite operator

FV = P ◦F ◦P
V
, (9.8)

then F is the matrix of the operator (9.8) in the basis Ψ1, . . . , Ψm of the subspace
V. This fact is expressed by the relationships

FVΨk = FΨk = λkΨk =
m∑

q=1

Fq
k Ψq, (9.9)

where Fq
k are the components of the matrix (9.6).

Along with (9.6), we have two Hermitian matrices H and G associated with the
subspace (9.7) and the basis Ψ1, . . . , Ψm in it. Their components are

Hsk = 〈Ψs|FVΨk〉, gsq = 〈Ψs|Ψq〉. (9.10)

The matrix G with the components gsk in (9.10) is known as the Gram matrix of
the basis Ψ1, . . . , Ψm (see § 29 of Chapter I in [3]), while H is the matrix of the
sesquilinear form 〈ϕ|FVψ〉 in this basis. It is easy to derive that the matrices F ,
H, and G are related to each other as follows:

H = GF , F = G−1 H. (9.11)

The Gram matrix of a basis is always non-degenerate (see § 1 of Chapter V in [27]),
which agrees with (9.11).

The vectors Ψ1n, . . . , Ψmn in (9.2) are similar to Ψ1, . . . , Ψm. We shall call
them the approximate eigenvectors. Their span

Vn = Span(Ψ1n, . . . ,Ψmn) (9.12)
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is a subspace of H. We denote through Pn the orthogonal projector onto the
subspace (9.12) and consider the composite operator

FVn
= Pn ◦F ◦ Pn

Vn

. (9.13)

Then we define two Hermitian matrices H(n) and G(n) similar to the matrices H
and G in (9.10). Their components are

H[n]sk = 〈Ψsn|FVn
Ψkn〉, g[n]sq = 〈Ψsn|Ψqn〉. (9.14)

Applying (9.2) to (9.14) and taking into account (9.10), we derive

lim
n→∞

g[n]sq = gsq, lim
n→∞

detG(n) = detG. (9.15)

Since detG 6= 0, the second equality (9.15) means that the Gram matrix G(n) is
non-degenerate for sufficiently large n. Hence in this case the vectors Ψ1n, . . . , Ψmn

are linearly independent and constitute a basis of the subspace (9.12). The m×m

matrix F (n) with the components Fq
k [n] is defined through the formula

FVn
Ψkn =

m∑

q=1

Fq
k [n] Ψqn . (9.16)

Due to (9.16) the matrix F (n) is the matrix of the operator (9.13) in the basis
Ψ1n, . . . , Ψmn . The formula (9.16) is similar to (9.9). However, unlike the matrix
F in (9.6), typically the matrix F (n) is non-diagonal.

Applying the formula (9.16) to (9.14) one can easily derive the following rela-
tionships for the matrices F (n), H(n), and G(n):

H(n) = G(n) F (n), F (n) = (G(n))−1 H(n). (9.17)

The relationships (9.17) are analogous to the relationships (9.11).
Now let’s return to the relationships (9.10) and (9.14). The vectors Ψ1, . . . , Ψm

belong to the subspace (9.7). Therefore

PΨk = Ψk for all k = 1, . . . , m. (9.18)

Similarly, the vectors Ψ1n, . . . , Ψmn belong to the subspace (9.12). Therefore

PnΨkn = Ψkn for all k = 1, . . . , m. (9.19)

Applying (9.8) and (9.18) to (9.10), we get

Hsk = 〈Ψs|(P ◦F ◦P)Ψk〉 = 〈PΨs|FPΨk〉 = 〈Ψs|FΨk〉. (9.20)

Similarly, applying (9.13) and (9.19) to (9.14), we obtain

H[n]sk = 〈Ψsn|(Pn ◦F ◦ Pn)Ψkn〉 = 〈PnΨsn|FPnΨkn〉 = 〈Ψsn|FΨkn〉. (9.21)
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Let’s compare the right hand sides of the formulas (9.20) and (9.21) with (9.3). As
a result we derive the following relationships:

lim
n→∞

H[n]sk = Hsk, lim
n→∞

H(n) = H. (9.22)

Combining (9.22) with (9.15) and taking into account (9.17) with (9.11), we get

lim
n→∞

F [n]qk = Fq
k , lim

n→∞
F (n) = F . (9.23)

For sufficiently large n the operator (9.13) is lower semi-definite self-adjoint op-
erator in the m-dimensional space (9.12). It has exactly m real eigenvalues

λ̂
(n)
1 6 . . . 6 λ̂(n)

m . (9.24)

They coincide with the eigenvalues of the matrix F (n) in (9.23) since F (n) is the
matrix of the operator (9.13) in the basis Ψ1n, . . . , Ψmn. The matrix F is given
explicitly in (9.6). Its eigenvalues

λ1 6 . . . 6 λm. (9.25)

coincide with the eigenvalues of the operator (9.8) since F is the matrix of this
operator in the basis Ψ1, . . . , Ψm. As we remember, they do coincide with the
eigenvalues (9.1) of the operator F in Theorem 9.1.

It is well-known that eigenvalues of a matrix are continuous functions of its
components (see [29]). Therefore for the eigenvalues (9.24) and (9.25) from (9.23)
we derive the following relationships:

lim
n→∞

λ̂
(n)
k = λk for k = 1, . . . , m. (9.26)

Proof of Theorem 9.1. The relationships (9.26) is a very important result. However,
they do not prove Theorem 9.1 yet. In Theorem 9.1, i. e. in in the formula (9.4),
we deal with the much larger n × n Hermitian matrix Φ(n), where n → ∞. The
initial part of its eigenvalues is denoted trough

µ̂
(n)
1 6 . . . 6 µ̂(n)

m (9.27)

in (9.4). So the numbers (9.27) are different from (9.24).

