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Abstract

Real-world information is often characterized by fuzziness due to the uncertainty. Z-

numbers is an ordered pair of fuzzy numbers and is widely used as a flexible and efficient

model to deal with the fuzziness information. This paper extends the fuzziness measure

to continuous fuzzy number. Then, a new fuzziness measure of discrete Z-numbers and

continuous Z-numbers is proposed: simple addition of fuzziness measures of two fuzzy

numbers of a Z-number. It can be used to obtain a fused Z-number with the best in-

formation quality in sensor fusion applications based on Z-numbers. Some numerical

examples and the application in sensor fusion are illustrated to show the efficiency of the

proposed fuzziness measure of Z-numbers.

Keywords: fuzziness measure, information quality, Z-numbers, fuzzy sets, sensor data

fusion.

1. Introduction

The information of real world is imperfect, often with fuzziness and part of reliability.

There are many methods to model real-world information, such as probability theory

(Feller 2008), Dempster-Shafer evidence theory (Dempster 1967; Shafer et al 1976; Xu and

Deng 2018; Zheng and Deng 2017; Liu et al 2017a; Deng and Deng 2018; Li et al 2017a; Liu
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et al 2017c; Gong et al 2017; Yager et al 2017; Bi et al 2017; Ye et al 2016; Zhao et al 2016;

Ma et al 2016; Xiao 2017b; Li et al 2016; Xiao 2017a), fuzzy sets (Zadeh 1996; Yager 2014;

Zhang et al 2017a; Collotta et al 2017; Liu et al 2018; Yager 2016a; Fei et al 2017), rough

sets (Pawlak et al 1995), D numbers (Deng 2012; Xiao 2016; Bian et al 2018; Chatterjee et al

2018) and so on (Zhang et al 2018, 2017b). But any estimation of information, be it precise

or fuzzy, depends on the degree of trust in the source of information (Li and Mahadevan

2016b; Zhang et al 2017c; Yuan et al 2016; Zhang et al 2017d; Meng et al 2016; Liu et al

2017b; Zhang and Mahadevan 2017b; Huynh et al 2006; Fu et al 2015; Li and Mahadevan

2016a; Song et al 2015; Zhang and Mahadevan 2017a; Yin and Deng 2018; Sabahi 2016;

Zheng and Deng 2018). In order to take this fact into account, the concept of Z-number

was introduced by Zadeh (Zadeh 2011) to describe not only the fuzziness but also partial

reliability of real-world information. A Z-number is an ordered pair Z = (A, B) of fuzzy

numbers, where A is an inexact constraint on values of X and B is an inexact estimation

of reliability of A and is considered to ba a probability measure of A (Zadeh 2011).

Z-numbers play an important role in many fields because of their strong capability

to model the incomplete and partial reliable information (Kang et al 2018; Aliev 2017;

Khan et al 2017; Aliev and Salimov 2017a; Huang et al 2017; Banerjee and Pal 2017; Aliev

et al 2016; Yaakob and Gegov 2016; Banerjee and Pal 2015; Aliev et al 2015). For example,

many authors have studied sensor data fusion system (Kamath et al 2017; Li et al 2017b;

Sulistyo et al 2017; Gravina et al 2017; Ng et al 2017; Li et al 2018). The information of sen-

sors usually is uncertain, random, fuzzy and partial reliable in sensor data fusion system.

So the Z-number can be used to model the fuzziness and reliability of the sensor data

(Jiang et al 2016). Fusing Z-numbers provided by multi-sensors can improve the quali-

ty of the information to decision making (Elmore et al 2014). In probability theory, the

entropy is used to measure the uncertainty associated with the probability distribution,

The greater the value of entropy the greater the uncertainty (??). The smaller the value

of entropy the more information conveyed by a probability distribution. Yager used the
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Gini entropy to measure uncertainty of probability distribution and obtain high quality

fused results from multiple sources of probability distribution (Yager and Petry 2016). D-

ifferent entropy is proposed to measure the uncertainty of different math tools for model

uncertain information (Jiang and Wang 2017; Song et al 2016; Deng 2016; Abelln 2017).

