A potential way to unify classical and quantum mechanics

Author: Roberto Napolitano (born in Naples, Italy, on the 7th of April, 1975)
Contacts: LENNYUS@ALICE.IT
Mobil phone: +39.333.25.08.601

Abstract

In the present work, by moving from the assumption that the Sun (and all the massive bodies) produces, starting from a certain distance from it, attractive and repulsive gravitational forces at the same time, giving life to the movement of the planets around the Sun according to the same principle of pendulum, I managed to derive a perihelion precession formula, a black hole radius formula and, above all, a formula of atomic nuclear radius, which was missing until now, all in excellent agreement with the observation and in a completely independent way of the Einstein’s theory of relativity.

I have also shown that the nuclear radius formula can also be successfully used to predict the radius of neutron stars.

Moreover I have found — always through the same principles that allowed me to achieve the above results, in particular through the modification of the Newtonian gravitational potential, in turn due to the different modus-operandi of gravity force — a formula of the non-decreasing orbital velocity of galactic stars, without considering dark matter.

Then I have demonstrated the black hole is composed only of protons, and that it’s similar to the nucleus of the atom and, analogously, the galaxy is similar to the atom, since the stars moving around the central nucleus in the same way as the electrons move around the atomic nucleus.

I have also found another similitude among atomic nucleus, black hole and neutron stars, namely the self-orbiting phenomenon existing in all the cases.

From the mathematical findings obtained in the present work it has also emerged the existence, both at the microscopic and the macroscopic level, of the gravito-electric force (or, if you prefer, electro-gravitational force), resulting from
the fusion of the gravitational force with the electric one, working exactly in accordance with Newtonian mechanics, although modified by the introduction of a repulsive force in addition and in opposition to the attractive one, that makes us understand the universe works always in the same way, both in macro and in micro.

It is also emerged the existence of the universal principle of specific asymmetry between gravitational potential energy and kinetic energy, as a cause of nuclear energy $E = mc^2$.

In this perspective, the present work can represent a potential unifying way between the macrocosm and microcosm mechanics.

CONTENTS

Chapter I

1. The pendulum in the universe
 1.1 The context...5
 1.2 Introduction...7
 1.3 The non-summability between centripetal acceleration and gravity acceleration in the motion of the planets.................................15
 1.4 The force F_{rx} ..16
 1.5 First analogy between solar system and pendulum.........................19
 1.6 Second analogy between solar system and pendulum19
 1.7 Third analogy between solar system and pendulum19
 1.8 Fourth analogy between solar system and pendulum20
 1.9 Fifth analogy between solar system and pendulum21
 1.10 Sixth analogy between solar system and pendulum23
 1.11 Seventh analogy between solar system and pendulum23
 1.12 Strength analysis of the F_{rx} force..................................23
 1.13 The cause of the motion of the planets around the Sun and all the celestial bodies moving around a gravitational center24
 1.14 The cause of orbital elliptic...26
 1.15 The gardener's ellipse...30
 1.16 Energy of the attractive-repulsive gravitational field..................33
 1.17 Difference between field of inexistent forces and field of self-canceling out forces...33
 1.18 Aphelion as the point from which the motion of the planets has begun ..33
 1.19 The necessary ellipticity of the orbit of the celestial bodies around a central body ..34

Chapter II

2. Mathematical demonstrations
 2.1 Demonstration of Kepler's third law by hypothesizing that the solar system is a harmonic oscillator..35
 2.2 Demonstration that the planetary system is a harmonic oscillator......36
 2.3 The accelerated expansion of the universe explained by the exclusively
repulsive effect of gravity..43

Chapter III

3. The ligamentous nature of gravity

3.1 Gravitational ligaments..44
3.2 Space-time network or gravitational ligaments network?.................46
3.3 Gravitational waves and their compatibility with ligamentous nature of gravity force..47

Chapter IV

4. Gravitational attractive and repulsive forces, centripetal force and centrifugal force: differences

4.1 Definition of centripetal force and of centrifugal force.........................50
4.2 Centripetal and centrifugal forces in the solar system........................52

Chapter V

5. Perihelion precession, black hole radius, atomic nuclear radius, radius of neutron star and stars orbital speed

5.1 Perihelion precession...59
5.2 Gravity force: exception to the first principle of dynamics...............64
5.3 The deflection of stars-light behind the Sun.................................66
5.4 The black hole radius...68
5.5 The nuclear radius: gravito-electric force......................................72
5.6 The non-decreasing velocity of galaxy stars: dark matter crisis........80
5.7 Black holes: “proton stars”...83
5.8 The speed and the orbital radius of the electrons around the nucleus...85
5.9 Principle of specific asymmetry between gravitational potential energy and kinetic energy as an ideal condition of orbital stability91
5.10 The potential energy of the gravitational field and the potential energy of the gravito-electric field: differences.................................102
5.11 The radius of neutron stars: differences with respect to the proton stars ...105
5.12 The characteristics of shadow particles connected to protons and to neutrons..109
5.13 The self-orbiting-phenomenon: mathematical tests.......................112
1.1 – The context

Does gravity also work at microscopic level?

If yes, how?

These are the questions to which science tries to give an answer, which is slow to arrive.

Einstein's theory of relativity gives good results at macroscopic level (even if, at galactic level, it does not explain the speed of the stars which, unlike the Keplerian-Newtonian system, remains almost constant, regardless of the distance of the star from the galactic center), but does not work at microscopic level, where experiments have shown that the principle of local realism, on which the theory of general relativity is based, does not apply to microscopic particles and their dynamics.

In essence, Einstein believes that the force of gravity is the consequence of the spacetime curvature, caused by the mass of the bodies.

The force of gravity, in other words, would not be a force that acts instantaneously between the bodies, but acts at the speed of light through the deformation of the spacetime caused by the mass of the bodies.

The main difference between the theory of relativity and Newton’s theory is that the latter believed that the force of gravity does not act through an intermediary, unlike the German scientist who believed that an intermediary does exist: the spacetime.

In truth, the non-applicability of relativity to the microcosm is not the only
issue connected to this theory.

As anticipated above, relativity is not perfectly applicable even at galactic level, unless we resort to the existence of the hypothetical dark matter, which is believed to form about 75% of the universe, despite being completely invisible and untraceable.

So current theories try to find the physical and mathematical principles that unite the macroscopic and the microscopic world.

All the current theories are based on Einstein's relativity, in particular they suppose the existence of spacetime, even if they attribute different properties to it.

According to the theory of particles (supergravity and string theory) spacetime would be flat (unlike general relativity), and in any case it would not be the mediator of gravity, which would be mediated by a virtual particle, called graviton, but it has never been found.

Actually not only the graviton has never been found, but WIMPs in general have never been found (i.e. the weakly interacting massive particles), which, among other things, would constitute dark matter.

Many experiments have been conducted from 2005 to date in order to detect dark matter, both in space and in laboratories, but without good results.

The best results obtained by particle theories concern the behavior of particles in accelerators, where the subatomic particles are collided to verify their comportment.

However, even if the theory in question is suitable to predict the behavior of the particles after having them collided inside the accelerators, it cannot find a satisfactory explanation of the behavior of particles inside their natural site, namely the atom, and in particular the nucleus of atom, where many questions remain open (first of all the nuclear radius).

Moreover, the mathematical results of the string theory are subjected to the renormalization procedure — that, among other things, works better by assuming the existence of a supersimmetric particle (i.e. a partner of the elementary particle endowed with a greater mass) — to adapt them to the microscopic scales, but this mathematical procedure is not accepted by everyone.

In contrast to the theory of particles there is the theory of loop gravity.
This theory tries to extend general relativity even at the microscopic level, thus hypothesizing that spacetime is bent by mass even at the microscopic level.

To this end, it attempts to quantize the spacetime, which would be the only intermediary of gravity, without the need to resort to the gravitons predicted by the theory of particles.

The main criticism against the theory of loop gravity relates the fact that it fails in finding a convincing way of quantizing spacetime.

In the present work a new vision of the gravitational phenomenon will be exposed, completely different from the two theories mentioned above, which perhaps has some element in common more with the theory of supergravity, rather than with loop gravity, ending up demonstrating the existence of a symmetrical particle (not supersimmetrical, by having the same mass as the real partner) of the nucleons.

- **1.2 – Introduction**

 Galileo, one of the greatest scientists of all time, was nothing short of fascinated by the pendulum's motion, studying it to the point of dissecting every its little secret.

 He realized, among other things, that the amplitude of the oscillation in the ascending phase is slightly less than the amplitude of the oscillation in the descending phase, from which he deduced that the pendulum, if there was no friction with the air, it would move forever.

 Nevertheless he did not see any analogy with the motion of the planets, which is also eternal.

 But let's come to us.

 It’s known that the pendulum is a system formed by a fixed point called "fulcrum", to which a wire is tied, to whose opposite end a sphere is fixed so that it cannot fall to Earth in consequence of gravity force.

 The trajectory described by the pendulum is perfectly circular or, better, it describes an arc of a circumference more or less large depending on the amplitude of the initial oscillation.

 So I wondered what would happen if the external gravitational attraction came not from one side only, below the pendulum, but surrounded it at 360 degrees.
I answered this question by basing more on logic than on real experiments, also because it is not easy to recreate the conditions of the example above, and the answer was that the pendulum should make a complete revolution around the fulcrum and, if there was not the friction with the air, the circle should be repeated forever, exactly as happens in the motion of the planets.

But how could the external attraction surround the pendulum 360°?

Simple, imagining that the fulcrum exerts on the sphere a force both attractive and repulsive, at the same time.

This consideration allowed me to grasp a strong analogy between pendulum and solar system.

I therefore hypothesized that the solar system constituted a pendulum, to be precise a particular type of pendulum, in which the external gravitational attraction does not come from one side only, like in the classical pendulum, but surrounds it at 360°.

More precisely, the *cosmic pendulum* would be so composed: the fulcrum of the pendulum would be the Sun; the sphere, or rather the spheres hanging from the different threads, would be the planets; the gravity force exerted by the Earth on the sphere of the pendulum would be replaced, in the solar system, by a repulsive force exerted on the planets by the Sun itself.