Let’s recall that the matrix Φ(n) is associated with the subspace (7.9) and the
operator (7.10) in it. Theorem 7.1 applied to the subspace (7.9) yields

λk = µk(F ) 6 µ̂
(n)
k , where k = 1, . . . , m. (9.28)

Looking at (9.2), we see that the vectors Ψ1n, . . . , Ψmn belong to the subspace
(7.9). Therefore the subspace (9.12) is enclosed in the subspace (7.9):

Vn ⊂ Vn. (9.29)

Applying (9.29) to the orthogonal projectors Pn and Pn, we derive

Pn ◦Pn = Pn ◦Pn = Pn. (9.30)
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Due to (9.30) the operators (7.10) and (9.13) are related as follows:

FVn
= Pn ◦FVn

◦ Pn
Vn

. (9.31)

The subspace Vn in (9.29) is equipped with the sesquilinear scalar product 〈ϕ|ψ〉
inherited from the Hilbert space H. Hence Vn can be treated as a finite-dimensional
Hilbert space1 with the lower semi-definite self-adjoint operator FVn

in it. Applying
Theorem 7.1 to the operator FVn

and the subspace Vn in (9.29) and taking into
account (9.31), we derive the following inequalities:

µ̂
(n)
k 6 λ̂

(n)
k , where k = 1, . . . , m. (9.32)

The inequalities (9.28) and (9.32) combined with (9.26) yield the required result

lim
n→∞

µ̂
(n)
k = λk for k = 1, . . . , m. (9.33)

Since (9.33) coincides with (9.4), the proof of Theorem 9.1 is over. �

Remark. Theorem 9.1 generalizes Theorem 7.2. Like in Theorems 6.3 and 6.4,
the domain D(F ) of the operator F in Theorem 9.1 can be replaced by the domain
Q(F ) of its sesquilinear form 〈ϕ|Fψ〉.

10. Triangulated domains and polylinear splines.

Definition 10.1. A planar polygonal domain is called triangulated if it is presented
as a union of triangles so that any two triangles, if they do intersect, have a common
side or a common vertex.

An example of planar triangulated domain is shown in Fig. 10.1. Three-dimensio-
nal analogs of triangles are tetrahedrons.
Therefore we have the following defini-
tions.

Definition 10.2. A polyhedral domain
in R3 is called triangulated if it is pre-
sented as a union of a finite number of
tetrahedrons so that any two tetrahed-
rons, if their intersection is not empty,
have a common face, a common edge, or
a common vertex.

Definition 10.3. Let G be a triangu-
lated polyhedral domain in R3. The ma-

ximal size (edge length) of tetrahedrons constituting the triangulation of G is called
the granularity of G. We denote this numeric parameter through gran(G).

In some cases the term “mesh” is used instead of granularity, e. g. in partitioning
intervals when defining the Riemann integral (see [30]). We say that the trian-
gulation of a domain G is refined if it is replaced by a more dense network of
tetrahedrons so that the total granularity gran(G) of the domain decreases.

1 Finite-dimensional Hilbert spaces are called Hermitian spaces.
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Definition 10.4. Let G be a triangulated polyhedral domain in R3. A complex-
valued function f(r) in G is called a linear spline function if it is continuous in
G and if it is a linear function within each particular tetrahedron of the given
triangulation of G.

Linear spline functions are simplest ones. Mote complicated spline functions are
considered in [31]. A linear spline function f can take arbitrary values at nodes of
the triangulation network of its domain G. Once these values are given, its values
at other points of G are uniquely defined.

Definition 10.5. A spline function f that vanishes at the boundary of its domain
G and is extended with zero values to the exterior of G is called a spline function
with the compact support G.

Complex-valued linear spline function with the compact support G are uniquely
defined by its values at interior nodes of their triangulation networks, i. e. those
nodes which are in the interior of G. Therefore they constitute a finite-dimensional
complex linear space which is denoted through LSpline(C, G):

dim(LSpline(C, G)) < ∞.

Remark. Linear spline function with compact support are square integrable
in R3. They are differentiable in the sense of distributions (see [8]) and their
first order partial derivatives are also square integrable in R3. These derivatives
are discontinuous step functions with compact support that take constant values
within the interior of tetrahedrons of their triangulation.

Note that wave functions associated with the Schrödinger operator (2.3) are
multivariate functions with N arguments each representing a point in R3:

Ψ = Ψ(r1, . . . , rN). (10.1)

Unlike (2.7), in (10.1) we did not write the dependence of Ψ on the radius-vectors
of nuclei R1, . . . , Rn since they are treated as constant parameters in the Born-
Oppenheimer approximation. Spline versions of the functions (10.1) should also be
multivariate. Therefore we introduce the concept of polylinear splines. Let

G× . . .×G
︸ ︷︷ ︸

N

⊂ R3N (10.2)

be the Cartesian product of N copies of a triangulated domain G ⊂ R3. Then we
have the following definitions.

Definition 10.6. A multivariate complex-valued function f(r1, . . . , rN) with the
triangulated domain (10.2) in R3N is called a polylinear spline function if it is a
linear spline function in each of its arguments.

Definition 10.7. A multivariate spline function f(r1, . . . , rN) that vanishes at the
boundary of its domain G× . . .×G and is extended with zero values to the exterior
of G× . . .×G is called a spline function with the compact support G× . . .×G.

Complex-valued polylinear spline function with the compact support (10.2) con-
stitute a finite-dimensional complex linear space. This complex linear space is
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denoted through PLSpline(C, GN). Its dimension is given by the formula

dim(PLSpline(C, GN )) = dim(LSpline(C, G))N . (10.3)

Remark. Polylinear spline function with compact support are square integrable
in R3N . Their first order partial derivatives are step functions which are also square
integrable in R3N . Therefore the formulas (4.4) and (4.6) are applicable to them.
More formally, we have the following theorem.

