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Abstract

According to Noether’s theorem, for every differentiable symmetry
of action, there exists a corresponding conserved quantity. If we assume
the stationary condition as a role of symmetry, there is a conserved
quantity. By using the definition of the Komar mass, one can calculate
the mass in a curved spacetime. If we consider charge as a conserved
quantity, it means existence of symmetry, and we can consider one
more axis. In this paper, we consider an extension to five dimensions by
using results of the ADM formalism. In terms of (4+1) decomposition,
with an alternative surface integral, we find the rotating and charged
five-dimensional metric solution and check whether it gives the mass,
charge, and angular momentum exactly.
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1 Introduction

The Kaluza-Klein theory is a classical unified field theory of gravitation
and electromagnetism in terms of general relativity extended to five dimen-
sions [1]. In this paper, we use a different but basically equivalent metric
ansatz based on ADM formalism, which decomposes spacetime into the time
component and three spatial components, and use the concept of extrinsic
curvature [2–5]. It plays mathematically important role in the unified field
theory, which will be discussed in this paper. The main assumption is that
as gravitation can be described geometrically in four dimensions, electro-
magnetism can also be described geometrically in five dimensions [6]. The
main goal of this paper is to find the five-dimensional metric form for the
spherical or rotating black hole solutions, which have mass and charge. In
addition, we would like to deal with the Lorentz force as well, which is known
as the main shortfall of Kaluza-Klein theory. In four dimensions, there are
black hole solutions, which have charge and mass, simultaneously known as
the Reisner-Nordstrom (RN), Kerr-Newman (KN) black holes [7]. To obtain
a 5D solution, we assume two symmetries of the metric. One is cylindrical
condition, and the other is the stationary condition.

Under the assumption that electromagnetism is an effect of pure geome-
try, the expected results will be similar to that of Kaluza-Klein theory [8–10].
After we obtain the 5D metric, which is exactly the 5D vacuum solution, we
also obtain the mass, charge and angular momentum of the object.

2 Metric Ansatz

In the following equations, Greek indices refer to spacetime components
(0,123) and the index 5 refers to the fifth dimension. Roman indices (a,b)
span (5,0,123). Similar to Kaluza’s ansatz, we consider the ansatz

5gµν = 4gµν ,
5g5µ = βµ,

5g55 = −N2 + βλβλ. (1)

Then the inverse metric is given by

5gµν = 4gµν − βµβν

N2
, 5g5µ =

βµ

N2
, 5g55 = − 1

N2
. (2)

In other words,

5gab =

−N2 + βλβλ βν

βµ
4gµν

 , 5gab =

− 1
N2

βν

N2

βµ

N2
4gµν − βµβν

N2

 , (3)

where 5gab is the 5D metric and 4gµν is the standard four-dimensional (4D)
metric with the Lorentzian signature, (−,+ + +). The noticeable point is
5g55 = −N2 + βλβλ. We set the fifth dimension to timelike and there is no
problem at this stage (see the first item in the discussion section).
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3 5D Christoffel Symbol and 5D Ricci Tensor

We assumed the two symmetries of the metric.

∂

∂ω
5gab = 0,

∂

∂t
5gab = 0, (4)

where ω is fifth coordinate. Under these conditions, the 5D Christoffel
symbols are given by

5Γ5
µν = −Kµν

N
, (5)

5Γ5
µ5 = − 1

N
K5µ +

1

N
∂µN, (6)

5Γ5
55 = − βσ

2N2
∂σ(−N2 + βλβλ), (7)

where Kµν is the extrinsic curvature tensor defined as

Kab = −∇bna − nbnc∇cna (8)

with the unit normal vector n [5]. This extrinsic curvature comes from
(4+1) decomposition, and foliates five dimensions with respect to the fifth
coordinate ω [4]. Note that the original ADM formalism is (3+1) decompo-
sition, which foliates spacetime with respect to time t. Then the extrinsic
curvature tensor Kµν is given by

