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1 Introduction

Calculus is about solving various problems quickly and easily. The word
calculus is related to the word calculation and despite the feeling that it is
a hard subject to learn, everyone who learns it performs calculations easily
and eventually almost automatically.

Perhaps the most fun calculations are those that show how to derive
classic geometric formulas such as the circumference of a circle, the area
of a circle, and the volume of a sphere (cf. the inside back cover of your
book). Other types of problems give laws of physics and still others model
engineering phenomenon and can predict the success and failure of some
dynamic systems: browse the inside back and front covers of your book.

Another attractive feature of calculus is that it is all built on a single
block. The cornerstone is the function and the building is comprised of lots
of functions that can be combined and used to model lots of phenomenon.
Properties of these functions can be calculated with calculus.

The two big calculations are integration and differentiation. The first
combines or sums many things to tell a story and other differentiates things
or pulls things apart to reveal properties. We will look at two of the classic
examples of this in the next section and then give a broad roadmap for
learning calculus in the last section of this introduction.

1.1 Two classic problems

1.1.1 Area under a curve

Everyone knows the area of a rectangle is length times width and that of a
triangle is one half base times height. Let’s put a constant function f(x) = 3
on the Cartesian coordinate system and calculate the area using an integral
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– say the area under f(x) between the origin and four. Here’s the look of
this calculus problem: ∫ 4

0

3 dx. (1)

This is pronounced the integral from 0 to 4 of 3 dx. There is a rule for
calculuating such integrals, it is given by

∫ b

a

cxk dx =
cxk+1

k + 1

∣∣∣
b

a
=

cbk+1 − cak+1

k + 1
. (2)

This says that the integral of a power of x is found by adding one to the
power of x and dividing by that new power. We get a new function given
a function and that new function is the indefinite integral. If there is a
constant involved, just keep the constant. In integral calculus we frequently
want to evaluate that function at two points and find the difference. That’s
the definite integral. So here, what is the power of x in (1)? And what is
the constant c? We have

∫ 4

0

3x0 dx =
3x0+1

0 + 1

∣∣∣
4

0
= 3 · 4 − 3 · 0 = 12 (3)

and that is the area under the curve. Did we know this already?
Let’s try calculating the area of a triangle given by the area under the

curve f(x) = x from the origin to three. Here we have

∫ 3

0

x dx (4)

as the definite integral and we can use the formula given in (6) to calculate
the area of the triangle. We have

∫ 3

0

x dx =
x2

2

∣∣∣
3

0
=

32 − 02

2
=

9

2
. (5)

Is this correct?
Congratulations you are using the integral calculus to find the area un-

der curves. So far one could say that the areas calculated don’t need such
complicated machinery as the integral calculus, but we are not limited to
confirming easy areas that we know already. We can explore functions and
the areas associated with them for which we have no rule. So, for example,
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what is the area under the quadratic f(x) = x2 between the origin and three?
It’s not going to be hard to find:

∫ 3

0

x2 dx =
x2+1

2 + 1

∣∣∣
3

0
=

33 − 03

3
=

27

3
= 9. (6)

Finding such an area is easy now, but it took a couple of thousand years to
make it easy. Can we find the area under x3, 5x5, etc.? How about x2 + 2x?
What would you guess the answer is? Of course: you just add the results
of two integrals. Are we limited to just the areas of polynomials? Not at
all. We will review all the major types of functions calculus can calculate in
the next section: our roadmap. Now we turn to the other classic problem
calculus solves.

1.1.2 Find the maximum

Hopefully you have taken college algebra and trigonometry (or precalculus)
and are familiar with quadratic functions given by f(x) = ax2 + bx + c. You
recall that the maximum or minimum is given by

x = − b

2a
. (7)

It’s a maximum if a < 0 and a minimum if a > 0. Draw a parabola and
consider the slope of the tangent at such maximums and minimums? What
will it be? We are differentiating points in the domain of the function when
we find which ones have different tangent line slopes. There is a way to
calculate such slopes. One takes the derivative at a specific value. The
derivative of cxk is given by

d

dx
cxk = kcxk−1. (8)

Whereas before with the integral we increased the power of x by one and
divided by it, now we multiply by the current power and diminish the power
by one. So what is the derivative of x? It is just 1x0 or, that’s right, one.
What is the slope of the line tangent to f(x) = x at all points? It is, of
course, just one. How about f(x) = bx? It is just b. And f(x) = x2? It is
just 2x. At x = 0 what is the slope of the line tangent to this curve?
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Let’s try f(x) = −(x− 2)2 + 2. This quadratic uses the standard form of
the quadratic. It’s vertex occurs at (2, 2) and its vertex gives the maximum.
Converting this form into the ax2 + bx + c form we have

f(x) = −(x2 − 4x + 4) + 2 = −x2 + 4x − 2 (9)

and the formula −b/2a confirms x = 2 is the maximum, but using calculus
we can take the derivative and get the slope of the tangent lines and set it
equal to zero. So

d

dx

(
−x2 + 4x − 2

)
=

d

dx

(
−x2

)
+

d

dx
4x +

d

dx
(−2) (10)