Theorem 10.1. Any polylinear spline function with compact support in R3N belong

to the domain Q(Helec) of the sesquilinear form 〈Φ|HelecΨ〉 associated with the

Schrödinger operator (2.3).

Proof. The proof is based on Theorem 5.2. Let Ψ be a polylinear spline function
with the compact support G× . . .×G in R3N . Then

sup
R3N

|Ψ| < ∞, sup
R3N

|∇ri
Ψ| < ∞ (10.4)

for all i = 1, . . . , N . Since G× . . .×G is a compact subset of R3N from (10.4) we
derive that Ψ and all its first order derivatives are square integrable:

Ψ ∈ L2(C,R
3N), ∇ri

Ψ ∈ L2(C,R
3N) (10.5)

for all i = 1, . . . , N . The relationships (10.5) mean that Ψ belongs to the Sobolev
space W 1

2 (C,R3N ) = H1(C,R3N ). The space H1(C,R3N ) is a Hilbert space with
its own norm and its own sesquilinear scalar product (see [32–34]).

In order to approximate the function Ψ in the sense of Theorem 5.2 we should
remember the Meyers-Serrin theorem (see [35]). In our case it says that each func-
tion Ψ ∈W 1

2 (C,R3N ) can be approximated by smooth functions in the norm of the
space W 1

2 (C,R3N ). When proving the Meyers-Serrin theorem the approximating
function is usually constructed with the use of the following integral:

Ψδ(r) =

∫

Jδ(r− r̃) Ψ(r̃) d 3Nr̃. (10.6)

Through Jδ in (10.6) we denote the function

Jδ(r) =
J(r/δ)

δ3N
, (10.7)

where J(r) is some fixed positive smooth function whose support is enclosed in the
unit ball centered at the origin and such that

∫

J(r) d 3Nr = 1. (10.8)

It is well-known that the function (10.7) obeying the condition (10.8) converges to
Dirack’s delta-function as δ → 0 in the sense of distributions (see [8]). As for the
function (10.6), it converges to Ψ in W 1

2 (C,R3N ), i. e.

‖Ψδ − Ψ‖ → 0 ‖∇ri
Ψδ −∇ri

Ψ‖ → 0 (10.9)
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in the sense of norms in L2(C,R
3N) as δ → 0 for all i = 1, . . . , N . Moreover, using

(10.4), from (10.6), (10.7), and (10.8) one can easily derive

sup
R3N

|Ψδ| 6 sup
R3N

|Ψ|, sup
R3N

|∇ri
Ψδ | 6 sup

R3N

|∇ri
Ψ|. (10.10)

When deriving the second inequality (10.10) the integration by parts is applied.
In the next step we use (10.4), (10.10), and (10.9) in order to derive that

∃ lim
δ→0

〈Ψδ |HelecΨδ〉 = 〈Ψ|HelecΨ〉 6= ∞. (10.11)

The left hand side of (10.11) can be calculated using either (4.3) or (4.6). However
the right hand side of (10.11) can be calculated using the formula (4.6) only since
HelecΨ is defined as a distribution (see [8]). It is not a square integrable function
from the space L2(C,R

3N). Let’s set

δ = δ(n) =
1

n
, where n ∈ N and n→ ∞.

Then Ψn = Ψδ(n) is a sequence of smooth functions with compact support such
that ‖Ψn − Ψ‖ → 0 as n→ ∞ (see (10.9)). From (10.11) we derive

∃ lim
n→∞

〈Ψn|HelecΨn〉 = 〈Ψ|HelecΨ〉 6= ∞. (10.12)

It’s elementary calculus that a numeric sequence converging to a finite limit is a
Cauchy sequence. Therefore from (10.12) we derive

〈Ψn − Ψm|Helec(Ψn − Ψm)〉 → 0 as n,m → ∞.

Now both premises of Theorem 5.2 are established. Applying this theorem, we
derive the required inclusion Ψ ∈ Q(Helec). Thus Theorem 10.1 is proved �

Theorem 10.2. Polylinear spline functions with compact support are dense in the

domain Q(Helec) of the sesquilinear form 〈Φ|HelecΨ〉 associated with the Schrödin-

ger operator (2.3) so that for any two functions Φ,Ψ ∈ Q(Helec) there are two

sequences of polylinear spline function with compact support in R3N such that

‖Φn − Φ‖ → 0, ‖Ψn − Ψ‖ → 0 and 〈Φn|HelecΨn〉 → 〈Φ|HelecΨ〉 as n → ∞.

Remark. Theorems 5.2 and 5.3 (due to the formula (5.6)) mean that it is
sufficient to prove Theorem 10.2 for two arbitrary smooth functions Φ and Ψ with
compact support.

Theorem 10.2 extends the previous theorem. However, the proof of Theorem 10.2
is absolutely different from the proof of Theorem 10.1. Its idea is illustrated in
Fig. 10.2 below in one-dimensional case. In Fig. 10.2 we see the graphs of two
functions f(x) and ϕ(x). Both of them are functions with compact support. Their
support is the segment [a, b] of the real line R. The function f(x) is smooth, while
the second function ϕ(x) is a linear spline function for a certain partition of the
segment [a, b]. These functions share their values at the nodes of this partition.
Therefore we can say that the second function is a trapezoidal approximation for
the first one (see [36]).