Similarly, the more information conveyed by a Z-number the smaller the uncertain-

ty. Before introducing the fuzziness measure of a Z-number, reviewing the measures of

fuzziness for discrete fuzzy sets. A fuzzy set is characterized by a membership function

which assigns a grade of membership between zero and one (Zadeh 1996) for each ob-

ject. The uncertainty of the crisp set is minimum because the crisp set is certain. When

the membership functions of all elements is 0.5, the uncertainty of this fuzzy set is max-

imum. The first attempt to quantify the uncertainty of a fuzzy set have been made by

Zadeh (Zadeh 1968). A entropy incorporates both probability and fuzzy uncertainties

have been defined. The definition of entropy of fuzzy sets without reference to proba-

bilities was proposed by Deluca and Termini (Luca and Termini 1972). They defined the

fuzziness measure using Shannon’s functional. Ebanks (Ebanks 1983) lists the properties

which be required of a measure of fuzziness. There are many approaches to measure the

uncertainty of a fuzzy set are presented (Yager 2016b,a). This paper will introduce serval

well known and frequently-used fuzziness measures.

Fuzzy sets are divided into discrete fuzzy sets and continuous fuzzy sets according to

whether their universes are continuous or not. The fuzziness measures of discrete fuzzy

sets are proposed. We extend the formulas and usability of these fuzziness measures in

continuous fuzzy sets. Based on measures uncertainty of fuzzy sets, this paper propos-

es a fuzziness measure of a Z-number: simple addition of fuzziness measure of A and

fuzziness measure of B. Then we use this method to find a fused Z-number with the best

information quality from multiple sensors data.

The paper is organized as follows. The preliminaries of fuzzy sets, fuzzy numbers,

some existing measures of uncertainty of discrete fuzzy sets and Z-numbers are briefly
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introduced in Section 2. In Section 3, the formulas and usability of different fuzziness

measures are considered. The definition of a uncertainty measure of a Z-number is pro-

posed in Section 4. In Section 5, we used fuzziness of a Z-number to measure the fusing

methods. Finally, this paper is concluded in Section 6.

2. Preliminaries

In this section, some preliminaries including fuzzy sets, fuzzy numbers, some existing

measures of uncertainty of discrete fuzzy sets and Z-numbers are briefly introduced.

2.1. Fuzzy Sets And Fuzzy Number

Some basic definitions of fuzzy sets and fuzzy number are briefly introduced.

Definition 1. Suppose X be a classical set of objects, whose generic elements are denoted

x. The degree of x in a classical subset A of X is often viewed as a characteristic function

µA from X to the real interval [0, 1]. Then the A is called a fuzzy set (Zadeh 1996),

µA(x) is the degree of membership of x in A µA : X → [0, 1]. The closer the value of

µA(x) is to 1, the greater the degree of x belongs to A. µ : X → [0, 1] is referred to as a

membership function (Zadeh 1996).

Definition 2. The support of a fuzzy set A is the subset of X, it has nonzero membership

function in A (Zadeh 1996):

supp(A) = A+0 = {c ∈ X, µA(x) > 0}. (1)

Definition 3. The (crisp) set of elements that belongs to the fuzzy set A at least to the

degree α is called the α-level set (Zadeh 1996):

Aα = {c ∈ X, µA(X) ≥ α}. (2)
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Definition 4. A fuzzy set A is convex if

µA(λx1 + (1 − λ)x2) > min(µA(x1), µA(x2)) (3)

for all x1, x2 ∈ R, λ ∈ [0, 1], min denotes the minimum operator (Zadeh 1996).

Definition 5. A fuzzy number is a fuzzy set A on R which possesses the following prop-

erties: a) A is a normal fuzzy set; b) A is a convex fuzzy set; c) α-cut of A, Aα is a closed

interval for every α ∈ (0, 1]; d) the support of A, supp(A) is bounded (Zadeh 1996; Dubois

and Prade 1978).

2.2. Measures of Fuzziness For Discrete Fuzzy Sets

Let x be a discrete random variable that takes value in X = {x1, x2, · · · , xn}. The set

of all fuzzy subsets of X = {x1, x2, · · · , xn} is denoted by P(X).

Definition 6. The fuzziness measure of a discrete fuzzy set is a mapping H : P(X) → R+.

Ebanks (Ebanks 1983) lists the properties of a measure of fuzziness to be satisfied.

Sharpness P1 : H(A) = 0 ⇔ µA(x) = 0 or 1 ∀x ∈ X;

Maximality P2 : H(A) is maximum ⇔ µA(x) = 0.5 ∀x ∈ X;

Resolution P3 : H(A) ≥ H(A∗), where A∗ is a sharpented version o f A.

Symmetry P4 : H(A) = H(1 − A), where µ1−A(x) = 1 − µA(x) ∀x ∈ X.