I hypothesized, in particular, that the Sun (but also all other celestial bodies, including the planets) exerted, beyond a certain distance from it, not only an attractive force, but also a repulsive force, of equal magnitude compared to the first.

In other words, every massive body would give rise, starting from a certain distance from it, not to a single pair of opposing forces, which would cancel each other out, but to an attractive-repulsive force field that would invade the space surrounding the body itself, and which would create the conditions for the birth of a pendulum, as will be better seen later.

Before analyzing the particular type of pendulum I have imagined to exist in the solar system, let's analyze in the next page the forces-field that we have in a particular type of pendulum called "harmonic oscillator", characterized by the fact that the amplitude of the oscillation is very small, first studied by Galileo.

Figure 1 – Pendulum harmonic-oscillator (very small oscillations)
We note in the figure that in the Galilean pendulum there is only one point of equilibrium, the point O, around which the sphere oscillates.

The sphere is always subjected to two forces: the gravity force (F_g indicated in red) and the reaction force T (indicated in blue) that acts on the sphere since it is anchored at the fulcrum by the wire.

The force F_g splits into two forces:

1) the force F_{gy}: a component of gravity with a radial orientation (extension of the radius).

2) The force F_{gx}: a component of the gravity force with orientation tangent to the trajectory of the pendulum. This force is responsible for the movement of the pendulum and exists because the gravity force and the tension of the thread are not aligned.

The force T consists in a reaction force arising by the fulcrum, to which the sphere is fixed by the wire.

In other words, the sphere, by being bound to the fulcrum by the wire, reacts to
the force F_g with a force T perfectly identical to the first.

This perfect identity between the two forces operates continuously during the oscillations of the pendulum, therefore, by continuously variating of the force F_g, the force T varies continuously and to the same extent.

Therefore, in the descending phase, the force F_g increases progressively as the sphere approaches the ground and, as it increases, the T force also increases at the same time of an equal measure.

Moreover, the increase in speed is due precisely to the increase in gravity force that operates on the sphere in the descending phase.

In the ascending phase, then, the force F_g decreases progressively as the pendulum moves away from the ground and, to this decrease of F_g, a simultaneous decrease in the same amount of force T corresponds.

The decrease in speed is due to the fact that the sphere moves in the opposite sense to the gravity sense.

We can therefore state that, in the harmonic pendulum-oscillator, this equation always occurs:

$$F_g = -T$$ \hspace{1cm} (1)

The minus sign in front of T means that the two forces have opposite sense.

In truth this equation occurs only in the pendulum with very small oscillation amplitude, defined, as we said, "harmonic oscillator".

When the oscillation is very small and the wire is very long, the velocity of the pendulum is minimum, so the centripetal force becomes negligible.

It should not be forgotten in this regard that Galileo did his experiments on the pendulum by examining the movement of a lantern hanging from the ceiling of a church using a chain about 20 meters long, and in this case pendulum movement is very slow because the period of a pendulum increases with the increase of the thread, and consequently the centripetal acceleration becomes negligible because it decreases with the decrease of speed and with the increase of radius ($A_c = \frac{V^2}{R}$).

As I will show shortly, the solar system too constitutes a set of harmonic oscillator pendulums all having fulcrum in the Sun, in which the planets — but the
principle can be extended to all the bodies of the universe moving around a
gravitational center — are subjected to the same two forces to which the sphere of the
harmonic oscillator pendulum is subjected, in particular, to a central attractive force
coming from the Sun, and, at same time, to a repulsive one that pushes the planet
outwards of the orbit, of equal-magnitude to the first, arising always from the sun.

The figure in the next page shows the hypothetical diagram of the forces that
should be realized if the solar system were a pendulum, thus assuming that the phase
of approach to perihelion was identical to the descending phase of the pendulum, and
that the phase of approach to aphelion was identical to the ascending phase of the
pendulum, with the only difference that the motion is not oscillatory, but always has
the same orientation (counterclockwise).

Figure n. 2 - Cosmic pendulum harmonic oscillator
LEGENDA

F_a: Forza gravitazionale attrattiva

F_r: Forza gravitazionale repulsiva

F_{rx}: Componente tangenziale della forza gravitazionale repulsiva

F_{ry}: Componente radiale della forza gravitazionale repulsiva

$F_a = - F_r$
As we can see from the previous figure, the only point where the attractive and repulsive forces cancel each other out, by being exactly opposite, is perihelion: this happens because, as we will see better later, the planet, from the point following the perihelion, begins to move away from the Sun, and this can happen only if, in the instant in which the planet occupies the perihelion, it is subjected to two forces that cancel each other out, in which case, for the first principle of dynamics, the body moves, even if only for a moment, of rectilinear motion, so that it will cease to approach, curving, the Sun, and will begin to move away from it as little as possible.

When, instead, the planet is in aphelion, the two forces do not cancel out, because otherwise the planet would continue to move away from the Sun, but this would violate the principle of conservation of energy, because the attractive force would be suppressed, as we’ll see better later, so that, in that point, the repulsive force cannot have radial orientation and to cancel itself with the attractive force.

In this way, in the planetary orbits the same conditions of the pendulum are replicated, in which, as seen in the figure 1 on page 9, there is only one point where the two forces (the Earth's gravity and the tension of the wire) cancel each other out, that is the point closest to the Earth, defined "equilibrium point", where the magnitude of the conflict between them is maximum.

This equilibrium point of harmonic oscillator, therefore, is exactly equivalent to the perihelion of the cosmic pendulum, although the latter cannot properly be defined an "equilibrium point", because, if so, the planet would oscillate around it, but, as it is known, this does not happen.

The fact that it is not an equilibrium point in the proper sense of the term also has another fundamental implication: if the planet, for any reason (more theoretical than practical) stopped in perihelion, it, once removed the hypothetical obstacle, would not remain motionless like the sphere of the harmonic oscillator would do, but would resume to revolve around the Sun, even though not describing the same orbit as before, but an orbit characterized by the fact that the stopping point, which was assumed to be the perihelion, the new aphelion would become, with the consequence that the new perihelion would place in the exact opposite point to that in which it was before the stop.

This happens because, as will become clearer later, the aphelion is the point
from which the motion of celestial bodies (subjected to an attractive-repulsive gravitational field) begins, similarly to the pendulum, in which the movement of the sphere starts from the point of the trajectory in where the gravity force is less.

I hypothesized that the attractive gravity force was always counterbalanced by the repulsive force, because, otherwise, the planet would sooner or later end up colliding against the Sun, due to the gravitational attraction exerted by the latter, which, in the absence of repulsive force, should inevitably wear out, with its incessant work, the planet-sun distance.

The only movement of the body with tangential orientation, in fact, cannot be considered sufficient to counteract gravity force, because this is an action force, not a reaction one, as we will better see later.

So I assumed that the force T, which in the classical pendulum exerts on the sphere a reaction force, was replaced, in the cosmic pendulum, by the attractive gravity force coming from the Sun, which I called F_a (attractive force), and that the force F_g, which in the classical pendulum exerts an external attraction, was replaced, in the cosmic pendulum, by the repulsive gravity force always coming from the Sun, which I called F_r (repulsive force).

I basically hypothesized that the following equation always occurred in the solar system:

$$F_r = -F_a$$

Where F_a is the attractive gravitational force and F_r is the repulsive gravity force.

The minus sign before F_a indicates that the two forces have opposite orientations.

It would therefore be created the same situation as clash between forces existing in the classical pendulum, where we have seen that:

$$F_g = -T$$

Consequently I hypothesized that, in the solar system, the attractive gravity acceleration, which we will call g_a is always equal to the repulsive gravity acceleration, which we will call g_r, so we would have the following equation:
\[g_r = - g_a \] (2)

The minus sign before \(g_a \) indicates that the forces from which the two accelerations result are opposite.

- **1.3 The non-summability between centripetal acceleration and gravity acceleration in the motion of the planets**

It’s important to clarify that it has been possible to hypothesize in (2) the equality between the two gravity accelerations (the attractive and the repulsive), like in the harmonic oscillator, since, although the planets are subjected to centripetal force, it’s not possible to sum the centripetal acceleration with gravity one (except in the perihelion, as we can see later).

The reason for this foreclosure is that the solar gravity force, in while attracting the planets towards the center, indirectly prevents them from moving away in a straight line and, in this way, behaves "also" like a constraint generating centripetal force.

The centripetal force, in fact, can be defined as the force that prevents from the distancing of the body in straight line from the center, making it move around it, so that if the central force is attractive, like gravity, it also acts as a constraint, because who attracts a body also prevents from its distancing from it (as if it were a rope to which the planet is hooked), but the gravity force is not only a constraint, by generating also an attraction on the body that tends to bring it closer to the attractor body.

Since the centripetal acceleration being the speed with which the body changes the orientation of its tangential velocity vector in a given time interval, we can say that, when the central force is attractive, like the gravitational one, centripetal acceleration can be considered an indirect effect of the central force and, therefore, centripetal acceleration and gravity acceleration cannot be summed algebraically, by not being generated by two different forces, but by being two distinct effects (the attractive-direct one and the constraining-indirect one) of a single force (the gravitational attractive force).

They can be summed only in perihelion, where they have the same orientation and sense, i.e. the same effect, as we’ll see later.
• 1.4 - The force F_{rx}

At this point a question arises: what does force F_{rx} derive from?

The question arises because, in the classical pendulum, its homologous force F_{gx} derives from the fact that the gravity force doesn’t have the same orientation as the reaction force T, so it splits into two forces, one of which is F_{gx}.

In the cosmic pendulum, vice versa, the repulsive force should have the same orientation as the attractive one, therefore, strictly speaking, the force F_{rx} should not arise.

The only possible explanation of its arising is to believe that this force arises from the fact that the Sun creates a 360-degree attracting-repulsive field, thus determining the arising not of a single pair of opposing forces operating on the planet (an attractive and a repulsive one) that should cancel each other out, with the consequent quiet state of the planet, but an infinite number of pairs of equal and divergent forces, with consequent different levels of energy (or pressure) resulting from their contrast, and this would cause the revolution of planet around the Sun according to the principle illustrated in the paragraph 1.13.

The figure in the next page will help us to better understand the peculiar phenomenon of the pendulum subjected to a 360-degree attraction-repulsive action by the fulcrum.
It’s important to understand that the birth of force F_{rx}, and therefore the composition of the two forces F_{rx} and F_{ry} in F_r, occurs only when the planet occupies a new point in the orbit.

