The behavior of primes

Ihsan Raja Muda Nasution

August 28, 2019

Abstract

In this paper, we propose the axiomatic regularity of prime numbers.

MSC: 11A41
Keywords: prime numbers, distribution of primes, Riemann zeta-function, structure of primes

1 Introduction

In 1859, Riemann [Rie59] showed a deep connection between non-trivial zeros of the Riemann zeta-function and the prime numbers. Our motivation is to axiomatize the structure of primes.

2 Results

These below are some patterns of number.

Let t_n denote the nth triangular number. Then

$$t_n = \binom{n + 1}{2}, \quad n \geq 1,$$

where $\binom{n}{k}$ is the binomial coefficients.

Let F_n be the nth Fibonacci number. Then

$$F_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}},$$

where n is a positive integer.
Let \(B_n \) be the \(n \)th Bernoulli number. Then

\[
B_n = (-1)^{n+1}n \zeta(1-n),
\]

where \(\zeta(1-n) \) is the Riemann zeta-function.

Postulate 2.1 (Peano Postulates). Given the number 0, the set \(\mathbb{N} \), and the function \(\sigma \). Then:

1. \(0 \in \mathbb{N} \).
2. \(\sigma : \mathbb{N} \to \mathbb{N} \) is a function from \(\mathbb{N} \) to \(\mathbb{N} \).
3. \(0 \not\in \text{range}(\sigma) \).
4. The function \(\sigma \) is one-to-one.
5. If \(I \subset \mathbb{N} \) such that \(0 \in I \) and \(\sigma(n) \in I \) whenever \(n \in I \), then \(I = \mathbb{N} \).

We define \(1 = \sigma(0), 2 = \sigma(1), 3 = \sigma(2) \), etc. Next, we propose the fundamental properties of prime numbers.

Postulate 2.2. Given a prime number \(p \), \(\chi(n) \) denotes the number of third positive divisors of \(n \), \(\sigma(n) \) denotes the sum of positive divisors of \(n \), and \(\Delta(n) \) denotes the number of positive divisors of \(n \) besides 1 and \(n \). Then:

1. \(2 \leq p \).
2. \(4 \nmid p \).
3. \((-1)^{\chi(p)} = 1 \).
4. \(3 \leq \sigma(p) \).
5. \(\Delta(p) = 0 \).

References