Ebanks also presented the fifth and sixth requirement: Valuation and generalizedadditivity,

but the above four requires have been widely accepted and recognized. Some common

measures of fuzziness for a discrete fuzzy set are introduced as follows.

For A ∈ P(X) denotes Anear is the crisp set nearest to A, A f ar is the crisp set farthest

to A:

Anear(x) =


1 i f µA(x) ≥ 0.5

0 otherwise.
(4)
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A f ar(x) =


0 i f µA(x) ≥ 0.5

1 otherwise.
(5)

An index of fuzziness for A ∈ P(X) was presented by Kaufmann (Kaufmann 1975),

HKa(A) =
2 × d(A, Anear)

n
1
q

, (6)

where q ∈ [1, ∞), d is a distance on P(X)× P(X):

d(A, Anear) = [
n

∑
i=1

|u(xi)− uAnear(xi)
|q]

1
q . (7)

HKa is called the linear index of fuzziness when q = 1, and quadratic index of fuzziness

when q = 2.

Yager (YAGER 1979; Yager 1980) also used the definition of distance d to define a new

measure of fuzziness:

HY(q, A) = (dq(Y, Yc)− dq(A, Ac))/dq(Y, Yc), (8)

where Y is an arbitrary crisp subset of X, Yc is the complement of Y defined by Zadeh,

µYc(x) = 1 − µY(x). dq(Y, Yc) is the maximum distance between any pair of sets in

P(X)× P(X).

Kosko (Kosko 1986) defined a fuzziness measure as the ratio of the distance between

the fuzzy set A and Anear to the distance between A and A f ar, obviously A f ar = (Anear)c.

HKoE(q, A) = dq(A, Anear)/dq(A, A f ar), (9)

where dq is specified in Eq. (7).

2.3. Z-number

The concept of Z-number is related to the reliability of information.

Definition 7. A Z-number, Z, is an ordered pair of fuzzy numbers, Z = (A, B). The

first component, A, is a restriction (constraint) on the values of the real-world uncertain

variable, X, is allowed to take. The second component, B, is a measure of reliability

(certainty) of the first component (Zadeh 2011).
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Figure 1: Anear(left) and A f ar(right) of triangular Continuous fuzzy set A

3. Measures of Fuzziness For Continuous Fuzzy Sets

If X is continuous, thus all elements of P(X) and A ∈ P(X) is continuous. Take a

triangular continuous fuzzy set A as an example. The crisp set nearest Anear and the

crisp set farthest A f ar of A are expressed the thick lines in Fig. 1. It can be seen the Anear

and A f ar are constant continuous functions:

Anear(x) =


0, x < x1 and x > x2

1, x1 ≤ x ≤ x2

A f ar(x) =


1, x < x1 and x > x2

0, x1 ≤ x ≤ x2

Then the distance between A and Ac, dq(A, Ac) can given as follows. For convenience,

let q = 1 in the following paragraphs.

d(A, Ac) =
n

∑
i=1

|µA(xi)− µAc(xi)|

=
n

∑
i=1

|µA(xi)− (1 − µA(xi))|

=
n

∑
i=1

|2µA(xi)− 1|.

If X is continuous and X = [a, b], b ≥ a, then

d(A, Ac) =
∫ b

a
|2µ(x)− 1|dx. (10)
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Figure 2: d(A, Anear)(left) and d(A, A f ar)(right) of triangular Continuous fuzzy set A

The number of variables, n, is infinitely-great, so the fuzziness measure of Kaufmann

is not suited to continuous fuzzy sets. In Yager’s fuzziness measure (YAGER 1979; Yager

1980), d(Y, Yc) =
∫ b

a 1dx = b − a is the maximum distance between any pair of sets in

P(X)× P(X). So the fuzziness measure of Yager can be expressed as follows in continu-

ous fuzzy sets.

HY(A) = (d(Y, Yc)− d(A, Ac))/d(Y, Yc)

= 1 − d(A, Ac)

d(Y, Yc)

= 1 −
∫ b

a |2µA(x)− 1|
b − a

dx

(11)

Using the triangular continuous fuzzy set A of Fig. 1, the distance between A and

Anear, A and a f ar are expressed as dashed area of Fig. 2. With the knowledge of integral,

the formulas are

d(A, Anear) =
∫ x1

a
µA(x)dx +

∫ b

x2

µA(x)dx +
∫ x2

x1

(1 − µA(x))dx (12)

d(A, A f ar) =
∫ x1

a
(1 − µA(x))dx +

∫ b

x2

(1 − µA(x))dx +
∫ x2

x1

µA(x)dx (13)

Obviously, d(A, A f ar) = b − a − d(A, Anear).