Before that moment the two forces present in each points of the attractive-repulsive field cancel each other out from the dynamic point of view, because they have the same magnitude, the same orientation and opposite sense, but their collision generates energy (or pressure, it’s not very clear to me), and this energy has different values depending on the point considered: closer to the Sun the energy would be greater than that existing in the points furthest from the star.

When the planet moves to the next point in the orbit, the F_r force, due to the birth of the F_{rx} force, will result from the composition of the two forces F_{rx} and F_{ry}.
and in this way it will no longer have the same orientation as the attractive force F_a, and this creates the same type of forces-field that exists in the harmonic oscillator pendulum, in particular two equal but not opposite forces (not aligned), which in turn determines the movement of the planet around the Sun according to the principle illustrated in the paragraph 1.13.

This is my guess, by having never been observed in nature the behavior of a body inserted in an attractive-repulsive forces-field generated by a single central body, but I think that my deduction is the only one able to explain the cause of the movement of the celestial bodies around a central body, which otherwise would have to be ascribed to a mysterious thrust, or rather to multiple thrusts (by having every single planet a different velocity with respect to the other ones), which, to tell the truth, is rather far-fetched.

In this regard, we can observe that any known field of forces (magnetic, electromagnetic, electric) never exerts two opposing forces at the same time, and never in the same region of space.

In the magnetic field, for example, the magnetic charges are arranged in a polar fashion, i.e. one type of charge is concentrated in one pole of the magnet, and the opposite charge is concentrated in the opposite side of the magnet, so that the space surrounding the magnet can be divided in two areas: one pervaded by a positive charge, and the other pervaded by a negative charge.

In the electric field, furthermore, the opposite charges never derive from the same body (for example the electric attractive-repulsive field generated by two neighboring wires, in which case one wire is crossed by positive electric current, and the other by negative electric current).

Therefore, in reconstructing the behavior of a body inserted in an attractive-repulsive gravitational field, I have had to proceed necessarily to the formulation of hypotheses and, among all, the most likely has seemed to me that such a kind of forces-field should give rise to the birth of a pendulum with a non-oscillatory, but a rotary movement around the fulcrum.

The alternative would be to assume that the body inserted in such a kind of forces-field would remain in a state of rest, between two opposing forces, but this would seem contradicted from the fact that, as we’ll see shortly, the planets move with
the same orbital period, with the same angular velocity and above all with the same acceleration law of the Galilean harmonic oscillator, which suggests that the conditions for the birth of a pendulum exist with high probability, i.e. the presence of two conflicting forces on the planet, even if not "opposite".

Moreover, the analogies with the pendulum of Galileo are not limited to the applicability to the planetary motion of the aforementioned mathematical laws regulating the motion of the harmonic oscillator, since also other physical analogies subsist, set forth below.

Physical analogies between solar system and pendulum

- **1.5 - First analogy**
 The sphere of the pendulum oscillates around a fixed point, called the fulcrum, just like the planets move around a fixed point, the Sun.

- **1.6 - Second analogy**
 The motion of the planets is perpetual, as perpetual would be the one of pendulum in the absence of friction with the air and if the wire was perfectly inextensible.

- **1.7 - Third analogy**
 The planets move in not uniformly accelerated way when they move towards the attractor.

 More precisely, the planets accelerate not uniformly when they move towards perihelion (point of the orbit closest to the Sun and of maximum orbital velocity), analogously to the pendulum, which accelerates not uniformly in the descending phase, reaching the maximum linear velocity in the closest point to the Earth.

 When the planet is directed towards the perihelion, it progressively approaches the Sun, though not directly, so the magnitude of the conflict between F_a and F_r increases, as seen in figure n. 2.

 The progressive increase of the two opposing forces also determines the progressive increase of the planet's orbital velocity, up to the maximum velocity in the perihelion.
The increase in the speed of the planet is due to the fact that the increase in the magnitude of the divergent forces operating on the planet causes the force F_{rx} to increase too.

The force F_{rx} in fact, can only be born if we hypothesize the simultaneous reduction of the force F_r that pushes the planet outwards, otherwise a force would be created from nothing, which would violate the energy conservation law.

Therefore, the greater the force F_r, the greater will be the force F_{rx}, thanks to which the planet will move towards the nearby point of the orbit that, from the energetic point of view, is the least strong between the strongest ones, or the least weak among the weakest ones, as will be seen shortly.

The phase of approach to perihelion is therefore similar to the descending phase of the Galilean pendulum, where the sphere, while accelerating progressively as it approaches the surface of the Earth, is subjected to two divergent and equal forces, though not "opposite", which gradually increase in magnitude: the analogy between the two phenomena is confirmed by the fact that, in both cases, the acceleration is not uniform.

The perihelion is similar, therefore, to the equilibrium point of the Galilean harmonic oscillator, but this similarity is limited to the fact that in both cases the two opposing forces cancel each other out from dynamically view-point, but, as mentioned above, the perihelion is absolutely not to be considered like an equilibrium point, because, if by hypothesis the planet would stop there, it would not remain motionless like would happen if the harmonic oscillator stopped in the equilibrium point, but it would re-begin to revolve around the attractor-repulsor with a new orbit having the aphelion in the old perihelion.

- **1.8 - Fourth analogy**

 The planets decelerate unevenly when they move towards the aphelion (point farthest from the Sun and of minimum orbital velocity), similar to the pendulum, which decelerates not uniformly in the ascending phase, reaching the minimum tangential velocity at the farthest point from the Earth.

 When the planet moves away from the perihelion and goes towards the
aphelion, the magnitude of the collision between the attractive force and the repulsive force decreases progressively, until it touches the minimum in aphelion, and this determines the reduction of the force F_{rx} and, therefore, the slowing down of the planet: the analogy between the two phenomena is confirmed by the fact that, in both cases, the deceleration is not uniform.

In this way, the same conditions existing in the classical pendulum are replicated in the solar system: an external gravitational force that pushes the body away from the center continuously and adequately countered by a force pointing towards the central point, not opposed to the first one.

It’s important to clarify that during this phase the planet slows down because the orientation of attractive gravity force is opposed to the orientation of planet’s velocity, by been not orthogonal to the motion, so this force hinders the planet by making it slow down, but not enough to make the orbit be parabolic, since it is avoided from the fundamental contribution of the tangential component of the repulsive force (F_{rx}), which allows to preserve the ellipticity of the orbit, and therefore its stability over time.

As it has been said before, the aphelion, point of the orbit in which gravity is less, is the one from which the motion of celestial bodies begins in a repulsive-attractive forces-field, similarly to what happens in the pendulum, in which the motion of sphere begins from the point where the gravity force is less strong.

Mathematical analogies between solar system and pendulum

- 1.9 - Fifth analogy

As for mathematical analogies, first of all we have that the orbital period of the planets, i.e. the time in which the planets make a complete revolution around the Sun, depends, as I will show later, on the repulsive gravity force and on the distance from the Sun, more precisely the revolution time of the planet is expressed by the following formula:

$$T = 2 \prod \frac{L}{g}$$

that is exactly the law regulating the period of the harmonic oscillator discovered by Galileo, where "$L"$, in the pendulum of Galileo, is the length of the wire.
to which the sphere hangs, and "\(g \)" is the gravity acceleration exerted on the sphere by
the Earth (or by the different planet on whose surface the pendulum is possibly
placed), instead, in the "cosmic pendulum" (that is what I saw in the solar system),
"\(L \)" becomes the average distance between planet and Sun (i.e. the semi-major axis
"\(a \)"), and "\(g \)" becomes the average repulsive gravity acceleration due to the solar
repulsive force.

We point out that the formula written above is the one regulating the period of
a particular type of pendulum called "harmonic oscillator", in which, as already
mentioned, the amplitude of the oscillation is so small that it does not allow the
centripetal force to rise if not to a negligible extent, due to the minimum speed of the
sphere and to the relevant length of the radius, so that here too, like in the cosmic
pendulum, there is a continuous equality between the central force and the external
force.

In the pendulum with not small oscillations, on the contrary, the pendulum is
subjected to the centripetal force, since it moves with circular motion (more precisely
it is an arc of circumference), so, when it passes in the equilibrium point, the central
force (thread tension) becomes stronger than gravity force.

Thus, in the cosmic pendulum, the repulsive gravity force, which we have
indicated above with \(F_r \), has the same function as the earth's gravity force of the
harmonic oscillator of Galileo, i.e. to push the body away from the center, so, as
gravity force of Earth is equal to the tension of the wire in the harmonic oscillator of
Galileo, analogously the repulsive gravity force is equal to the attractive gravitational
force in the cosmic pendulum, because in the latter it is not possible to accumulate the
centripetal acceleration with gravity acceleration, except in perihelion, as it will
become clearer later.

The analogy between the two phenomena (pendulum harmonic oscillator and
solar system pendulum) allows us to apply to the solar system the laws regulating the
period, the angular velocity and acceleration of pendulum harmonic oscillator.

The only difference between the two pendulums is that the Galilean one
oscillates from one side to the other around the equilibrium point, instead the cosmic
one makes a complete revolution around the center, but this is due to the continuous
change of orientation of the repulsive gravity, as seen in figure n. 2, and to the fact
that in it there is no real equilibrium point, as stated above.

- **1.10 - Sixth analogy**

The angular velocity of the planets orbiting around the Sun is equal to the angular velocity of harmonic oscillator.

The angular velocity of the harmonic oscillator, as is known, is:
 \[\omega = \sqrt{\frac{g}{L}} \]

 As will be shown below, the planetary angular velocity formula is exactly the same as pendulum formula written above, so we will have:
 \[\omega = \sqrt{\frac{g}{a}} \]

 where \(a \) is the semi-major axis.

- **1.11 - Seventh analogy**

The acceleration law of the planetary revolution motion is equal to the acceleration law of the harmonic oscillator.

 It’s known that the acceleration law of the Galilean harmonic oscillator is:
 \[g = \omega^2 x \]

 where \(x \) is the position of the body, i.e. its projection on the abscissas axis.

 As we will show later, this is also the acceleration law regulating the revolution motion of the planets around the Sun.

