Union of two arithmetic sequences Basic calculation formula

(2)

Waldemar Zieliński

28-07-2018

Abstract

This paper is a supplement to the previous "Union of two arithmetic sequences - Basic calculation formula (1)" (viXra:1712.0636). We will derive a simpler version of formula for the union of two arithmetics progressions.

1 Notation.

- In this paper we will keep the entire notation from the last version of the previous paper [1].
- If we will refer to the formula from [1], we will use the syntax: $[1]$ (formula number), eg: $[1](12)$.
- If we will refer to the section from [1], we will use the syntax: [1, section number], eg: [1, 3.5].
- If we will refer to the section from [1], we will use the syntax: [1];section number, eg: [1];3.5.

2 Simpler version of formula $u_{N}=f(N)$.

We will simplify final formula [1](14) from previous work and we will show that $u_{N}=\max (a i(N), b j(N))$, where $j(N), i(N)$ are results of formulas [1](15) and [1](16). This will avoid $C(N)$ calculation in [1];3.4, used in [1](14) and simplify the formula a bit.

Please be careful: i, j are indexes of sequences A, B, but $i(N), j(N)$ are results of formulas. $i(N)$ corresponds to i for $C=1$ only. For $C=0 a_{i}$ don't exist, hence i don't exist, but $i(N)$ can be calculated as a result of the formula $[1](16)$. Respectively for $j(N)$ and $C=1$.

For the above dependence to be true, for each N must be (see [1](4)):

1. $a i(N) \geq b j(N)$ for $C=1(c>0)$
2. $b j(N) \geq a i(N)$ for $C=0(c=0)$

Ad. 1: $\quad C=1$

The inequation is true directly from Conditions 2.1 in [1].
Ad. 2: $\quad C=0$
Two options should be considered:
i) $r=0$
ii) $r>0$
where r is relative row number $[1,2.3]$.

Ad. i) $c=0, r=0$
In this case $n=0$. Common terms of A, B are in the begining of each group (Definition 2.1 in [1]), hence $a i(n)=b j(n)$ and $a i(N)=b j(N)$ for $N=g\left|U^{G}\right|$ (see 1).

Ad. ii) $\quad c=0, r>0$
Please see Table 1 in [1, 2.1]. Let's denote:
$i_{\text {max }}^{R}$ - the largest term index from sequence A in row R
$N_{\text {max }}^{R}$ - the largest union index in row R
$i^{R, c=1}$ - the smallest term index from sequence A in row R (in column 1)
$N^{R, c=0}$ - the smallest union index in row R (in column 0)
We have obvious relationship for N :

$$
\begin{equation*}
N^{R, c=0}=N_{\max }^{R-1}+1 \tag{1}
\end{equation*}
$$

For $c>0$ is also (see [1, (12)]):

$$
\begin{equation*}
i=N-R+g \tag{2}
\end{equation*}
$$

This relationship can not occur for $c=0$ because in [1] Table 1 column 0 there are no terms from A. Ignoring this, we can calculate $i(N)^{R, c=0}$ (from [1](16)) and fictitious term $a i(N)^{R, c=0}$. From (2):

$$
\begin{equation*}
i(N)^{R, c=0}=N^{R, c=0}-R+g \tag{3}
\end{equation*}
$$

This is correct, because (2) does not depend on the column number.

Now we will use (3), (1) and (2):

$$
i(N)^{R, c=0}=N^{R, c=0}-R+g=N_{\max }^{R-1}+1-R+g=N_{\max }^{R-1}-(R-1)+g=i_{\max }^{R-1}
$$

where $i_{\text {max }}^{R-1}$ is existing and corect index of A. Cause $a i_{\max }^{R-1}<b j(N)^{R, c=0}$, hence:

$$
a i(N)^{R, c=0}<b j(N)^{R, c=0}
$$

Summarizing:

from	1:	$c>0$		\rightarrow	$a i(N)>b j(N)$
from	2.i):	$c=0$	$r=0$	\rightarrow	$a i(N)=b j(N)$
from	2.ii):	$c=0$	$r>0$	\rightarrow	$a i(N)<b j(N)$

It means, we can write formula $[1](14)$ in an equivalent form:

$$
\begin{equation*}
u_{N}=\max (a i(N), b j(N)) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{N}=\max \left(a\left[\frac{b}{a+b}\left(\left\lfloor\frac{N(a+b)}{a+b-\Theta}\right\rfloor-\frac{a}{b}\right)\right], b\left\lfloor\frac{a}{a+b}\left\lfloor\frac{N(a+b)}{a+b-\Theta}+1\right\rfloor\right\rfloor\right) \tag{5}
\end{equation*}
$$

Using the dependency: $\max (x, y)=\frac{1}{2}(x+y+|x-y|)$ we can write (4) in form:

$$
\begin{equation*}
u_{N}=\frac{1}{2}(a i(N)+b j(N)+|a i(N)-b j(N)|) \tag{6}
\end{equation*}
$$

References

[1] ZIELIŃSKI, W.: Union of two arithmetic sequences - Basic calculation formula (1), viXra:1712.0636.

