The behavior of primes

Ihsan Raja Muda Nasution

January 6, 2019

Abstract
In this paper, we find the axiomatic regularity of prime numbers.

MSC: 11A41
Keywords: prime numbers, distribution of primes

1 Introduction
In 1859, Riemann [Rie59] computed the distribution of primes. Our motivation is to axiomatize the structure of primes.

2 Results
These below are some patterns of number.

Let \(t_n \) denote the \(n \)th triangular number. Then

\[
t_n = \binom{n+1}{2}, \quad n \geq 1,
\]

where \(\binom{n}{k} \) is the binomial coefficients.

Let \(F_n \) be the \(n \)th Fibonacci number. Then

\[
F_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2n\sqrt{5}},
\]

where \(n \) is an integer.

Let \(B_n \) be the \(n \)th Bernoulli number. Then

\[
B_n = (-1)^{n+1} n \zeta(1 - n),
\]

where \(\zeta(1 - n) \) is the Riemann zeta-function.
Postulate 2.1 (Peano Postulates). Given the number 0, the set \(\mathbb{N} \), and the function \(\sigma \). Then:

1. \(0 \in \mathbb{N} \).
2. \(\sigma : \mathbb{N} \to \mathbb{N} \) is a function from \(\mathbb{N} \) to \(\mathbb{N} \).
3. \(0 \notin \text{range}(\sigma) \).
4. The function \(\sigma \) is one-to-one.
5. If \(I \subset \mathbb{N} \) such that \(0 \in I \) and \(\sigma(n) \in I \) whenever \(n \in I \), then \(I = \mathbb{N} \).

We define \(1 = \sigma(0), 2 = \sigma(1), 3 = \sigma(2), \) etc. We have the following postulate.

Postulate 2.2. Given a prime number \(p \), \(\tau(n) \) denotes the number of positive divisors of \(n \), \(\sigma(n) \) denotes the sum of positive divisors of \(n \), and \(\Delta(n) \) denotes the number of positive divisors of \(n \) besides 1 and \(n \). Then:

1. \(2 \leq p \).
2. \(4 \nmid p \).
3. \(2^{\tau(p)} = 4 \).
4. \(3 \leq \sigma(p) \).
5. \(\Delta(p) = 0 \).

References