- **1.12 - Strength analysis of the \(F_{rx} \) force**

 As already mentioned, but the discourse deserves further study, it does not come from nothing, but comes from the reduction of \(F_r \).

 More precisely, when the planet moves from one point to another in its orbit, it happens that the force \(F_r \) — which before the advent of the planet in that point was perfectly opposite and equal to \(F_a \) — reduces itself by an amount sufficient to allow the arising of a force that makes the planet move to the next point of the orbit, respecting the two principles enunciated in the next pages.
Since the force F_{rx} derives from the reduction of force F_r, it follows that, on the one hand, the principle of conservation of energy is not violated (nothing is created or destroyed, but everything is transformed or yielded) and, on the other hand, makes the planet move within the attractive-repulsive field.

To recapitulate, F_r is reduced into F_{ry} and the *sur-plus* of energy deriving from this reduction gives life to the force F_{rx}.

The resultant between F_{rx} and F_{ry} will be F_r, but, due to the composition of these two forces, the F_r force will be no longer aligned with F_a (unlike when that particular point of the orbit is not yet occupied by the planet); in other words they will be no longer "opposite", so they will no longer nullify themselves, and this will cause the curved trajectory of the planet, according to the same principle that regulates the pendulum.

This physical mechanism is a peculiarity of a particular type of pendulum, in which the center exerts both attractive and repulsive force on the sphere, at 360 degrees, and the evidence that allows to support the existence of this particular physical phenomenon would be, in my opinion, not only the physical and mathematical analogies between the pendulum and the solar system seen above, but also the ellipticity of planetary orbits.

Let's see why.

- **1.13 – The cause of the motion of the planets around the Sun and all the celestial bodies moving around a gravitational center**

 The big-bang has probably given rise to the masses of celestial bodies, but not also to their movement in space.

 The movement would be due, in my opinion, to the existence of an attractive-repulsive forces-field generated by the central massive body, starting from a certain distance from it, directly proportional to the mass: the greater the mass, the greater will be the distance from which the repulsive force would come into existence in addition to the attractive one.

 I hypothesized, in particular, that a body inserted in an attractive-repulsive field would not remain stationary due to the cancellation of two opposing forces
(as Newton teaches), as in a first analysis it might be thought, but would move around the center, because the body, despite of being subjected to two opposing forces, would feel the presence around itself of different energy (or pressure) values because of the different magnitude of the collision between the attractive and repulsive forces, depending on the distance from the central body (the gravity force is inversely proportional to the square of the distance, and this also applies to repulsive force).

In truth, this just described would not be, in my opinion, the only case of an attractive-repulsive force-field, but probably there exists also another one in nature: i.e. the one formed around the nucleus of the atom, which causes the perpetual movement of the electrons around it, as we will see better at the end of this paper.

The clash between the two forces creates, therefore, the conditions for the birth of the pendulum.

The only difference between the Galilean pendulum and the cosmic pendulum is that, as we have already said, in the first case the gravity force comes only from one side, so that the pendulum does not rotate, but oscillates around the equilibrium point, instead in the cosmic pendulum the orientation of the repulsive force changes continuously, and a real equilibrium point is missing, so that the oscillation turns into rotation around the fulcrum, and moreover in the Galilean pendulum the central force is a reaction force, instead in the cosmic pendulum it is an action force, having an attractive nature.

Each point of the orbit, therefore, is never equivalent, from the view-point of the energy (or pressure) value, to the previous one or to the next one, because it will have a greater or lesser energy depending on whether, respectively, it is closer or farer from the central body with respect to the point where the planet is located, and the latter, as will be seen, tends to move, among the points with stronger energy existing in its surroundings, towards the one with less strong energy, or, among those with weaker energy, towards the one with less weak energy, depending on whether, respectively, it is in the approaching-phase or distancing-phase from the Sun.
1.14 - The cause of orbital elliptic

The movement of a body immersed in an attractive-repulsive forces-field is governed by the principle described in the following pages.

Before explaining the principle it is necessary to redo figure n. 3, seen in the paragraph 1.3.

Principle of minor possible approach and minor possible distancing from the attractor-repulsor

If we assume that a body inserted in an attractive-repulsive gravitational field does not remain in a state of rest, but moves, it is reasonable to suppose that it moves in such a way to approach to the attractor-repulsor as little as possible and, subsequently, moving away as little as possible from it, cyclically.

We can assume, in particular, that the clash between the two opposing forces generates a certain value of energy (or pressure), and this energy would be decreasing in relation to the square of the distance from the central body, since the magnitude of
the gravitational force decreases according to this ratio also with regard to the repulsive force, therefore, in such a non-uniform energetic context, it seems more sensible to assume that the body moves from one energy level to another, continuously, rather than hypothesizing that it moves in a circular way around the attractor-repulsor, at constant distance from it, in which case the body would move senselessly always occupying the same level of energy (or pressure).

It is reasonable to assume, therefore, that in the first phase the body approaches to the central one, and that in the following phase it gets away from it, followed again by the approaching phase and so on, in a cyclical succession of the two phases.

During the phase of approach to the attractor-repulsor, the body is pushed, among all the points having a greater energetic value existing in its surroundings, towards the less strong one.

In geometrical terms, the planet, while it is approaching the Sun, is pushed, among all the points closest to the Sun existing in its surroundings, towards the less near point.

By following this principle, the planet approaches the central body as little as possible, i.e. in the most gradual manner possible.

As shown in the figure on the previous page, the planet, from point A, moves to B (only for clarity reasons, point B has been drawn slightly moved by A, but it should be imagined as contiguous to it): this point, compared to A, approaches the Sun as little as possible.

By following the same criterion, the planet will move from point B to point C, and so on, until the perihelion is reached, as gradually as possible, in such a way not to violate the principle of energy conservation, which would be injured if the body approached the attractor-repulsor in an insufficiently gradual manner, thus suppressing the repulsive force.

But how can a body A approaches to a body B as little as possible?

The only way is to move A on an elliptical trajectory in which B is in one of the foci, and the second focus is as close as possible to B.

In this way, A will travel along a trajectory characterized by the fact that, while moving towards B, it moves away, at the same time, as little as possible from a point
very close to B (the other focus), since, as will be seen below, "the ellipse is the geometric place of the points of the plane where every point, compared to the adjacent one, approaches as little as possible a focus and at the same time moves away as little as possible from the other focus": in this way A will approach B as little as possible, since, while it does so, it moves away at the same time as little as possible from a point (the other focus) which is very close to B.

The principle of the "minor possible approach" to the attractor-repulsor, however, is not applicable throughout the planet's orbit.

It is reasonable to suppose, in fact, that in an attractive-repulsive forces-field generated by a central body, the existence of the two opposing forces causes the minor possible approach to take place only up to a certain limit, beyond which the further approach to the attractor-repulsor would violate the principle of energy conservation, by suppressing the repulsive force.

The point of planetary orbit where this particular limit situation would occur is, in my opinion, the perihelion, beyond which, if the body continued to approach the attractor-repulsor, the repulsive force would suffer an illicit compression, because the body would approach both foci simultaneously, and thus the balance would break in favor of the attractive force.

Consequently, the planet, once arrived in the perihelion, begins to move respecting a criterion only formally different, but substantially identical, to the previous one, namely the criterion of "minor possible distancing from the attractor-repeller".

The planet, after perihelion, manages to move away from the Sun as little as possible, because, as we said in the introduction, in the aforesaid point the two forces are exactly opposed and therefore the planet moves for a single moment of straight motion, since, only by moving itself in rectilinear way for that one instant, the planet can cease to approach the Sun and, at the same time, begin to move away from it as little as possible.

In the phase of distancing from the attractor-repulsor the planet is pushed, among all the points having a minor energetic value existing in its surroundings, towards the less weak one.

In geometrical terms, the planet, in the phase of distancing from the Sun, is
pushed, among all the points farthest from the Sun existing in its surroundings, towards the less distant one.

By following this principle, the planet moves away from the central body as little as possible.

As we can always see in the figure done in the paragraph 1.3, the planet, from perihelion, moves to E (only for clarity reasons the point E has been drawn slightly moved by perihelion, but it must be imagined as contiguous to it): this point is, at the same time, farthest from the Sun with respect to the perihelion itself, but, among all the farthest points from the Sun existing in the perihelion's surroundings, it is the less distant.

By following the same criterion, the planet will move from point E to point F, and so on, until reaching the aphelion, in the most gradual manner possible, so as not to violate the principle of energy conservation, which would be injured if the body moved away from the attractor-repulsor in an insufficiently gradual manner, thus suppressing the attractive force.

But how can a body A move away from a B body as little as possible?

The only way is to move A on an elliptical trajectory in which B is in one of the foci, and the second focus is as close as possible to B.

In this way A will follow a trajectory characterized by the fact that, while moving away from B, it approaches at the same time as little as possible a point very close to B (the other focus), because, as mentioned above, "the ellipse is the geometric place of the points of plan where every point, compared to the adjacent one, moves away as little as possible from a focus and, at the same time, approaches as little as possible the other focus": in this way A will move away from B as little as possible, since, while it does so, approaches at the same time as little as possible a point (the other focus) very close to B.

However, the principle of the "minor possible distancing" from the attractor-repulsor is not applicable throughout the planet's orbit.

It’s reasonable to suppose, in fact, that in an attractive-repulsive force-field generated by a central body, the existence of the two opposing forces causes the minor possible distancing to take place only up to a certain limit, beyond which, the further
distancing from the attractor-repulsor would violate the principle of energy conservation, by suppressing the attractive force.

On my opinion, the point where this particular extreme situation would occur is, in the planetary orbits, the aphelion, beyond which, if the body continued to move away from the attractor-repulsor, the attractive force would be suppressed, since the body would move away from both the foci, and so the balance would break in favor of the repulsive force.

Therefore the planet, once arrived in aphelion, begins to move again according to the principle, previously stated, of the minor possible approach to the attractor-repulsor, and the cycle repeats itself to infinity.

It’s opportune to specify that in aphelion, unlike the perihelion, the two forces do not cancel each other out, because otherwise the planet would continue to move away from the Sun, in such a way to suppress the attractive force, so that the repulsive force continues to have a non-radial orientation, but this time it turns more towards inside of the orbit, to allow the approach of the planet to the Sun.