TETRAHEDRAL DISCRETIZATIONS OF THE SCHRÖDINGER OPERATOR . . . 23

Looking at Fig. 10.2, one can easily prove that if we gradually refine the partition
of the segment [a, b] so that its granularity will tend to zero, we shall get a sequence
ϕn(x) of trapezoidal approximations of f(x) such that

‖ϕn − f‖ → 0 and ‖∇xϕn −∇xf‖ → 0 as n→ ∞ (10.13)

with respect to L2(C,R) norm. Apart from (10.13) the same sequence ϕn(x) will
provide the C∞

0 approximation for f(x):

sup
R

|ϕn − f | → 0 as n→ ∞.

Definition 10.8. Let Ψ be a smooth function with compact support in R3N . A
polylinear spline function Φ with the compact support G × . . . × G is called a
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trapezoidal approximation of Ψ if supp(Ψ) ⊆ G × . . . × G and if Ψ and Φ share
their values at the nodes of the triangulation grid induced from G to G× . . .× G.

Trapezoidal approximations can be used in two-dimensional and in higher di-
mensional cases. However, unlike the one-dimensional case, here there are some
obstacles that should be avoided. These obstacles are explained in Fig. 10.3. As an
example we consider a function Ψ(x, y) whose graph in R3 has a spherical fragment.
The triangle ABC is in the plane perpendicular to the radial ray OR of the sphere.
Therefore the smaller the triangle ABC is, the better its plane approximates the
tangent plane of the sphere which is perpendicular to this ray.

The triangle DEF is different. It is in the plane passing through the center O of
the sphere. Therefore its plane never approximates any tangent plane of the sphere
even if the points D and F move toward the point E making the triangle smaller
and smaller.

Despite the crucial difference of two triangles ABC and DEF in Fig. 10.3, both
of them are produced by triples of points on the sphere and their projections onto
the xy-plane are regular triangles therein. They can become a part of some trian-
gulation in the xy-plane.

Conclusion. Dealing with trapezoidal approximations by polylinear spline func-
tions in R3N , in order to avoid the obstacles observed we should control not only
the granularity of the tetrahedral networks, but also the quality of tetrahedrons.

The quality problems for triangular networks are considered in [37]. Taking into
account the results of [37], below in this paper we elaborate some quality criteria
for tetrahedral networks.

Definition 10.9. Let f(r) be a smooth function with compact support in R3.
A linear spline function ϕ(r) with the compact support G is called a trapezoidal
approximation of f(r) if supp(f) ⊆ G and if f(r) and ϕ(r) share their values at the
nodes of the triangulation grid in G.

Definition 10.9 is a reduction of Definition 10.8 from R3N back to R3.

Theorem 10.3. Let f(r) be a smooth function with compact support in R3 and let

ϕ(r) be a trapezoidal approximation of f(r) with the support G. Then

sup
r∈R3

|f − ϕ| 6 C gran(G), where C = 2 sup
r∈R3

|∇rf |. (10.14)

Proof. Note that the inequality (10.14) depends only on the granularity of the
triangulation in the domain G. No auxiliary quality parameters of tetrahedrons
are required yet in Theorem 10.3. The main tool for proving this theorem is the
Taylor’s formula (see [38]).

Since supp(f) ⊆ G, in the exterior of G both functions f and ϕ do vanish.
Therefore it is sufficient to prove the inequality (10.14) in G. Let T be one of the
tetrahedrons of the triangulation in G and let r0, r1, r2, r3 be radius-vectors of its
vertices. Since ϕ is a linear function in T , for r ∈ T we have

|ϕ(r) − ϕ(r0)| 6 max
i=1,2,3

|ϕ(ri) − ϕ(r0)| (10.15)

The function ϕ is trapezoidal approximation of f . Therefore the values of these
two functions f and ϕ at the vertices of the tetrahedron T do coincide:

ϕ(ri) = f(ri) for i = 0, 1, 2, 3. (10.16)
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Applying (10.16) to (10.15), we derive the following inequality:

|ϕ(r) − f(r0)| 6 max
i=1,2,3

|f(ri) − f(r0)|. (10.17)

Now let’s proceed to the function f(r). In this case we apply the Taylor’s formula
with the remainder term in the Lagrange form:

f(r) = f(r0) + (∇rf(ξ), r− r0). (10.18)

Through (•, •) in the second term of the right hand side of (10.18) we denote the
regular scalar product (dot product) in R3.

Typically the radius-vector ξ corresponds to some point on the segment [r0, r].
Since we deal with the complex-valued function, generally speaking, ξ stands for
two different points for the real and the imaginary parts of f(r), both belonging to
the segment [r0, r] ⊂ T . From (10.18) we derive the estimate

|f(r) − f(r0)| 6

(

sup
r∈R3

|∇rf |
)

|r− r0|. (10.19)

The radius-vectors ri in (10.17) are special instances of the general radius-vector r
in (10.19). Applying (10.19) to them, we derive

|f(ri) − f(r0)| 6

(

sup
r∈R3

|∇rf |
)

|ri − r0| for i = 0, 1, 2, 3. (10.20)

For the deflection value |f(r) − ϕ(r)| we have the estimate

|f(r) − ϕ(r)| 6 |f(r) − f(r0)| + |ϕ(r) − f(r0)|. (10.21)

Since the radius-vectors r, r1, r2, r3, and r0 correspond to the points within the
tetrahedron T , their mutual distances |r − r0| and |ri − r0| are estimated by the
granularity of the triangulation in G:

|r− r0| 6 gran(G), |ri − r0| 6 gran(G) for i = 0, 1, 2, 3. (10.22)

The rest is to apply (10.19) and (10.17) to (10.21), then take into account (10.20)
and (10.22) and derive the required inequality (10.14). Theorem 10.3 is proved. �

The next theorem generalizes Theorem 10.3 from R3 to R3N . Its proof is more
technical, but is based on the same ideas. It is left for forthcoming papers.