Kµν =
1

2N

(
4∇µβν + 4∇νβµ −

∂

∂ω
4gµν

)
, 4∇µβν ≡ ∂µβν − 4Γλµνβλ. (9)

Henceforth, the covariant derivative is related to 4gµν and emit 4 index for
the covariant derivative. In this paper, we assume that the charge identified
as dx5

ds = q
m is not changed along the geodesic curve. The fifth component

of the geodesic equation is as follows:

d

ds

(
dx5

ds

)
+ 5Γ5

ab

dxa

ds

dxb

ds
= 0. (10)

Assuming that the charge does not change along the geodesic curve for any
particle, one can set 5Γ5

ab = 0. Then from eqns(4), (5), (6), (7) and (9), we
obtain

N = constant, βµ = α 4g0µ, (11)

where α is a constant. Then with eqns(4), (11), 5Γµab is given by

5Γµλρ = 4Γµλρ, (12)

5Γµλ5 = 4gµνFλν , (13)
5Γµ55 = − 4gµν∂νφ = −∇µφ, (14)
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where we define

Fµν = ∂µ

(
βν
2

)
− ∂ν

(
βµ
2

)
, (15)

φ =
1

2
5g55. (16)

Now, we have all components of Christoffel symbols. Then Ricci tensor is
given by

5Rab =

[
−�φ+ FλρF

λρ ∇ρFνρ
∇ρFµρ 4Rµν

]
. (17)

4 Lorentz force

In the Lorentz force can be derived from the variation of the 5D geodesic
equations. In Kaluza’s hypothesis, however, the problem with this is that
there is the quadratic term dx5

ds . It was known as the main shortfall of the
Kaluza hypothesis.

Although we induce Lorentz force exactly, it is a suggestion for problem-
solving rather than assertion. For clarity, we use the relation −c2dτ̃2 =
5gabdx

adxb rather than ds2 = 5gabdx
adxb. By adjusting the scale of dx5, we

can write dx5

dτ̃ ≡
q
m . We consider dx5

dτ = 0 here because of two reasons. One

is that τ is irrelevant to dx5 and the other is that when dx5

dτ is nonzero, this
means that the object disappears from our hypersurface, the world we live
in. Now, because of dx5

dτ = 0, dτ̃
dτ = 1. Then

dxµ

dτ
=
dτ̃

dτ

dxµ

dτ̃
=
dxµ

dτ̃
, (18)

dx5

dτ
6= dτ̃

dτ

dx5

dτ̃
=
dx5

dτ̃
. (19)

With equation

D

dτ

(
dxµ

dτ̃

)
=
dτ̃

dτ

D

dτ̃

(
dxµ

dτ̃

)
(20)

and eqn(19), we obtain

d

dτ

(
dxµ

dτ̃

)
6= dτ̃

dτ

d

dτ̃

(
dxµ

dτ̃

)
. (21)

Therefore, we consider eqn(21) carefully and only use eqn(20). From eqn(20),

D

dτ

(
dxµ

dτ̃

)
=

d

dτ

(
dxµ

dτ̃

)
+ 5Γµab

dxa

dτ̃

dxb

dτ
= 0. (22)
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With eqn(18), dx5

dτ = 0, eqn(22) becomes

d

dτ

(
dxµ

dτ

)
+ 5Γµλρ

dxλ

dτ

dxρ

dτ
= −5Γµ5ρ

dx5

dτ̃

dxρ

dτ
. (23)

With eqns(12) and (13), eqn(23) becomes

d

dτ

(
dxµ

dτ

)
+ 4Γµλρ

dxλ

dτ

dxρ

dτ
=

q

m
4gµνFνρ

dxρ

dτ
. (24)

At this stage, by separate several components of eqn(17), 5R5ν contains
Maxwell’s equations and 4Rµν denotes the Einstein equations (see the third
item in the discussion section).