Basically, in my opinion, the planet would be able to revolve in perpetuity around the central attractor-repulsor because, approaching as little as possible to it and then distancing as little as possible from it, would remain in a state of perfect dynamic balance between the two opposed gravitational forces, thus preserving the principle of energy conservation.

The existence of this principle is confirmed by the fact that most of the planets (7 on 9) have orbits with very slight eccentricity, i.e. with the foci very close to each other. Only Mercury and Pluto have a non-negligible eccentricity, most likely because they come from outside the solar system (like the asteroids), as their little dimensions would suggest.

- **1.15 - The gardener’s ellipse**

To confirm the above, just consider that the ellipse can be defined as “*the geometric place of the points of the plan existing around two fixed points called foci, where each point, with respect to the adjacent one, approaches as little as possible a focus and, at the same time, it moves away as little as possible from the other focus*”.

This definition is not substitutive, but alternative to the traditional notion of the
ellipse understood as "the geometric place of the points of the plane for which the sum of the distances from two fixed points called foci is constant", but thanks to it it's possible to observe the ellipse from a whole new perspective, dynamic if we want, fundamental to understand the reason why the orbits of the planets of our solar system are elliptic.

- Demonstration

The demonstration of the validity of the alternative definition of ellipse seen above may appear rudimentary, but, in my opinion, is efficacious.

In the drawing below we see a gardener intent on tracing an ellipse following a method often ignored, but valid.

He has fixed two nails in the ground and tied to them a thread longer than the distance between the nails.

With a pencil he has exerted a pressure outwards to stretch the thread and, at the same time, has moved the pencil sideways to trace the ellipse.

The important thing to note in this drawing is that the forces involved are two:

1) the pressure exerted by the gardener with the pencil, which generates the tension of the thread.
2) the reaction force generated by the wire itself.

Because of the thread, the gardener is bound in tracing the drawing: while he does it, he moves away as little as possible from a focus and, at the same time, approaches the other focus as little as possible.

As he moves, in fact, the string forces him to approach a nail and, at the same time, to move away from the other nail, because the wire is tied to the two nails, therefore, when the distance from a nail increases, the distance from the other one must necessarily be reduced, otherwise the thread would break, which allows us to conclude that it is not possible for the gardener to move away from both foci at the same time.

On the other hand, if the gardener's pencil approaches the two foci at the same time, the thread would loosen too much, and the tension of the thread, necessary to make the ellipse, would disappear.

We can therefore affirm that the ellipse is the graphical representation of the gardener's pencil movement, whom motion gives rise to two simultaneous movements with respect to the two foci, moving away as little as possible from a focus and, at the same time, approaching as little as possible the other focus.

Excluding the forces, irrelevant in the geometrical field, we can use the mentioned property of the ellipse to prove that every point of the ellipse always meets two conditions, i.e. that, compared to the adjacent point, it approaches as little as possible a focus and, at the same time, moves away as little as possible from the other focus, so we can affirm that “the ellipse is the geometric place of the points of the plan existing around two fixed points called foci, where each point, compared to the adjacent one, approaches as little as possible a focus and, at the same time, moves away as little as possible from the other focus”. - C.V.D.

The gardener's ellipse, therefore, shows that the trajectory described by a body inserted in an attractive-repulsive forces-field cannot be anything other than elliptical, since the two forces operating in the ellipse of the gardener can just be compared to the two opposite forces that characterize an attractive-repulsive forces-field, and this is of fundamental importance for the demonstration of the existence of such a kind of forces field around the Sun and all the massive bodies.
1.16 - Energy of the attractive-repulsive gravitational field

When I talk about the energy of the attractive-repulsive gravitational field, I refer, therefore, to a particular type of energy inherent only in the attractive-repulsive fields (such as the one that most probably also exists around the nucleus of the atom, generated by the nucleons), which expresses the aptitude of a determined point of the field to move any body inserted in it, and having a negligible mass with respect to the central body, towards the point which, among those endowed with greater energy (or pressure) than the one existing in the occupied point, is the point with less-strong energy, or to make it move towards the point that, among those with less energy (or pressure) than the one existing at the point occupied, is the point with less-weak energy, depending on whether they are respectively in the approaching phase or in the distancing one with respect to the attractor-repulsor.

This energy (or pressure) would be decreasing in relation to the increase of distance from the center and we’ll see in the chapter V how much important this aspect is for the solution of many astrophysics and nuclear physics problems.

1.17 – Difference between field of inexistent forces and field of self-canceling out forces

The difference between the two types of field consists in the fact that, in the first case (field of inexistent forces), the space is absolutely devoid of forces, while, in the second case, the space is pervaded by opposing forces (convergent or divergent) that cancel each other out.

The difference is not merely formal, because, in the second case, a body immersed in the field of forces can undergo physical changes due to the effect of the two opposing forces acting on it (crushing, deformation).

This clarification is important to eliminate any doubts that may arise regarding the existence of the attractive-repulsive force-field around the Sun which, it is repeated, does not equate to a field of null forces.

1.18 - Aphelion as the point from which the motion of the planets has begun

If it is agreed that the cause of the movement of the planets is the existence of
an attractive-repulsive gravitational field that generates a particular type of pendulum that moves not by oscillating, but by making turns around the fulcrum, then it will also be easy enough to admit that the point from which the motion of the planets has begun, probably already since the moment they were in a state of protoplanetary dust, is the aphelion, that is the point of the orbit in which the gravity force is less, similarly as the pendulum, in which the motion starts right from the point where gravity is less.

• 1.19 - The necessary ellipticity of the orbit of the celestial bodies around a central body

Such a vision of the phenomenon of the perpetual motion of celestial bodies, in which motion obeys the principle stated above (of the least possible approach and of the least possible distancing from the attractor-repulsor) also requires us to believe that in all gravitational systems (even dissimilar to ours, that is, when the system's bodies have not a negligible mass with respect to each other, for example a system of two binary stars), only elliptical orbits are possible.
2.1 - Demonstration of Kepler's third law by hypothesizing that the solar system is a harmonic oscillator

As I said before, the period of planetary orbit around the Sun is expressed by the following formula, discovered by Galileo with regard to the harmonic pendulum-oscillator, but applicable, as will be seen, also to the solar system,

\[T = 2 \pi \sqrt{\frac{L}{g}} \]

(3)

where I assumed that \(L \) is the average distance of the planet from the Sun and \(g \) is the repulsive gravitational acceleration exerted on the planet by the Sun (i.e., when it is at the average distance from the star), so the (3) becomes:

\[T = 2\pi \sqrt{\frac{a}{g_{r(average)}}} \]

(4)

where \(a \) is the semimajor axis of the elliptical orbit of the planet which, as is known, coincides precisely with the average Sun-planet distance, and \(g_{r(average)} \) is the average repulsive gravitational acceleration exerted on the planet by the Sun, i.e., when the planet is at average distance.

But, since we have shown that in the cosmic harmonic oscillator, as in the Galilean one, centripetal acceleration does not accumulate to the gravity acceleration, we have that \(g_{r} = -g_{a} \), and therefore (4) becomes:

\[T = 2\pi \sqrt{\frac{a}{g_{a(average)}}} \]

(5)

where \(g_{a(average)} \) is the average attractive gravitational acceleration, i.e., the one exerted by the Sun when the planet is at the average distance.

In this regard it should be noted that it was considered necessary to include in the (5) the average planet-Sun distance, as well as the average gravity acceleration, because, being a pendulum with an elliptical orbit, the distance from the fulcrum changes continuously (unlike the Galilean one, which has a circular orbit) and,
consequently, also the gravitational acceleration deriving from the Sun varies continuously, so the insertion of the mentioned average values seemed to me the most logical thing to do.

But we also know that:

\[
g_a \text{(average)} = \frac{GM}{a^2} \tag{6}
\]

so (5) becomes:

\[
T = 2\pi \sqrt{\frac{a}{GM}} \tag{7}
\]

\[
\Rightarrow T = 2\pi \sqrt{\frac{a^3}{GM}} \tag{8}
\]

Squaring the both sides:

\[
T^2 = \frac{4\pi^2 a^3}{GM} \tag{9}
\]

Dividing both sides by \(a^3\) we have:

\[
\frac{T^2}{a^3} = \frac{4\pi^2}{GM} \tag{10}
\]

which is precisely the third Kepler's law.

We have therefore shown that the Kepler's third law depends on gravity force, assuming that the solar system is a harmonic oscillator, and that, therefore, there is a high probability that repulsive gravity force exists in addition to the attractive one, such as the equality among the planetary laws (of orbital period, of angular velocity and of acceleration) with respect to the same laws of the harmonic oscillator would suggest.

- **2.2 - Demonstration that the planetary system is a harmonic oscillator**

 We know that the pulsation of a harmonic oscillator (its angular velocity) is:

 \[
 \omega = \sqrt{\frac{g}{L}} \tag{11}
 \]

 Now, if the solar system is a harmonic oscillator, (11) it should become:

 \[
 \omega = \sqrt{\frac{g}{a}} \tag{12}
 \]

 where \(a\) is the semi-major axis.

 We must therefore prove that the above equation is true.
We know that the angular velocity, in the circular motion, is:

\[\omega = \frac{2\pi}{T} \]

(13)

But, in planetary motion, the period \(T \) is:

\[T = 2\pi \sqrt{\frac{a^3}{GM}} \]

(14)

so:

\[\omega = \frac{2\pi}{2\pi \sqrt{\frac{a^3}{GM}}} \]

(15)

From which:

\[\omega = \frac{1}{\sqrt{\frac{a^3}{GM}}} \rightarrow \omega = \sqrt{\frac{GM}{a^3}} \]

(16)

But we also know that:

\[g = \frac{GM}{a^2} \rightarrow GM = ga^2 \]

(17)

Therefore, replacing the (17) in (16), we have:

\[\omega = \sqrt{\frac{ga^2}{a^3}} \]

(18)

\[\Rightarrow \omega = \sqrt{\frac{g}{a}} \text{ C. V. D.} \]

(19)

Let us now demonstrate that acceleration in planetary motion follows the acceleration law of the harmonic oscillator of Galileo, namely:

\[g = \omega^2 x \]

(20)

Where \(x \) is the position of the body, namely its projection on the abscissas axis.