Theorem 10.4. Let Ψ(r1, . . . , rN ) be a smooth function with compact support

in R3N and let Φ(r1, . . . , rN ) be a trapezoidal polylinear spline approximation of

Ψ(r1, . . . , rN ) with the support G× . . .×G. Then there is a constant C depending

on the function Ψ(r1, . . . , rN ) such that

sup
R3N

|Ψ − Φ| 6 C gran(G). (10.23)

Let’s return again from R3N to R3. Let f(r) be a smooth function with com-
pact support in R3 and let ϕ(r) be its linear trapezoidal approximation with the
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compact support G (see Definition 10.9). The gradient of ϕ(r) is a step func-
tion which is constant within each tetrahedron of the triangulation in G. Let’s

choose one of such tetrahedrons and de-
note it through T . The radius vectors of
its vertices are denoted through r1, r2, r3,
and r0 in Fig. 10.4. Then

e1 = r1 − r0,

e2 = r2 − r0,

e3 = r3 − r0.

(10.24)

Three vectors e1, e2, e3 defined in (10.24)
constitute a basis in R3. Typically it is a
skew-angular basis. The angles between
vectors of this basis are shown by small
arcs in Fig. 10.4. Let’s denote them α1,

α2, α3 in the following way: α1 is the angle between e2 and e3, α2 is the angle
between e3 and e1, α3 is the angle between e1 and e2:

α1 = ê2, e3, α2 = ê3, e1, α3 = ê1, e2. (10.25)

The gradients ∇rf and ∇rϕ can be expanded in the basis e1, e2, e3:

∇rf(r0) = a = a1 e1 + a2 e2 + a3 e3,

∇rϕ = b = b1 e1 + b2 e2 + b3 e3.
(10.26)

The quantities a1, a2, a3 and b1, b2, b3 in (10.26) are their coordinates. The func-
tion ϕ(r) is a linear function within the tetrahedron T in Fig. 10.4. Therefore its
gradient b = ∇rϕ is a constant vector. Taylor’s formula for this function is written
without any remainder term:

ϕ(r) = ϕ(r0) + (b, r− r0). (10.27)

Applying (10.16) and (10.24) to (10.27), we derive the following equations:

(b, e1) = f(r1) − f(r0),

(b, e2) = f(r2) − f(r0),

(b, e3) = f(r3) − f(r0).

(10.28)

The equations (10.28) are used in order to express the vector b through the values
of f(r) at the vertices of the tetrahedron T . In (10.27) and in (10.28), like in
(10.18), we use (•, •) to denote the regular scalar product in R3 (the dot product).

The function f(r) is not linear in T . Therefore Taylor’s formulas for f(r) and
∇rf(r) are written with remainder terms:

f(r) = f(r0) + (∇rf(r0), r− r0) + h1(r), (10.29)

∇rf(r) = ∇rf(r0) + h0(r). (10.30)
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Both remainder terms in (10.29) and (10.30) are estimated through second order
partial derivatives of f(r) using Legendre presentation for them (see [38]):

|h1(r)| 6
9

2
C |r− r0|2, where C = max

i,j=1,2,3
sup
r∈R3

∣
∣
∣
∂2f(r)

∂xi∂xj

∣
∣
∣, (10.31)

|h0(r)| 6 9C |r− r0|, where C = max
i,j=1,2,3

sup
r∈R3

∣
∣
∣
∂2f(r)

∂xi∂xj

∣
∣
∣. (10.32)

The difference of gradients in T is calculated using (10.30) and (10.26) as follows

∇rf(r) −∇rϕ(r) = a− b + h0(r). (10.33)

The formula (10.33) provides an inequality for the deflection |∇rf −∇rϕ|:

|∇rf −∇rϕ| 6 |a− b|+ |h0(r)|. (10.34)

For |h0(r)| in (10.34) we already have the estimate (10.32). The main issue now is
to find a similar estimate for |a− b|.

If we recall that ϕ(r0) = f(r0) (see (10.16)), then substituting r = r1, r = r2,
and r = r3 into (10.29) and taking into account (10.26) and (10.24), we derive

(a, e1) = f(r1) − f(r0) − h1(r1),

(a, e2) = f(r2) − f(r0) − h1(r2),

(a, e3) = f(r3) − f(r0) − h1(r3).

(10.35)

These are the equations for the vector a. Note that the equations (10.35) are very
similar to the equations (10.28). Let’s denote

c = b− a (10.36)

Then from (10.35) and (10.28) we derive the following equations for c:

(c, e1) = h1(r1),

(c, e2) = h1(r2),

(c, e3) = h1(r3).

(10.37)

Note that a, b, and c in (10.36) are constant vectors and (10.37) are linear
equations for them. Using (10.26) we derive the expansion for c:

c = c1 e1 + c2 e2 + c3 e3, (10.38)

where c1 = b1 − a1, c2 = b2 − a2, and c3 = b3 − a3. Let’s substitute (10.38) into
(10.37). As a result we derive linear equations for the coordinates c1, c2, c3 of the
vector c in the expansion (10.38):

g11 c
1 + g12 c

2 + g13 c
3 = h1(r1),

g21 c
1 + g22 c

2 + g23 c
3 = h1(r2),

g31 c
1 + g32 c

2 + g33 c
3 = h1(r3).