5 Correspondence with Classical Dynamics

Unexpectedly, the result of our analysis for the 5D vacuum solution is 4Rµν =
0. The expected metric solution, 4gµν , is the well-known charged 4D black
hole, such as the RN or KN black holes, but our results indicate that those
are not solutions in our formalism. In this paper, we check why the 4D
metric should be a vacuum solution as the Schwarzschild or Kerr black hole,
although it is a charged black hole. As we identified βµ = α4g0µ = 2Aµ, we

can fix α as α = − Qc
4πε0GM

. Then for a rotating charged black hole, the 5D
metric solution is given by

5
gab =



−N2 − ( Qc
4πε0GM

)2(1 − 2GMr
Σc2

) Qc
4πε0GM

(1 − 2GMr
Σc2

) 0 0 2Qr
4πε0cΣ

asin2(θ)
Qc

4πε0GM
(1 − 2GMr

Σc2
) −(1 − 2GMr

Σc2
) 0 0 − 2GMr

Σc2
asin2(θ)

0 0 Σ
∆

0 0
0 0 0 Σ 0

2Qr
4πε0cΣ

asin2(θ) − 2GMr
Σc2

asin2(θ) 0 0 (r2 + a2)sin2(θ) + 2GMr
Σc2

a2sin4(θ)

 .(∗)

where Σ = r2 + a2 cos2 θ and we used Boyer-Lindquist coordinates. Since
we just used condition 4Rµν = 0 of eqn(17), we cannot assure it is a vacuum
solution. In fact, condition of 4Rµν = 0 is only condition. Thus, this 5gab
is vacuum solution. This point will be discussed later. Now, to observe
dynamics, we assume the spherical vacuum solution and the initiation of
free falling. Then we consider a ≡ J

mc = 0 and dx1

dτ ,
dx2

dτ ,
dx3

dτ = 0. Note that

dx0

dτ = c − 1
2

√
−4g00 = c − 1

2

√
1− 2GM

rc2
. From eqn(24), we obtain

m
d

dτ

(
dx1

dτ

)
=

√
1− 2GM

rc2
Qq

4πε0r2
− GMm

r2
. (25)

This describes the known classical dynamics well. Now for the RN black
hole, from eqn(24), we obtain

m
d

dτ

(
dx1

dτ

)
= −GMm

r2
+

GQ2m

4πε0c4r3
(26)
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+

√
1− 2GM

rc2
+

GQ2

4πε0c4r2

(
Qq

4πε0r2
− Q3q

(4πε0c2)2Mr3

)
.

It is a strange result because there are 1
r3 terms. Furthermore, the well-

known charged 4D black hole cannot be a solution under 5D vacuum solu-
tion. Now, we would like to explain the reason why the 5D vacuum condition
gives a 4D vacuum solution rather than the known charged 4D black hole.
Accordingly, let us check what was neglected in the well-known 4D charged
black hole,

S =

∫
5R
√

5g d5x. (27)

Noting det(A) = adj(Aij)
1

A−1
ij

, where A−1ij is a component of i-th row j-th

column of inverse matrix of A and adj(Aij) is adjoint of Aij , then from

eqn(3),
√

5g = N
√
−4g. Then the action of the integrand can be rewritten

as

S =

∫
5R
√
−4g d4xNdx5. (28)

Since N is a constant and the integrand is independent of x5, we can ignore
the overall quantity Ndx5. From eqns (3) and (17), we obtain

5R = (4R−
FλρF

λρ

N2
) +

1

N2
(�φ− 4Rλρβ

λβρ + 2βλ∇ρFλρ). (29)

From eqns (9) and (11), βµ follows the Killing equation, its divergence equals
0, that is

∇ρFλρ = ∇ρ∇λβρ = (∇ρ∇λ −∇λ∇ρ)βρ = 4Rρλβ
ρ, (30)

where ∇λ∇ρβρ is a hypothetical representation of zero terms. Now, the
second parentheses in eqn(29) can be rewritten as

1

N2
(�φ+ βλ∇ρFλρ). (31)

Now we put ∇ρFλρ = µ0Jλ. By neglecting total divergence of eqn(31), from
eqn(29) we obtain