The fuzziness measure of Kosko of continuous fuzzy sets can be given using Eq. (12)
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and Eq. (13).

HKoE(A) =
d(A, Anear)

d(A, A f ar)
=

∫ x1
a µA(x)dx +

∫ b
x2

µA(x)dx +
∫ x2

x1
(1 − µA(x))dx∫ x1

a (1 − µA(x))dx +
∫ b

x2
(1 − µA(x))dx +

∫ x2
x1

µA(x)dx
(14)

Example 3.1. If A is the triangular continuous fuzzy set defined by

µA(x) =



x + 2
2

, −2 ≤ x ≤ 0

3 − X
3

, 0 ≤ x ≤ 3

0, otherwise.

Graphical description of A on the universe X is shown in Fig. 3. First step, calculate the points

P1(x1, 0.5) and P2(x2.0.5) where µA(x) cuts µA(x) = 0.5 to get x1 = −1, x2 = 1.5. Then

compute the fuzziness measure of A.

HY(A) = 1 −
∫ b

a |2µA(x)− 1|dx
b − a

= 1 −
∫ −1
−2 (1 − 2 x+2

2 )dx +
∫ 3

1.5(1 − 23−x
3 ))dx +

∫ 0
−1(2

x+2
2 − 1)dx +

∫ 1.5
0 (23−x

3 − 1)dx
3 − (−2)

= 1 − 3.25
5

= 0.35

HKoE(A) =
d(A, Anear)

d(A, A f ar)

=

∫ x1
a µA(x)dx +

∫ b
x2

µA(x)dx +
∫ x2

x1
(1 − µA(x))dx∫ x1

a (1 − µA(x))dx +
∫ b

x2
(1 − µA(x))dx +

∫ x2
x1

µA(x)dx

=
1.25

5 − 1.25
= 0.33

4. Fuzziness Measure for Z-numbers

In this section, the definition of fuzziness measure of a Z-number is presented, and

fuzziness measures for Z-numbers are proposed based on the fuzziness measures for

fuzzy sets in Section 2 and Section 3. Some examples including discrete Z-numbers and

continuous Z-numbers are used to show the efficiency of proposed method.
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Figure 3: Graphical description of A in example 3.1

4.1. Definition

Denoted by D the space of fuzzy sets of R. Denoted by D[a,b] the space of fuzzy set of

[a, b] ⊂ R. Denoted Z the space of Z-number:

Z = {Z = (A, B)|A ∈ D, B ∈ D[0,1]}.

For a Z-number Z = (A, B), denoted XA is the universe of A, XB is the universe of B.

Definition 8. A measure of fuzziness for a Z-number Z = (A, B) ∈ Z is a mapping

HZ : Z → R+. The properties of a measure of fuzziness to be satisfied as follows.

Sharpness G1 : HZ(Z) = 0 ⇔ µA(xA) = 0 or 1 and µB(xB) = 0 or 1 ∀xA ∈ XA, ∀xB ∈ XB;

Maximality G2 : HZ(Z) is maximum ⇔ µA(xA) = 0.5 and µB(xB) = 0.5 ∀xA ∈ XA, ∀xB ∈ XB;

Resolution G3 : HZ(Z) ≥ H(Z∗), where Z∗ is a sharpened version o f Z.

Symmetry G4 : HZ(Z) = HZ(Z(1 − A, 1 − B)), where µ1−A(xA) = 1 − µA(xA) and

µ1−B(xB) = 1 − µB(xB) ∀xA ∈ XA, ∀xB ∈ XB;

A method of uncertainty measure for Z-numbers is HZ(Z) = H(A) + H(B), which

H(A) is the degree of fuzziness of A. Obviously, this method satisfy the above requires.
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Proof. Assume the fuzziness measure, H, satisfy P1 − P4. For G1,

µA(xA) = 0 or 1 and µB(xB) = 0 or 1 ∀xA ∈ XA, ∀xB ∈ XB,

so, H(A) = 0 and H(B) = 0, therefore HZ(Z) = H(A) + H(B) = 0 and vice versa.

For G2, µA(xA) = 0.5 and µB(xB) = 0.5 ∀xA ∈ XA, ∀xB ∈ XB, so, H(A) and H(B) are

maximum, therefore HZ(Z) = H(A) + H(B) is maximum and vice versa.