(10.39)



28 RUSLAN SHARIPOV

The coefficients gij of the linear equations (10.39) are given by the formulas

gij = (ei, ej) = (ej , ei). (10.40)

The symmetric 3 × 3 square matrix G with the components gij given by scalar
products (10.40) is known as the Gram matrix of the basis (10.24) (see § 29 of
Chapter I in [3]). The determinant of G is given by the formula

detG = V 2, (10.41)

where V is the volume of the tetrahedron T in Fig. 10.4 (see § 51 and § 56 of
Chapter I in [3]). Due to (10.41) the determinant detG is positive and G is a
non-degenerate matrix. Hence the system of linear equations (10.39) has a unique
solution given by the formulas

c1 = g11 h1(r1) + g12 h1(r2) + g13 h1(r3),

c2 = g21 h1(r1) + g22 h1(r2) + g23 h1(r3),

c2 = g31 h1(r1) + g32 h1(r2) + g33 h1(r3).

(10.42)

The coefficients g ij with upper indices in (10.42) are components of the inverse
matrix G−1. Using (10.42), one can calculate the length of the vector c:

|c| =
√

(c, c) =

√
√
√
√

3∑

i=1

3∑

j=1

g ij h1(ri)h1(rj) (10.43)

Since |c| = |a−b| is used in the estimate (10.34), we shall carefully examine the
formula (10.43). Note that the components (10.40) of the Gram matrix G can be
expressed through the angles (10.25). As a result we get

G =

∥
∥
∥
∥
∥
∥
∥

ρ2
1 ρ1 ρ2 cosα3 ρ1 ρ3 cosα2

ρ2 ρ1 cosα3 ρ2
2 ρ2 ρ3 cosα1

ρ3 ρ1 cosα2 ρ3 ρ2 cosα1 ρ2
3

∥
∥
∥
∥
∥
∥
∥

, (10.44)

where ρ1 = |e1|, ρ2 = |e2|, ρ3 = |e3|. Actually the matrix (10.44) is the following
product of three symmrytic 3 × 3 matrices:

G = RG̃R, (10.45)
where

R =

∥
∥
∥
∥
∥
∥
∥

ρ1 0 0

0 ρ2 0

0 0 ρ3

∥
∥
∥
∥
∥
∥
∥

, G̃ =

∥
∥
∥
∥
∥
∥
∥

1 cosα3 cosα2

cosα3 1 cosα1

cosα2 cosα1 1

∥
∥
∥
∥
∥
∥
∥

. (10.46)

The matrix R in (10.46) is responsible for the lengths of the vectors e1, e2, e3,

while G̃ is responsible for the angles between them. From detG > 0 we derive

det G̃ > 0. (10.47)
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The inequality (10.47) is immediate from (10.41) and (10.45).
In order to proceed with the formula (10.43) we need some auxiliary notations.

Let’s denote through g̃ij the components of the matrix G̃ and through g̃ ij the

components of the inverse matrix G̃−1. Additionally, let’s denote

h1 =
h1(r1)

ρ1
, h2 =

h1(r2)

ρ2
, h3 =

h1(r3)

ρ3
. (10.48)

Using (10.48), the formula (10.43) is transformed as follows:

|c| =

√
√
√
√

3∑

i=1

3∑

j=1

g̃ ij hi hj . (10.49)

Let’s apply the estimate (10.31) to the quantities (10.48) and take into account
that |ri − r0| = ρi for i = 1, 2, 3. As a result we get

|hi| 6
9C ρi

2
, where i = 1, 2, 3. (10.50)

In order to get upper estimates for |c| in (10.49) we need upper estimates for |g̃ ij|.
Looking at (10.46), one can see that

|g̃ij| 6 1. (10.51)

The components of the inverse matrix G̃−1 can be calculated through g̃ij using

minors and cofactors (algebraic complements) of the matrix G̃ (see [39]). This
yields the following estimates for g̃ ij in (10.49) derived from (10.51):

|g̃ ij| 6
4

det G̃
. (10.52)

The determinant det G̃ in (10.52) can be calculated explicitly:

det G̃ = 1 + 2 cosα1 cosα2 cosα3 −
− cos2α1 − cos2α3 − cos2α3.

(10.53)

The inequality (10.47) says that det G̃ in (10.53) is always positive. However it can
be very close to zero unless otherwise is explicitly stated.

Definition 10.10. Any tetrahedron T with one marked vertex r0 is characterized
by the following numeric parameter associated with this vertex:

AQual(T, r0) = 1 + 2 cosα1 cosα2 cosα3 −
− cos2α1 − cos2α3 − cos2α3.

(10.54)

Here α1, α2, α3 are three planar angles between three edges of T connected to the
vertex r0. The parameter (10.54) is called the angular quality of the tetrahedron
T at its vertex r0.

We can extend the concept of angular quality to a tetrahedron as whole and
further to tetrahedral triangulations of domains in R3.
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Definition 10.11. The angular quality of a tetrahedron T as whole is the maxi-
mum of angular qualities at all of its four vertices:

AQual(T ) = max
i=0,1,2,3

AQual(T, ri). (10.55)

Definition 10.12. The angular quality of a tetrahedral triangulation in a tri-
angulated domain G ⊂ R3 is the minimum of angular qualities of tetrahedrons
composing this tetrahedral triangulation:

AQual(G) = min
T⊂G

AQual(T ). (10.56)

Let’s apply the estimates (10.50) and (10.52) to (10.49) and take into account
Definition 10.10. As a result we get

|c| 6 9C

√
√
√
√

3∑

i=1

3∑

j=1

ρi ρj
AQual(T, r0)

. (10.57)

When passing from a single tetrahedron to the tetrahedral network in G we use
(10.55) and (10.56) and we estimate ρi and ρj through the granularity of the net-
work. Then the formula (10.57) reduces to

|c| 6
27C gran(G)
√

AQual(G)
. (10.58)

Since |a − b| = |c| in (10.34), we can apply (10.58) and (10.32) to (10.34). As a
result we get the following theorem.