By assuming that the solar system is a harmonic oscillator pendulum with radius equal to the semi-major axis \(a \), and comparing the orbital ellipse to circumference, as Newton did, then in planetary motion it should occur, if such assumption is correct, that:

\[g = \omega^2 a \]

(21)

Now let's move on to the demonstration.
In (19) we have seen that the angular velocity of the planets is equal to the pulsation of the harmonic oscillator:

$$\omega = \sqrt{\frac{g}{a}}$$

Squaring we have:

$$\omega^2 = \frac{g}{a} \quad (22)$$

$$\Rightarrow g = \omega^2 a \quad \text{C. V. D.} \quad (23)$$

To understand whether (23) applies only to a point in the orbit or to all points of it — in which case it would rise to the acceleration law of the motion of the planets — it must be verified experimentally.

Now, by means of the aforementioned formula, we will first calculate the gravity acceleration in perihelion and then the one in aphelion, and it will be shown that it allows to calculate precisely both, which will attest the acceleration law nature of (23), i.e. of law that regulates the overall movement of the planets throughout the orbit, not just in a single point.

To this end we will choose the orbit of Mercury which is characterized, due to its high eccentricity, by a perihelion and an aphelion very different from each other, both in terms of distance from the Sun (and therefore of gravity acceleration), and in terms of speed difference compared to the average orbital speed.

- **Mercury’s perihelion**

 We now calculate the gravity acceleration in perihelion using (23) and see if it is equal to the gravity acceleration calculated with its specific formula:

 $$g = \frac{GM}{(\text{perihelion})^2}$$

 To this end we must calculate the angular velocity existing in perihelion, which is not the average velocity, because the planet's orbital velocity varies continuously, and in the perihelion the velocity is maximum.

 Consequently I thought that the best thing to do was to calculate the radius of the osculating circle in perihelion (which, as is known, is the circle that approximates in the best way the curvature existing in a given point of a non-circular curve), to be used later to calculate the value of T in the angular velocity formula:
\[\omega = \frac{2\pi}{T} \] \hspace{1cm} (24)

From the basic formula of speed we know that:
\[T = \frac{S}{V} \] \hspace{1cm} (25)

But we also know that, in the case of circular motion:
\[S = 2\pi r \] \hspace{1cm} (26)

Where \(r \) must be, as we have said, the radius of the osculating circle which, in perihelion, is:
\[r = a(1 - e^2) \]

Where \(a \) is, as we know, the semi-major axis, and \(e \) it is eccentricity.

By knowing that the semi-major axis of the orbit of Mercury is:
\[a = 57,909,176,000 \text{ meters} \]

and that the eccentricity of Mercury is:
\[e = 0.20563069 \]

the radius of the osculating circle in the perihelion of Mercury will be:
\[r = 57,909,175,999 \text{ meters} \]

We now replace in (26) the value of \(r \) just found:
\[S = 363,854,083,793 \text{ meters} \]

We also know that in perihelion the orbital velocity of Mercury is:
\[V = 58.980 \text{ m/sec} \]

We now replace in (25) the values of \(S \) and \(V \) found above:
\[T = \frac{363,854,083,793}{58,980} = 6,169,109 \]

We now replace in (24) the value of \(T \) just found:
\[\omega = \frac{2\pi}{6,169,109} = 0.000001018491 \] \hspace{1cm} (27)

Now let's replace in (23) the value of \(\omega \) just obtained, let's square it and multiply it by the semimajor axis \(a \) and we'll get:
\[g = 0.06007 \text{ m/sec}^2 \] \hspace{1cm} (28)

We now calculate the gravity acceleration due to the attraction that the Sun exerts on Mercury in perihelion using the known formula:
\[g = \frac{GM}{(\text{perielio})^2} \] \hspace{1cm} (29)
Where G is the universal gravitational constant 6.67433×10^{-11}

M is the mass of the Sun: 1.9891×10^{30} kg

The perihelion of Mercury: 46,001,272,000 meters

We replace in (29) the values of G, M and perihelion reported above:

$$g = 0.06273$$ \hspace{1cm} (30)

Let us now compare the two values of g obtained in (30) and in (28):

$$\frac{0.06273}{0.06007} = 1.04$$

As we note the values of g found with the formula of the harmonic oscillator (23) and with the specific formula of gravity acceleration (29) are practically identical, by there being an error margin of 0.4% between them.

It is very likely that the slight discrepancy is justified just because the calculation of the radius of the osculating circle is an approximation criterion which, as such, may be less precise when the numbers involved are very large, such as astronomical ones.

- **Mercury’s Aphelion**

At this point, always by using the formula of the harmonic oscillator obtained in (23), let’s calculate the gravity acceleration in aphelion and let’s see if it is equal to the gravity acceleration calculated with its specific formula $g = \frac{GM}{(a_{fe\ell\nu})^2}$.

To this end, we proceed in the same way seen as for perihelion.

We have to calculate, therefore, the angular velocity existing in aphelion, which is not the average one, because the planet’s orbital velocity varies continually, and in aphelion the velocity is minimal.

Consequently we calculate the radius of the osculating circle in aphelion (which, it is repeated, is the circle that approximates in the best way the curvature existing in a determined point of a non-circular curve), to be used then to calculate the value of T in the angular velocity formula:

$$\omega = \frac{2\pi}{T}$$ \hspace{1cm} (31)

From the basic formula of speed we know that:

$$T = \frac{s}{V}$$ \hspace{1cm} (32)
But we also know that, in the case of circular motion:

\[S = 2\pi r \] \hspace{1cm} (33)

Where \(r \) must be, as we have said, the radius of the osculating circle which, in aphelion, is equal to the perihelion, because in the two points the curvature is identical, so the value of the aforementioned radius is the one calculated in perihelion:

\[r = 57,909,175,999 \text{ meters} \]

We now replace in (33) the value of \(r \) just found:

\[S = 363,854,083,793 \text{ meters} \]

We also know that in aphelion the orbital velocity of Mercury is:

\[V = 38,860 \text{ m/sec} \]

We now replace in (32) the values of \(S \) and \(V \) found above:

\[T = \frac{363,854,083,793}{38,860} = 9,363,203 \]

We now replace in (31) the value of \(T \) just found:

\[\omega = \frac{2\pi}{9,363,203} = 0.000000671 \] \hspace{1cm} (34)

Now let's replace in (23) the value of \(\omega \) just obtained, let's square it and multiply it by the semi-major axis \(a \) and we'll get:

\[g = 0.02607 \text{ m/sec}^2 \] \hspace{1cm} (35)

We now calculate the gravity acceleration due to the attraction that the Sun exerts on Mercury in aphelion by using the known formula:

\[g = \frac{GM}{(\text{aphelion})^2} \] \hspace{1cm} (36)

Where \(G \) is the universal gravitational constant \(6.67433 \times 10^{-11} \)

\(M \) is the mass of the Sun: \(1.9891 \times 10^{30} \text{ kg} \)

the aphelion of Mercury is \(69,817,079,000 \text{ meters} \)

We now replace in (36) the values of \(G, M \) and aphelion reported above:

\[g = 0.02723 \] \hspace{1cm} (37)

Let’s now compare the two values of \(g \) obtained in (37) and in (35):

\[
\frac{0.02723}{0.02607} = 1.04
\]
As we note the values of g found with the formula of the harmonic oscillator (23) and with the specific formula of gravity acceleration (36) are practically identical, by there being an error margin of 0.4% between them.

It is very likely, again, that the slight discrepancy is justified in light of the fact that the calculation of the radius of the osculating circle is an approximation criterion which, as such, may be less precise when the numbers involved are very large, such as astronomical ones.

It should be noted that by the application of (23) it’s possible to obtain identical results also for the other planets, which, however, is not the case here to report in order to synthesize.

- **Summary consideration**

By having calculated with precision by mean of (23) the gravity acceleration at two points of the orbit of Mercury where such acceleration assumes very different values, due to the considerable diversity of the two distances from the Sun, we can deduce that (23) is the formula that expresses the acceleration not of a single point of the orbit of the planets, but of all the points of this orbit, albeit with the specification that we have to calculate the angular velocity existing at the specific point with the system of osculating circle, because in the planetary harmonic oscillator the angular velocity is not constant, by varying point by point both g and the curvature of the orbit.

It should be noted that it was possible to use in (23) the semi-major axis a to calculate g both in perihelion and in aphelion, because, as is known, in these two points the amplitude of the harmonic oscillation is maximum, so that such amplitude coincides with the radius which, in our case, in turn coincides with the semi-major axis a, by having approximated the orbits of the planets to the circumferences.

It follows that, when we want to calculate by (23) the gravity acceleration at a certain point of the orbit other than perihelion and aphelion, it will be necessary not only to calculate the radius of the osculating circle at that point, but also the x position of the body, i.e. its projection on the abscissas axis.

It follows that we can replace in (23) a with position x and write:

$$g = \omega^2 x$$
that is the acceleration law of the pendulum harmonic oscillator seen in (20).

As we wanted to demonstrate, the solar system is a case of harmonic oscillator, obviously much more similar, if not exactly the same, to the pendulum, rather than the spring.

The most important consequence of this is the demonstration of existence, starting from a certain distance from the Sun (and from all the massive bodies), of a repulsive gravitational force, generated always by the Sun itself in addition to the attractive one, which takes the place of the earth's gravity force existing in the Galilean pendulum, thus pushing the planets away from the Sun, albeit with an orientation not opposite to the attractive one, guaranteeing the perpetual motion of the planets around the Sun, according to the same principle as the pendulum.

This is even more true if we consider that the harmonic oscillators are all characterized by the fact that the body moving by non-uniformly accelerated and decelerated motion is continuously subjected to two contrasting forces which, although in different ways, guarantee the potentially perpetual movement of the sphere hanging from the pendulum or spring.

Unlike the harmonic motion, the uniform circular motion, which never occurs in celestial mechanics, is characterized by the presence of a single central force.

- 2.3 - **The accelerated expansion of the universe explained by the exclusively repulsive effect of gravity**

But at this point we ask: what happens if we go beyond the space band where there is a contrast between attractive and repulsive force?