5R = 4R− (
FλρF

λρ

N2
− µ0
N2

Jλβ
λ). (32)

Since we are considering a source-free region, Jµ = 0, one can think that
by excluding current term, eqn(32) will give the well-known charged 4D
black hole solutions. However, we have the relation µ0J

λβλ = −�φ +
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FλρF
λρ. Now, with eqn(32) and by neglecting total divergence, the matter

Lagrangian effectively equals 0. Until now, we just neglected Jλ since we
are considering a source-free region. However this result says that this is not
the case. Consequently, our action is equivalent to 4R. To find out solution
more clearly, we try to obtain a solution without using variation principle.
In fact, to obtain the solution, it is more reasonable to solve eqn(17) rather
than solving eqn(32) with the variation principle. From eqns(16), (17), we
obtain

5R55 = −(∇ρβλ∇ρβλ + βλ∇ρ∇ρβλ) + FλρF
λρ (33)

From eqn(15),

∇ρβλ∇ρβλ = F ρλFρλ. (34)

With eqn(30),

βλ∇ρ∇ρβλ = − 4Rρλβ
ρβλ. (35)

Then eqn(17) becomes

5Rab =

[
4Rλρβ

λβρ 4Rνρβ
ρ

4Rµρβ
ρ 4Rµν .

]
. (36)

Then we can easily obtain the condition that satisfies 5Rab = 0 under the
conditions of symmetry and the conservation of charge along the geodesic
curve. It is only the 4Rµν = 0 condition. In this step, we can say that our
5gab in (*) is a 5D vacuum solution.
In summary, from the 5D perspective RN and KN black hole solutions are
incompatible with Jµ = 0 and our dynamic result. In contrast, the 4D
vacuum solution is a solution under the 5D vacuum condition with relations
describing the classical dynamics for the Lorentz force. The result 4Rµν = 0
is the same as in [14], although the assumption is different.

6 5D Energy-Momentum Tensor

In Kaluza’s hypothesis,

5Tab =

[
γsc

2
5ρs γecJν

γecJµ
4Tµν

]
. (37)

See eqn(84) of [10]. We will induce energy momentum tensor which is consis-
tent with our result, by assuming a perfect fluid source. In 4D, the energy-
momentum tensor 4Tµν for the perfect fluid is given by [11]

4Tµν = (ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
4gµλ

4gνρ + P 4gλρ 4gµλ
4gνρ. (38)
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From Einstein’s equations, we have the relation,

4Rµν = κ

[
(ρ+

P

c2
)
dxλ

dτ

dxρ

dτ
4gµλ

4gνρ +
1

2
(ρc2 − P ) 4gλρ 4gµλ

4gνρ

]
. (39)

Now we try to induce 5Rab. With eqn(36):

5Rµν = 4Rµν , (40)
5Rµ5 = 4Rµλβ

λ, (41)
5R55 = 4Rλρβ

λβρ, (42)

we obtain

5Rab = κ[(ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
5gaλ

5gbρ +
1

2
(ρc2 − P ) 4gλρ 5gaλ

5gbρ]. (43)

Then 5Tab is

5Tab = (ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
5gaλ

5gbρ + P 4gλρ 5gaλ
5gbρ. (44)

Note that from eqn(37), 4Tµν is independent of charge. Then by solving
eqn(59), 4gµν is independent of charge. Then it is consistent with our opinion
in section 5.

7 No-hair theorem

We would like to obtain the mass, charge, and angular momentum exactly
in 5D. Recall that we assumed the cylindrical condition and stationary con-
dition. We do not consider cosmological constant.