= −2x + 4 (11)

and −2x + 4 = 0 gives x = 2, as we already knew. What about the general
formula? We have

d

dx

(
ax2 + bx + c

)
= 2ax + b (12)

and 2ax + b = 0 is solved by, you guessed it, −b/2a.
Are we limited to quadratics? Not at all. Where does the maximum and

minimum of a third degree polynomial occur? We don’t have a formula for
that in college algebra, but now we can determine such things by routine
calculations? So, for example, where does the max and min occur in f(x) =
x3 − 3x2 + 3? We can use our calculators to find this, but with calculus we
take the derivative, set to zero, and solve for x:

d

dx

(
x3 − 3x2 + 3

)
= 3x2 − 6x = 3x(x − 2) (13)

3x(x− 2) = 0 (14)

and the last equation gives roots 0 and 2. At x = 0 we get 3 and at 2 we
get 8 − 12 + 3 = −1, so x = 0 gives a relative maximum and x = 2 gives a
relative minimum. This is problem 23, page 215. Looking at the problems
on this page, one senses that any function we can generate with arithmetic
operations we can differentiate.

We will review all such functions and a few integral and differentiation
formulas in our roadmap. Right now let’s consider the integral and derivative
of xk. Is there a relationship? The derivative is kxk−1 and the integral of
this gives back xk. Does this remind one of anything? Consider ln ef(x) it
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is just f(x) because the natural logarithm and the exponential function are
inverses. So what is the relationship between the derivative and the integral?
Yes, they are inverses. So everytime we get a derivative formula we should
look for a corresponding integral formula.

Problems 1

1. Given the derivative of cos is − sin and the derivative of the sin is cos,
what is the area under the cos curve between 0 and π/2? What other
integral can you solve?

2. Given the derivative of ex is ex what is

∫ 2

1

ex dx? (15)

3. Looking at the inner cover of your book, the cutout entitled Derivatives
and Integrals, speculate on what u and v are. Hint: think of composition
and functions.

4. Try using your calculators calc menu to explore integration and differ-
entiation. You need a TI-83 or better for this course. You will generally
not be allowed to use a TI-89, but we will talk about this calculator.

5. Sections 1.5 and 5.3 are pure college algebra (or precalculus) sections.
Take a look at them.

6. Section 3.6 gives a summary of curve sketching. This should be con-
ceptually clear and help motivate the reason why differential calculus is
closely linked with analytical geometry.

1.1.3 Roadmap to calculus

The question a student should be asking at this point is how did you get
the formula for the area under a curve and the slope of the line tangent to a
curve? Those answers come in the form of considering various limit problems:
adding up an infinite number of rectangles and making ever smaller secants
for a curve, respectively. Looking at your book, consider the table of contents
and chapters P and 1 through 5. These are the chapters we will be covering in

5



properties/limits/formulas d/dx
∫

inverses series apps
poly
rational
exp
ln
trigs
hyper

Table 1: Roadmap for Calculus functions

this course. We start with limit ideas and then consider differential calculus
and then integral calculus. We derive the formulas mentioned using limits.
We extend these polynomial formulas to a set of functions and combinations
of functions. That’s the roadmap. Browse your book and note on page 284,
example 3 one sees an area problem and on page 213, example 5 one sees a
curve sketching problem (finding slopes of tangent lines).

In Table 1 there is a list of the functions we will consider. This list applies
for other two courses in the calculus sequence. In calculus 2 an important
column is added: series. That is how do you express transcendental functions
as infinite series. In calculus 3 we extend the number of independent vari-
ables considered. Don’t worry if you don’t understand what infinite series
or independent variables are right now. That’s for subsequent courses. For
each function family we want to consider the column topics: what are its
properties, its derivatives, and its integrals. We then wish to extend these
functions by composing with them. So, for example, what is the derivative
of sin(ex)? What is its integral? There are formulas for such things and
techniques. Easier than composition, we can add functions: e.g. sin x + x2.
In general, we can use any number of arithmetic operations to build new
functions from old.

The formulas for differentiating say the product or quotient of two func-
tions is built up slowly: limit theorems lead to continuity theorems which
lead to differentiation theorems and then integration theorems. Table 2 shows
the key Theorems (formal math statements with proofs). Some Theorems
are also formulas – procedures for finding the derivatives of products and
quotients, for example.
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Theorems/Formulas bf(x), f(x)± g(x), f(x)g(x), f(x)/g(x), fn(x), f(g(x))
Limits T1.2, p. 59; T1.5, p.61
Continuity T1.11, p. 75, T1.15, p. 87
Derivatives p. 136 Summary
Integrals p. 250 Basic Integration Formulas
Integrals inverses, change of variable

Table 2: Differential and Integral Single Variable Theory

Problems 2

1. Some proofs are fairly easy. Try looking at the proof of Theorem 2.5
on page 111 and express the general statement of the theorem.

2. The product rule, Theorem 2.7, is considerably harder. It uses a com-
mon theme: express something you don’t know using things you do
know.

3. A hard and important theorem is given on page 65. Try to understand
the geometric argument given in Theorem 1.9. It is crucial to finding
the derivatives of sin and cos.

4. Consider the pictures and captions supplied at the beginning of each
chapter of the book (or chapters 1-5). Use your imagination to speculate
on the problem posed. Try doing the same for a few items in the Index
of Applications in the front cover of your book (try the items that start
with a p), like pendulum.

2 Coming Attractions

I will be making a video that shows how typical differentiation and integra-
tion problems are done. All people who learn calculus can always do such
problems, even after years of inactivitity. The routines become automatic
for everyone who masters calculus.

Naples, FL 34108
tjones4@edison.edu
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