For G3, denoted A∗ = (A∗, B∗), where A∗, B∗ are sharpened version of A and B,

respectively. So H(A) ≥ H(A∗) and H(B) ≥ H(B∗), therefore H(A) + H(B) ≥ H(A∗) +

H(B∗) ⇒ H(Z) ≥ H(Z∗).

For G4, H(A) = H(1 − A) and H(B) = H(1 − B), so H(A) + H(B) = (H(1 − A)) +

(H(1 − B)) ⇒ HZ(Z) = HZ(Z(1 − A, 1 − B)).

4.2. Fuzziness Measure for Discrete Z-numbers

There are three fuzziness measures of discrete Z-numbers, based on fuzziness mea-

sure for discrete fuzzy sets of Kaufmann, Yager and Kosko in Section 2.

HZ,Ka = HKa(A) + HKa(B), (15)

HZ,Y = HY A + HY(B), (16)

HZ,KoE = HKoE(A) + HKoE(B). (17)

Example 4.1. A Z-number Z = (A, B) given:

A =0/1 + 0.3/2 + 0.5/3 + 0.6/4 + 0.7/5 + 0.8/6 + 0.9/7 + 1/8

+ 0.8/9 + 0.6/10 + 0/11,

B =0/0 + 0.5/0.1 + 0.8/0.2 + 1/0.3 + 0.8/0.4 + 0.7/0.5

+ 0.6/0.6 + 0.4/0.7 + 0.2/0.8 + 0.1/0.6 + 0/1.

The results are shown in Table 1.

It can be seen from these results, the proposed method can correctly describe the de-

gree of uncertainty of Z-numbers and it’s computational process is simple.
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method H(A) H(B) HZ(Z)

KaufmannKaufmann (1975) 0.4364 0.3818 0.8182

YagerYAGER (1979); Yager (1980) 0.4364 0.3818 0.8182

KoskoKosko (1986) 0.2857 0.2692 0.5549

Table 1: The results of fuzziness measures for a Z-number in Example 4.1

0 5 10
0

0.5

1

0.4 0.6 0.8 1
0

0.5

1

Figure 4: A Z-number Z = Z(A(le f t), B(right))

4.3. Fuzziness Measure for Continuous Z-numbers

There are two fuzziness measures of discrete Z-numbers, based on fuzziness measure

for discrete fuzzy sets of Yager and Kosko in Section 2.

HZ,Y = HY A + HY(B), (18)

HZ,KoE = HKoE(A) + HKoE(B). (19)

Example 4.2. A Z-number is shown in Fig. 4, the results are given in Table 2.

5. Fuzziness measure in Z-number Information Fusion

What is clear that the smaller fuzziness measure the more information passed by a Z-

number. It should be clear that for the purposes of decision-making we prefer Z-numbers
12



method H(A) H(B) HZ(Z)

YagerYAGER (1979); Yager (1980) 0.1667 0.4620 0.6287

KoskoKosko (1986) 0.3333 0.5 0.8333

Table 2: The results of fuzziness measures for a Z-number in Example 4.2

with smaller fuzziness measure as we have less uncertainty, more information. In the

sensor data fusion problem (Baymuratov and Zhukova 2017), The fusion value with the

highest quality can be found from the weighted aggregation of the Z-numbers sources

using fuzziness measures of Z-numbers. Assume x is a variable that takes its value in the

space X = {x1, · · · , xn}, v is a reliability variable takeing its value in the reliability space

V = {v1, · · · , vm} and a collection Z = {Z1, · · · , Zt} of Z-numbers information about

the value of X.

On weighted average fusion, there are t Z-numbers Z1, · · · , Zt, where Zi = (Ai, Bi),

Ai = [µAi(x1), · · · , µAi(xn)], Bi = [µBi(v1), · · · , µBi(vm)]. Assume the fusion of t Z-

numbers is Z(A, B) = ∑t
i=1 wiZi. then

A = [
t

∑
i=1

1
t

µAi(x1), · · · ,
t

∑
i=1

1
t

µAi(xn)],

B = [
t

∑
i=1

1
t

µBi(v1), · · · ,
t

∑
i=1

1
t

µBi(vm)].