It is really far-fetched, in fact, to believe that the dynamic balance between the bodies, due to the clash between opposing forces (one attractive and the other repulsive), that allows the perennial movement of one around the other according to the law of pendulum, may always apply, regardless of the distance between the bodies themselves.

Therefore I hypothesized in this regard that, as below a certain distance from the body attractor the repulsive force ceases to exist, giving space to the only
attractive force, similarly it can be considered that, when a body exceeds a certain distance from the attractor, the attractive force ceases to exist, and it will give space to the only repulsive force, and that, in this case, it is also consistent to assume that, as in the attractive zone the body moves with uniform accelerated motion, similarly the body moves with uniform accelerated motion even when it is in the exclusive repulsion zone, pushed only by repulsive force.

This deduction seems to me to be confirmed by the accelerated expansion of the universe, which is receiving more and more experimental confirmations and consequent adhesions from the scientific community, although there is not agreement about the relative causes.

In particular it is believed, on the basis of very accurate astronomical observations, that galaxies repel each other, moving away from each other with increasing speed.

From this point of view, it is evident that the accelerated repulsive motion, which I hypothesized to be observable in the space band furthest from the body, is perfectly mirrored to the accelerated contractile motion in the proximity zone.
Chapter III
The ligamentous nature of gravity

3.1 – Gravitational ligaments

We have seen that the accelerated expansive effect of the universe can be explained by the exclusively repulsive effect of the gravitational force, which manifests itself beyond the attractive-repulsive zone.

But how is it possible to believe that repulsion works indefinitely?

If we accept the idea of a repulsive force, we come to the inevitable conclusion that the body should progressively increase its speed until it reaches an infinite speed.

Now, leaving out for now whether it is possible for a body to accelerate indefinitely, the main question is how it is possible that the repulsive effect works indefinitely.

Logic would like, at a first and superficial analysis, that sooner or later, the distance becomes so high that the repulsive effect is exhausted, and therefore the body continues to move with uniform rectilinear motion.

Then, how is it possible for the repulsive effect to work on the infinite?

The only possible explanation is to believe that gravity force is not transmitted as an information, as a wave or other similar phenomena, but operates through an invisible ligament that connects the bodies between them, such as to make them become one.

The ligament nature of gravity is the only one that can explain, in my opinion, the phenomenon of the accelerated and potentially infinite expansion of the universe.

The gravitational ligament is also the only possible explanation of the fact that gravity operates in an immediate way, i.e. faster than light.

So if, for example, the mass of the Sun increases, the attraction (or rather the attraction-repulsion) that it exerts on the planets would have an immediate intensification, therefore faster than the speed of light, in disagreement with the principle of locality postulated by the theory of relativity.

This can have only one explanation: the ligamentous nature of gravity, which eliminates the transmission time of information.
In other words, hypothesizing that there is an invisible ideal ligament that unites two bodies, like an extendable and contractible bar joining two metal spheres, and that the elongation or contraction are immediate (precisely because it is an ideal ligament), is logical consequence that if the bar stretches, the distancing of the rejected body is immediate, and the approach of the attracted body when the ligament contracts himself is equally immediate.

For this reason it is inaccurate to say that the gravity force is transmitted between the bodies at a certain speed, because we can speak of information transmission speed only when the bodies between which the information travels are two, but the gravitational ligament makes sure to unite the two bodies in one, so any approach to the concept of speed is improper.

In this way we can also overcome the criticism of those who, including Einstein, believe that to think of gravity as an immediate force cannot be accepted, because otherwise it would be faster than light, which would be impossible.

By accepting gravity has ligamentous nature makes each approach to the concept of speed out of place, because of the abstract uniqueness of the bodies involved in the gravitational phenomenon, united through the gravitational ligament.

• 3.2 - Space-time network or gravitational ligaments network?

Gravitational ligaments are potentially infinite, both in number and in extension.

Every body emanates as many ligaments as there are bodies in the entire universe.

Through these ligaments, each body of the universe is connected to all the others and the others connected to each other through a very intricate netting of gravitational ligaments, regardless of the distance that separates them.

No body is disconnected from anyone else.

The space is therefore pervaded by a kind of invisible and imponderable netting, but this does not take the form of the so-called fourth dimension hypothesized by Einstein (flexible space-time), instead by concretizing an intertwining of ideal bonds that do not bend close to the bodies, but, unlike the Einstein way of thinking, they remain absolutely straight, uniting the bodies together.
• 3.3 - **Gravitational waves and their compatibility with ligamentous nature of gravity force**

Recently it was discovered that the merging of two black holes occurred more than a billion years ago has generated gravitational waves that have come down to us after one billion years.

This would confirm, according to relativists, the existence of the fourth dimension hypothesized by Einstein, that is, the space-temporal network thanks to which the information of the disappearance of black holes merged into one would be transmitted.

More precisely it is stated that the detection of gravitational waves by a very sophisticated cryogenic instrument would constitute the indisputable proof of the existence of the space-time dimension, since only if we admit the existence of a space-temporal network, we can explain how it is possible that gravitational waves propagate in space in a not immediate way, which instead could not happen, it is claimed, if we conceived gravity as a mysterious "instantaneous" force acting at distance between the bodies (Newton's theory), which, if it existed, it should disappear immediately with the disappearance of the black holes involved in the fusion, and it could not propagate in space at a distance of time, unlike what has been detected by the cryogenic instrument.

This statement would be fully acceptable if we believed, according to the Newtonian theory, that the only possible form of manifestation of the gravitational force is the one of an instantaneous attracting entity that operates at distance between the bodies, but falls if we adhere to the theory, here proposed, according to which the gravity force "binds" the bodies by uniting them into one, thus eliminating the distance between them.

In other words, by conceiving gravity force as an ideal ligament, we arrive at the logical consequence that when two black holes merge, the gravitational ligaments which they own, potentially infinite in quantity and length, undergo a change of ownership, transferring themselves from the two original holes to that deriving from the merger.

Since nothing is destroyed in nature and nothing is created, but everything is transformed or yielded, the gravitational ligaments carried by each individual black
hole participating in the merger are, in my opinion, transferred to the black hole resulting from the merger, and most likely it is this transfer of "ownership" of the gravitational ligament node that generates gravitational waves, which this time operate not in an immediate way, but in a mediated way, namely as a means through which information about the change of ownership of the ligament node propagates.

With this in mind, it is more accurate to say that, with fusion, black holes do not disappear, but flow into the larger one, with the consequence, of no small importance, that the gravitational ligaments of which they were carriers do not disappear, but flow into the black hole resulting from the merger.

The phenomenon under scrutiny can be compared to that of a rope contended between two men who pull forcefully from the two opposite sides: if one of the two men suddenly gives a shock to the rope, the other will perceive the wave generated by the shaking not immediately, but after a few seconds, unlike the hypothesis in which one of the two men suddenly intensifies the force: in the latter case, by assuming that the rope is made up of perfectly inextensible material, the increase in strength would be perceived by the other man immediately, because the rope, being held in a state of tension by the opposing forces exercised continuously by the two men, acts as a unifying element of the two human bodies: it is as if the rope merges the two bodies into one.

Here is, then, the reason why the gravitational waves generated by the fusion of the two black holes occurred more than a billion years ago have been perceived by the cryogenic instrument after so much time: not because there is the space-time network through which they propagate, but because there is a network of gravitational ligaments that acts as an instrument for propagating these waves.

In other words, on the occasion of the merger of two black holes there is a change in ownership of the ligament node belonging to the individual black holes involved in the merger, and this change generates a sort of shaking of the ligaments which, as such, is not transmitted if not in a deferred way to the bodies (potentially infinite) that are on the opposite side of the same ligaments.

If we accept, therefore, the idea of gravitational ligament, it is possible to explain perfectly not only how it is possible that gravity operates in an instantaneous way even at infinite distances, as a force that "binds" the bodies together, but also how
it is possible that it operates in a mediated way, as a transmitter of information (change of ownership of the ligament).

It is obvious that the gravitational ligament is not something that can be proven, it is not made up of particles of matter, and any attempt to prove its existence would give a negative result.

It is likely to be made up of "gravitons", as quantum mechanics defines them, but I distrust the existence of invisible particles.

In truth, quantum physicists believe that these particles are invisible because they are covered by Heisenberg's uncertainty principle, according to which it is not possible to observe infinitely small particles (like electrons) because the light beam that would be needed to observe them would continuously change their position.

However, I believe that the gravity force is not the consequence of an exchange of invisible particles from one body to another, but is the consequence of contraction or expansion of an invisible ideal ligament, so that, at most, if these invisible particles exist, they would dilate and they would contract, but certainly would not move, which makes Heisenberg's indeterminacy principle inapplicable, which is based precisely on the unpredictable movement of the infinitesimal particles.

It is not possible to give a logical, scientific, rational explanation to the mechanism that underlies the phenomenon of gravitational attraction-repulsion, and who has tried to do it, rejecting the idea of the mysterious force, must necessarily come up with hypotheses such as the curvature of the empty space, the contractility and dilatability of time which, to tell the truth, are no less alchemical and metaphysical of the mysterious force.

It is not possible to understand where this mysterious and invisible ligament derive from: it suffices to know that it derives from the body, which is its sole maker, which is already a great achievement.
Chapter IV
Gravitational attractive and repulsive forces, centripetal force and centrifugal force: differences

4.1 – Definition of centripetal force and of centrifugal force

The centripetal force, it’s worth remembering, exists whenever a body performs a curvilinear trajectory due to a central force.

A car revolving around a roundabout, the clothes running in the washing machine, a ball tied to a rope made move around by a child are all hypotheses in which the rotating body is subjected to centripetal force.

In fact, when we use the washing machine, we usually say "Have you turned on the centrifuge?" To make sure that at the end of the program the cloths receive a first drying due to the high final rotation speed of the washing machine drum, but it would be more correct say "Have you turned on the centripete?" because, in fact, the real force acting on the clothes is centripetal, not centrifugal, but our mind perceives more immediately the existence of a centrifugal force on the clothes, rather than centripetal one, because we imagine that the expulsion of water from cloths results precisely from centrifugal force, not centripetal one. But it's not like that.

The force to which the cloths are subjected is centripetal, not centrifugal, because, if there was a big enough hole in the basket, the clothes would come out with along a tangential trajectory to the basket, not radial.