There is a mass quantity in 4D, which is called the Komar mass. Komar
mass is defined as

MK ≡ −
1

8π

∮
St

∇µζνdSµν dSµν = (sµnν − sνnµ)
√
qd2y (45)

where vector n is the unit normal to Σt, vector s is the unit normal to
St, within Σt oriented toward the exterior of St [5, 12]. However, as we
introduced the concept of gravitational and electromagnetic vector potential,
we would like to define M and Q as the surface integrals of the gravity field
and electric field. Before applying the surface integral, we want to consider
integrating in a different way from the Komar mass [16]. Let us consider
the following integral: ∮

E · dS, (46)
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where dS is

dS =
∇xi√
∇xi · ∇xi

√
−adj(4gii)dSi, (47)

and dS1 = dx2dx3, dS2 = dx1dx3, dS3 = dx1dx2. Thus, it is equivalent
to the Komar mass expression. However, it is easier to calculate. Notice,

1√
∇xi·∇xi

√
−adj(4gii) =

√
−4g for all i. Now we are ready to calculate M,

Q and J. First, we would like to calculate Q. As the electric field is related
to F 0i ' E

c ,

Q ≡ ε0c
∮
F 0i
√
−4gdSi. (48)

We want to make sure this is the exact Q. Before the calculation, we want
to make sure that it does not matter what surface we choose. From eqn(48),

Q⇒
∮
F 00

√
−4gdx1dx2dx3 + F 01

√
−4gdx0dx2dx3 (49)

+F 02
√
−4gdx0dx1dx3 + F 03

√
−4gdx0dx1dx2.

In eqn(49), the quantity F 00
√
−4gdx1dx2dx3 is a hypothetical 0 term, dx0

is a virtual integration. Then eqn(49) reduces to∫
∇νF 0ν

√
−4g d3x dx0. (50)

Now we obtain

Q ≡ ε0c
∫
∇νF 0ν

√
−4g d3x. (51)

For the exterior region, ∇νF 0ν = 0. This guarantees what we want to know.
Now we calculate eqn(56) with r=constant surface. Under our 5D metric in
(*), we obtain

ε0c

∮
F 0i
√
−4g dSi (52)

= ε0c

∫ 2π

0

∫ π

0

[
Q

4πε0c

(r2 + a2)(−r2 + a2 cos2 θ)

(r2 + a2 cos2 θ)3

]
(r2 + a2 cos2 θ) sin θdθdφ

= ε0c

∫ 2π

0

[
Q

4πε0c

−(r2 + a2) cos θ

r2 + a2 cos2 θ

]
|π0dφ = Q.

Now we calculate the mass. The gravitational vector potential is AGMµ =
c
2
4g0µ and let FGMµν = ∂µAν − ∂νAµ; then we obtain

− c

4πG

∮
F 0i
GM

√
−4g dSi (53)

9



= − c

4πG

∫ 2π

0

∫ π

0

c

2

[
−2GM(r2 + a2)(−r2 + a2 cos θ)

c2(r2 + a2 cos2 θ)3

]
(r2+a2 cos2 θ) sin θdθdφ

= − c

4πG

∫ 2π

0

c

2

[
2GM(r2 + a2) cos θ

c2(r2 + a2 cos2 θ)

]
|π0dφ = M.

Finally, we define the angular momentum. The mass and charge are de-
rived from surface integral of E-field. However, as far as we know, there
is no physical quantity to obtain the angular momentum through the sur-
face integral. Therefore, let us just carry out the same procedure with the
quantities, Φµ = c 4g3µ, Ωµν = ∂µΦν − ∂νΦµ.

c2

16πG

∮
Ω0i
√
−4g dSi (54)

= c2

16πG

∫ 2π
0

∫ π
0 c
[
2GMa sin2 θ(−a4 cos2 θ+3r4+2a2r2−a2r2 sin θ)

c2(r2+a2 cos2 θ)3

]
(r2+a2 cos2 θ) sin θdθdφ

=
c2

16πG

∫ 2π

0
c

[
2GMa cos θ((r2 − a2) cos2 θ − 3r2 − a2)

c2(r2 + a2 cos2 θ)

]
|π0dφ = Mac = J.

It is already known from the Komar integral that mass is related to sta-
tionary symmetry and angular momentum is related to axial symmetry. In
this paper, as we start with cylindrical symmetry, we can expect a con-
served quantity. From eqn(52), it can be seen that the conserved quantity
corresponding to the cylindrical symmetry is charge.