In this case, we use fuzziness measure of Yager as an example.
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HZ(Z) = HY(A) + HY(B)

= 1 −
∑n

j=1)|2µA(xj)− 1|
n

+ 1 −
∑( j = 1)m)|2µB(vj)− 1|

m

= 1 −
∑n

j=1 |2 ∑t
i=1

1
t µAi(xj)− 1|

n
+ 1 −

∑m
j=1 |2 ∑t

i=1
1
t µBi(vj)− 1|

m

= 1 −
1
t ∑n

j=1 |∑t
i=1 2µAi(xj)− ∑t

i=1 1|
n

+ 1 −
1
t ∑m

j=1 |∑t
i=1 2µBi(vj)− ∑t

i=1 1|
m

= 1 − 1
t

t

∑
i=1

∑n
j=1 |2µAi(xi)− 1|

n
+ 1 − 1

t

t

∑
i=1

∑m
j=1 |2µBi(vi)− 1|

m

=
1
t

t

∑
i=1

(1 −
∑n

j=1 |2µAi(xi)− 1|
n

) +
1
t

t

∑
i=1

(1 −
∑m

j=1 |2µBi(vi)− 1|
m

)

=
1
t

t

∑
i=1

HY(Ai) +
1
t

t

∑
i=1

HY(Bi)

=
1
t

t

∑
i=1

(HY(Ai) + HY(Bi))

=
1
t

t

∑
i=1

HZ(Zi)

=
t

∑
i=1

1
t

HZ(Zi).

(20)

If all Z-numbers are the crisp Z-number, then H(A) = 1 and H(B) = 1, so the

fuzziness measure is minimum HZ(Z) = 0. If all Z-numbers are fuzzy completely, then

H(A) = 0 and H(B) = 0, so the fuzziness measure is maximum HZ(Z) = 2.

It is can be given by referencing to Eq. (20):

HZ(Z) =
t

∑
i−1

1
t

HZ(Zi). (21)

Example 5.1. The collection of relevant Z-number is Z = {Z1, Z2, Z3} from three sensors.

A Z-number Z1 = (A1, B1):

A1 = 0/0 + 0.5/1 + 0.8/2 + 1.0/3 + 0.8/4 + 0.7/5 + 0.6/6 + 0.4/7

+ 0.2/8 + 0.1/9 + 0/10,
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B1 = 0/0 + 0.3/0.1 + 0.5/0.2 + 0.6/0.3 + 0.7/0.4 + 0.8/0.5 + 0.9/0.6 + 1.0/0.7

+ 0.9/0.8 + 0.8/0.9 + 0/1.

A Z-number Z2 = (A2, B2):

A2 = 0/0 + 0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1.0/5 + 0.8/6 + 0.6/7

+ 0.4/8 + 0.2/9 + 0/10,

B2 = 0/0 + 0.2/0.1 + 0.4/0.2 + 0.6/0.3 + 0.8/0.4 + 1.0/0.5 + 0.8/0.6 + 0.6/0.7

+ 0.4/0.8 + 0.2/0.9 + 0/1.

A Z-number Z3 = (A3, B3):

A3 = 0/0 + 0.4/1 + 0.5/2 + 0.6/3 + 0.7/4 + 0.8/5 + 0.9/6 + 1.0/7

+ 0.5/8 + 0.3/9 + 0/10,

B1 = 0/0 + 0.4/0.1 + 0.5/0.2 + 0.6/0.3 + 0.8/0.4 + 0.9/0.5 + 1.0/0.6 + 0.7/0.7

+ 0.5/0.8 + 0.2/0.9 + 0/1.

Then

HY(A1) =
23
55

, HY(B1) =
21
55

, HZ(Z1) =
44
55

;

HY(A2) =
24
55

, HY(B2) =
24
55

, HZ(Z2) =
48
55

;

HY(A3) =
30
55

, HY(B3) =
26
55

, HZ(Z1) =
56
55

.

Then results of weighted average fusion are:

HZ(Z1,2) =
46
55

HZ(Z1,3) =
50
55

HZ(Z2,3) =
52
55

HZ(Z1,2,3) =
49.3
55

As a result, the Z-number Z1,2 fusion is the Z-numbers fusion with the best information quality.
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6. Conclusions

Z-numbers is one of the most widely used math tools to addressing the uncertainty

information in real world. The fuzziness measure of Z-numbers can describe the degree

of quality of information. The bigger the value of fuzziness of a Z-number, the less infor-

mation it contains. The fuzziness measure of a Z-number can be expressed as the simple

addition of fuzziness measures of two fuzzy numbers of it. Based on some well-known

measures of fuzziness of discrete fuzzy sets, the method to measure fuzziness of the con-

tinuous fuzzy sets is extended and to deal with the discrete Z-numbers and continuous

Z-numbers. The fuzziness measure of Z numbers can be seen as an index of information

quality. It is used to obtain the best information quality in sensor data fusion when the

output of sensor report are provided by Z-numbers.
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