Theorem 10.5. Let f(r) be a smooth function with compact support in R3 and let

ϕ(r) be a trapezoidal approximation of f(r) with the support G. Then

sup
r∈R3

|∇rf −∇rϕ| 6 9C

(

1 +
3

√

AQual(G)

)

gran(G), (10.59)

where

C = max
i,j=1,2,3

sup
r∈R3

∣
∣
∣
∂2f(r)

∂xi∂xj

∣
∣
∣. (10.60)

Theorem 10.6. Let Ψ(r1, . . . , rN) be a smooth function with compact support

in R3N and let Φ(r1, . . . , rN) be a trapezoidal polylinear spline approximation of

Ψ(r1, . . . , rN) with the support G× . . .× G. Then there are two constants C1 and

C2 depending on the function Ψ(r1, . . . , rN) such that

max
i=1,... ,N

sup
R3N

|∇ri
Ψ −∇ri

Φ| 6

(

C1 +
C2

√

AQual(G)

)

gran(G). (10.61)

Theorem 10.6 and the formula (10.61) generalizes Theorem 10.5 and the formulas
(10.59) and (10.60). Its proof is more technical, but is based on the same ideas.



TETRAHEDRAL DISCRETIZATIONS OF THE SCHRÖDINGER OPERATOR . . . 31

Like the proof of Theorem 10.4, it is left for forthcoming papers. A demanding and
incredulous reader can take both of these two theorems for conjectures.

Proof of Theorem 10.2. As it was noted in Remark to this theorem, it is sufficient
to prove it for two smooth functions Ψ and Φ with compact support in R3N . Let’s
choose some triangulated domain G such that G× . . .×G comprises the supports
of both functions Ψ and Φ. Subdividing large tetrahedrons into smaller ones, we
can construct a sequence of triangulations of G with decreasing granularity:

gran(G) → 0.

Definition 10.13. A sequence of triangulations of a domain G is called a sequence
with nonvanishing quality if there is a constant ε > 0 such that AQual(G) > ε for
all triangulations in the sequence.

Sequences of triangulations with nonvanishing quality do exist and are easily
constructed since all similar tetrahedrons T (i. e. produced by scaling from each
other) have the same angular quality AQual(T ).

Assuming that we have constructed a sequence of triangulations of G with non-
vanishing quality and with the granularity gran(G) → 0, we build trapezoidal
polylinear spline approximations of the functions Ψ and Φ for them. As a result we
get two sequences of approximating functions Ψn and Φn. The inequality (10.23)
from Theorem 10.4 means that

sup
R3N

|Ψ − Ψn| → 0 and sup
R3N

|Φ − Φn| → 0 as n→ ∞. (10.62)

Similarly the inequality (10.61) from Theorem 10.6 yields

sup
R3N

|∇ri
Ψ −∇ri

Ψn| → 0 and sup
R3N

|∇ri
Φ −∇ri

Φn| → 0 as n → ∞ (10.63)

for all i = 1, . . . , N . The supports of all functions Ψn, Φn, Ψ, and Φn are enclosed
in the compact set G× . . .× G. Therefore from (10.62) and (10.63) we derive the
convergence in L2(C,R

3N) for our approximating sequences:

‖Ψ − Ψn‖ → 0 and ‖Φ − Φn‖ → 0 as n→ ∞,

‖∇ri
Ψ −∇ri

Ψn‖ → 0 and ‖∇ri
Φ −∇ri

Φn‖ → 0 as n → ∞ (10.64)

for all i = 1, . . . , N . Now, applying (10.62) and (10.64) to (4.4), we derive the
required convergence 〈Φn|HelecΨn〉 → 〈Φ|HelecΨ〉 as n → ∞. The proof of Theo-
rem 10.2 is over. �

11. Application to quantum chemistry.

Computing energy states of electrons in atoms, molecules, and ions and thus
finding configurations of their chemical bonds is one of the important problems in
quantum chemistry. Polylinear spline functions are applied to this problem through
a slightly modified version of Theorem 9.1. Let Ψ1, . . . , Ψm be linear independent
eigenfunctions of the Schrödinger operator (2.3) associated with its eigenvalues

Emin = E1 6 . . . 6 Em. (11.1)
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Actually we do not know Ψ1, . . . , Ψm. But we know that they belong to the
domain D(Helec) of the operator Helec. The domain D(Helec) is enclosed in the
domain Q(Helec) of the sesquilinear form (4.4). Hence, applying Theorem 10.2, we
conclude that the eigenfunctions Ψ1, . . . , Ψm can be approximated by polylinear
spline functions Ψkn in the sense of the relationships

Ψk = lim
n→∞

Ψkn and ∃ lim
n→∞

〈Ψkn|HelecΨqn〉 = 〈Ψk|HelecΨq〉, (11.2)

where 1 6 k, q 6 m. Without loss of generality we can assume that for each partic-
ular n ∈ N the functions Ψ1n, . . . , Ψmn are associated with the same triangulated
domain Gn and do vanish in the exterior of Gn × . . . × Gn. Again without loss
of generality we can assume that Gn ⊆ Gn+1 and that the triangulation of Gn+1

inherits and partitions the triangulation of Gn. Under these assumptions we have
the chain of complex finite-dimensional linear spaces (see (10.3))

. . . ⊆ PLSpline(C, GNn ) ⊆ PLSpline(C, GNn+1) ⊆ . . . (11.3)

such that

Ψkn ∈ PLSpline(C, GNn ) for k = 1, . . . ,m. (11.4)

The relationships (11.2) are analogous to the relationships of (9.2) and (9.3)
in Theorem 9.1. However, the analogy is incomplete. In this case we have no
orthonormal basis {hi}i=1, ... ,∞ at all. Fortunately it is inessential. When proving
Theorem 9.1 the basis vectors h1, . . . , hn were used in order to define the finite-
dimensional space Vn in (7.9). In the present case we use (11.3) and set