8 Discussion

1. We did not care whether the fifth dimension is timelike or spacelike. We
set it to timelike to follow the approach of ADM formalism easily, and if it
is spacelike, we can do substitution. However apparently timelike is correct
from eqn(32). In the case of spacelike, in other words, 5g55 = N2 + βλβ

λ,

eqn(32) becomes as follows: 5R = 4R+ (
FλρF

λρ

N2 − µ0

N2Jλβ
λ).

Since these world have two timelike dimensions, 5g00 < 0, 5g55 < 0, someone
cannot imagine that we live in these worlds. However even if 5g55 < 0, we
do not have to consider this because of dx5 = 0 for electrically neutral
body [14].

2. Until now, we had not discussed N. With eqn(32), 5R = 4R− (
FλρF

λρ

N2 −
µ0

N2Jλβ
λ). It seems like 1

N2 = κ
2µ0

. where κ = 8πG
c4

. By dividing eqn(32) by
2κ,

5R

2κ
=

4R

2κ
− (

1

4µ0
FλρF

λρ − 1

2
JλA

λ). (55)
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In eqn(55), we used βµ = 2Aµ. Now we get LEH =
4R
2κ ,LEM = − 1

4µ0
FλρF

λρ+
1
2JλA

λ. For LEM , it satisfies

∂LEM
∂Aµ

−∇ν ∂LEM
∂∇νAµ

= Jµ +
1

µ0
∇νFνµ = 0. (56)

Moreover eqn(56) gives ∇νFµν = µ0Jµ. It is noteworthy that these contents
were naturally induced from the five dimensions. Note that Jλ = 2

µ0
RρλA

ρ.

3. For a weakly perturbed system, 5gab = 5ηab+
5hab, the linearized equation

is given by

5�

(
5hab −

1

2
5ηab

5h

)
= −2κ 5Tab,

5� ≡ 5ηab∂a∂b. (57)

Note that 5η is expressed in Cartesian coordinate. By imposing the cylin-
drical and stationary conditions on 5hab, we obtain

5hab(X)

2
=

1

4π

∫
κ( 5Tab(Y)− 1

3
5ηab

5T (Y))

|X−Y|
d3Y, (58)

where X,Y are spatial components. For details, see [13]. If 5h5ν is pro-
portional to electromagnetic vector potential then 5R5ν should be related to
the charge current, µ0Jν . In section 3 and 4, we identified 5h5ν = 2Aν then
5R5ν should be related to the charge current. In fact, we got 5R5ν = ∇ρFνρ.
Note that 5Rab = κ(5Tab − 1

3
5ηab

5T ) for 5D.

4. Under the stationary condition, 4R00 = −�φt + 1
c2
FGMλρ F λρGM , 4R0i =

1
c∇

ρFGMiρ , where φt ≡ 1
2

4
g00. From the equation

4hµν(X)

2
=

1

4π

∫
κ( 4Tµν(Y)− 1

2
4ηµν

4T (Y))

|X−Y|
d3Y, (59)

we obtain

AGMi =
1

4π

∫ ∇ρFGMiρ
|X−Y|

d3Y, (60)

where ∇ρFGMiρ = −4πG
c2
Ji and Ji is matter current, ρUi. In this step, as we

mentioned in section 3, if 4g0µ is identified as gravitational vector potential,
then 4R0i is identified as matter current. In this way, we can develop a
theory of gravitomagnetism [10,15].
Under the azimuthal symmetry condition, 4R33 = −�φφ + 1

4c2
ΩλρΩ

λρ,
4R3δ = 1

2c∇
ρΩδρ, where φφ ≡ 1

2
4g33, δ span 0,1,2. Then we obtain

Φδ =
1

4π

∫ ∇ρΩδρ

|X−Y|
d3Y. (61)

5. In eqn(28), since N is constant and the integrand is independent of x5,
we ignored the overall quantity Ndx5. Note that this is one of the results
of the conservation of charge along the geodesic curve.
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