Vn = PLSpline(C, GNn ). (11.5)

The space Vn is defined by the formula

Vn = Span(Ψ1n, . . . ,Ψmn), (11.6)

which formally coincides with (9.12). Due to (11.4) we have the embedding of the
space (11.6) into the space (11.5):

Vn ⊂ Vn. (11.7)

None of the spaces (11.7) is enclosed in the domain D(Helec) of the Schrödinger
operator (2.3), but both of them are enclosed in the domain Q(Helec) of its sesquili-
near form q(Φ,Ψ) = 〈Φ|HelecΨ〉. Therefore we cannot restrict the operator Helec

to the spaces Vn and Vn directly, but we can define the unique operators FVn
and

FVn
in Vn and Vn respectively by means of the following relationships:

q(Φ,Ψ) = 〈Φ|FVn
Ψ〉 for all Φ,Ψ ∈ Vn, (11.8)

q(Φ,Ψ) = 〈Φ|FVn
Ψ〉 for all Φ,Ψ ∈ Vn. (11.9)

The embedding (11.7) is analogous to (9.29). If we denote through Pn and Pn
the orthogonal projectors onto the subspaces (11.5) and (11.6) respectively, then
due to (11.7) we can write the relationship (9.30) for them. Moreover, we can write
the relationship (9.31) for the operators FVn

and FVn
, which are introduced through
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(11.8) and (11.9) in the present case. Repeating the arguments from the proof of
Theorem 9.1 we can write the inequalities

µ̂
(n)
k 6 λ̂

(n)
k , where k = 1, . . . , m, (11.10)

which formally coincide with (9.32). Through λ̂
(n)
1 6 . . . 6 λ̂

(n)
m in (11.10) we

denote the eigenvalues of the operator FVn
, while µ̂

(n)
1 6 . . . 6 µ̂

(n)
m represent the

initial part of eigenvalues of the operator FVn
.

In the present case we cannot apply Theorem 7.1 to the space Vn since Vn is not
enclosed in D(Helec), but we can apply its version where D(F ) is replaced by Q(F )
(see Remark to Theorems 7.1 and 7.2 on page 14). As a result we get

Ek = µk(Helec) 6 µ̂
(n)
k , where k = 1, . . . , m. (11.11)

The inequalities (11.11) are analogous to the inequalities (9.28).
The third space V is introduced as the span of the eigenfunctions Ψ1, . . . , Ψm:

V = Span(Ψ1, . . . ,Ψm) (11.12)

(compare with (9.7)). Unlike Vn and Vn, the space (11.12) is enclosed in D(Helec).
The Schrödinger operator (2.3) restricted to V is denoted through FV . In the basis
Ψ1, . . . , Ψm it is presented by the diagonal matrix

F =

∥
∥
∥
∥
∥
∥

E1 . . . 0
...

. . .
...

0 . . . Em

∥
∥
∥
∥
∥
∥

. (11.13)

with the eigenvalues (11.1) in its diagonal. The matrix (11.13) is analogous to the
matrix (9.6). Repeating the arguments from Section 9, from (11.2) we derive

lim
n→∞

λ̂
(n)
k = Ek for k = 1, . . . , m (11.14)

(compare with (9.26)). Then, combining (11.14) with the inequalities (11.10) and
(11.11), we derive the following result:

lim
n→∞

µ̂
(n)
k = Ek for k = 1, . . . , m. (11.15)

The result expressed by the relationships (11.15) is formulated as follows.

Theorem 11.1. Assume that for a given configuration of the nuclei the discrete

spectrum of the Schrödinger operator (2.3) is not empty and comprises at least m
eigenvalues Emin = E1 6 . . . 6 Em. Then there is a chain of triangulated domains

G1 ⊆ . . . ⊆ Gn ⊆ Gn+1 ⊆ . . .

in R3 and the chain of polylinear spline spaces associated with them

PLSpline(C, GN1 ) ⊆ . . . ⊆ PLSpline(C, GNn ) ⊆ PLSpline(C, GNn+1) ⊆ . . .
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such that the initial eigenvalues µ̂
(n)
min = µ̂

(n)
1 6 . . . 6 µ̂

(n)
m of the operator FVn

produced in the space Vn = PLSpline(C, GNn ) by the sesquilinear form (4.4) appro-

ximate the eigenvalues E1 6 . . . 6 Em in the sense of the relationships

lim
n→∞

µ̂
(n)
k = Ek, where k = 1, . . . , m.

The eigenfunctions Ψ1, . . . , Ψm and spline approximations Ψkn of them are not
explicitly present in Theorem 11.1. Their existence and their convergence properties
(11.2) are provided by other theorems.

12. Conclusions and acknowledgments.

Note that the polylinear spline spaces Vn = PLSpline(C, GNn ) in Theorem 11.1
are finite-dimensional. The operators FVn

in these spaces are discrete operators
presented by matrices upon choosing some bases in them. These operators are
called tetrahedral discretizations of the Schrödinger operator in the title of the
paper. The spectra of their matrix presentations can be computed using powerful
linear algebra tools in various computational packages.

Theorems 9.1 and 11.1 are the main results of this paper. They show that tetra-
hedral discretizations of the Schrödinger operator using polylinear spline functions
are able to approximate spectra of electrons in atoms, molecules, and ions. The
angular quality measure and the quality criterion for tetrahedral networks formu-
lated in Definitions 10.10, 10.11, 10.12, and 10.13 can be applied for building faster
computational algorithms. Practical computations exploiting the methods of this
paper will be presented in forthcoming papers.

I am grateful to D. I. Borisov who advised the references [9] and [16].
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