This happens because the basket opposes the straight movement of the clothes, preventing they from continuing straight in a tangential orientation to the circular trajectory.

The curve in fact is nothing but a set of infinitely small segments that change orientation continuously, and the reason why when the cloths run attached to the washing machine spin basket without falling, is that the basket makes them do not go straight on. But the water succeeds in infiltrating the specially made holes in the basket, and continues straight ahead, in a tangential orientation to the basket.
Centrifugal force is only a “fictitious force” that we perceive in the car when we make a curve, which makes it seem like there is something that pushes us to the right if we curve to the left, or to the left if we curve to the right.

However, there is nothing that pushes us in the opposite orientation to curve's one, but it is only our tendency to preserve the straight motion that makes us perceive the presence of this fictitious centrifugal force; the only real force to which we are subjected is centripetal, that is, directed towards the center of the circle that we are describing while we are executing the curve, and which prevents us from going straight.

Well, as stated above, the magnitude of the centripetal force is measured by the following formula:

\[F_c = m \frac{v_t^2}{R} \] \hspace{1cm} (38)

Where \(v_t \) is the tangential velocity of the body, ie the speed at which the car moves with respect to the road, with a tangent orientation to the trajectory; \(R \) is the radius of the circle described by the car while it's turning; and \(m \) is the mass of the car.

And centripetal acceleration?

From the second principle of dynamics we know that:

\[F_c = m \ a \] \hspace{1cm} (39)

So:

\[a_c = \frac{v_t^2}{R} \] \hspace{1cm} (40)

But what is centripetal acceleration, or rather what does it describe?

In general we know that acceleration is a variation in speed over a certain time interval.

The centripetal acceleration, however, does not express the variation of velocity of the body, that is the magnitude of the velocity vector, but expresses the speed with which the orientation of this vector changes.

We know that velocity is a vector quantity, and that the components of a vector are magnitude, orientation and sense.

Well, centripetal acceleration implies the change only in the orientation of the velocity vector, without altering the magnitude of the velocity, nor the sense.
It's quite intuitive to understand, regardless of the formula of centripetal acceleration seen above, that, by reducing the radius of the circumference described by a body in circular motion, and keeping the magnitude of the speed constant, the centripetal acceleration increases, because increases the speed with which the orientation of the tangential velocity of the body changes.

Otherwise, by increasing the radius, the centripetal force decreases, until almost completely zero if the speed is very small, like in the case of the harmonic oscillator with very long wire, where the very little amplitude of the oscillation, together with the very long length of the thread, determines the extreme slowness of the pendulum movement.

In the harmonic oscillator with very long wire, therefore, the centripetal force is absent or, if any, is so small as to become negligible.

- **4.2 – Centripetal and centrifugal forces in the solar system**

 But why all this rant about the centripetal force in the pendulum?

 Because even in the cosmic pendulum, that is, in the solar system, the centripetal force does not affect the magnitude of the gravitational attractive force exerted by the Sun on the planets, for the reasons I will say shortly, so that the equality also remains valid here, like in Galilean harmonic oscillator, between central force (attractive gravity) and force that pushes the planet outward (repulsive gravity), which I suppose to exist in the solar system.

 At this point it's necessary to remember that I have hypothesized above that the solar system is a harmonic oscillator pendulum, where the planet would be the sphere hanging from the wire; the gravity force that the Sun exerts on the planets would take on the same function as the tension of the thread in the Galilean pendulum; and the repulsive force, which I imagine to be produced by the Sun starting from a certain distance from it in addition to the attractive one, would have the same function as the gravity force of the Galilean pendulum, which pushes the sphere in a opposite orientation with respect to the fixed point.

 The only differences with the Galilean pendulum would be, firstly, that, in the cosmic pendulum, the central force is an action force, implying the elliptical orbit, unlike the classical pendulum, where the central force is a reaction force,
implying the circularity of the trajectory; a second difference is that in the cosmic pendulum the external gravity force continuously changes its orientation always following the orientation of the planet's motion, and this change of orientation occurs with a speed equal to repulsive gravity acceleration (in turn equal to the attractive one), i.e. to the initial rapidity with which the planet would move away from the Sun if it were still and if the repulsive force was the only operating force, which does not happen in the Galilean pendulum, where the gravity force acting on the sphere always points towards the center of the Earth, with the consequence that the latter oscillates from one side to the other, while the cosmic pendulum makes a complete revolution around the center.

By having made this necessary premise on what on my opinion is the solar system, i.e. a harmonic oscillator pendulum with very long wire, with central attractive force, and with external gravitational force having changeable orientation and magnitude always equal to the first one, becomes easier to understand why in the cosmic pendulum the centripetal force does not influence, like in the Galilean harmonic oscillator with very long wire, on the magnitude of the attractive gravitational force.

In the cosmic pendulum the central force, we repeat, is attractive, and is measured by the following famous formula:

\[F = G \frac{M m}{R^2} \]

where \(G \) is a constant value (called gravitational constant), \(M \) is the mass of the Sun, \(m \) is the mass of the planet, and \(R \) is the planet-Sun distance.

The central gravitational force, by being an attraction one, implies, as its indirect effect, also the impediment to the distancing.

In other words, the Sun attracts the planets towards it but, in while doing so, it also prevents from their distancing from it: in this sense the gravitational force is "also" a constraint, but it is not only that, since it contains an additional requirement compared to the simple reaction force, i.e. the ability to bring bodies closer together, by materializing in that attractive power lacking in the case of pivot on the table that we see on the next page.
If we imagine that the hand is the pivot, we cannot say the ball is attracted by the pivot, so that, if we stop the ball, it remains where it is, it does not come close to the hand.

Now, leaving aside the force perceived by the hand, the important thing is that the hand, through the wire, exerts only a reaction force that prevents the ball from distancing in a straight line from the hand itself, which in turn generates centripetal acceleration, i.e. the change of ball speed orientation, but certainly not the approach of the ball to the hand, which will maintain a constant distance from it, describing a circular trajectory.

From this argumentation, we can understand why centripetal acceleration, that the gravitational attractive force produces indirectly on the movement of the planets, is generally not added to the gravitational acceleration itself, except in perihelion, as we shall see.

If we are agree that the centripetal force prevents the body from distancing in a straight line from the center, and that the centripetal acceleration, when the central force is attractive, is an indirect effect of the latter force (because whom attracts a body, indirectly also prevents it from moving away from the body), then it’s obvious that centripetal acceleration cannot be summed to the direct effect of the attractive force, i.e. the attractive gravity acceleration, since they are two distinct effects of a single force: the difference between two effects is that the attractive gravity acceleration is directed towards the Sun, while the centripetal one is directed towards the center of curvature, i.e. the center of the osculating circle at that point, as seen in the drawing in following page (in which we have omitted to represent the repulsive force to make clear what happens inside the orbit), where
a_n is the centripetal acceleration, orthogonal to the orientation of the motion.

In confirmation of the fact that the planets are subjected to the combined attractive-centripetal effect, it states that they do not always keep the same distance from the Sun, as they would do if gravity behaved like a rope (which only gives centripetal acceleration), but, while they revolve, they approach and move away from the star (depending on whether, respectively, they are heading towards perihelion or towards aphelion), and this dual contemporary movement (of revolution and approach/distancing) is caused, precisely, by the combined effect of attractive gravity acceleration and centripetal acceleration, on the one hand, and of repulsive gravity acceleration and centrifugal acceleration, on the other.

Unlike centripetal acceleration, centrifugal acceleration has a radial orientation — similar to the vector in the drawing on p. 2 representing the component F_{ry} of the repulsive force — that is, stays on the line that joins the planet with the Sun (even if it is improper to speak of radius, since the orbit is an
ellipse, not a circumference, but this term has only been used for practicality).

If, in fact, we admit that the repulsive gravity force exists, and that it changes every moment its own orientation following the trajectory of the planet, we have as consequence the birth of centrifugal acceleration, this time “real”, not fictitious, because there is a real force (repulsive gravity), deriving from the Sun which, pushing the planet outwards, opposes the attractive force, and which changes continuously its orientation, with the same acceleration with which the planet is repelled by the Sun itself.

In the cosmic pendulum, therefore, the trajectory of the planet varies not only as the result of the centripetal acceleration (which prevents from the distancing in a straight line from the Sun), but also as the result of centrifugal acceleration (which prevents from the approach in a straight line to the Sun), which gives rise to the same effect as the centripetal one, i.e. the change in the orientation of the planet's trajectory over a given time interval.

The orientation of the repulsive force varies with the same acceleration with which the Sun repels the planet, because the tangential velocity vector and the repulsive force vector originate in the same point, i.e. the planet.

Basically, to create an image more like the pendulum that we know, it's like if Earth did not remain firm under the pendulum but, while it attracts this latter, changed position by moving along with the sphere, with the same orientation and with the same acceleration with which attracts it.

We have all the elements, therefore, to define the "real" centrifugal acceleration: it is the effect, indirectly caused by the central repulsive force, or by an external attractive force, which, by opposing the central attractive acceleration, prevents the body from approaching straight the center, making it move around it (whom rejects a body away from the center or attracts it from the opposite side to the center, indirectly prevents it from approaching the center itself).

Centrifugal acceleration, therefore, must be understood in an exactly specular sense with respect to the centripetal acceleration — which we have seen can be defined as the effect indirectly resulting from the attractive gravitational force, which prevents the planet from moving away from the Sun — although generating the same effect, that is the continuous change of the body’s tangential
velocity orientation, making it move around the center.

The first requirement for the birth of centrifugal acceleration is, first of all, that the body must be subjected to an attractive force towards the center, in the whose absence, obviously, it's impossible to have an impediment to approach the central body and, secondly, it must be subjected simultaneously to a central repulsive force or, alternatively, to an external attractive one which, by not having a radial orientation, opposes the attractive force without canceling out themselves.

The lack of the first requirement is the reason why in the Galilean pendulum, unlike the cosmic pendulum, the centrifugal acceleration is absent, since the sphere is pushed not towards the center, but far from it (due to the gravity of the earth): since the attraction towards the center lacks, we have the consequence that the impediment to approach the center, which is the typical effect of centrifugal force, can only be lacking, and only centripetal acceleration will exist, whose effect is to avoid the distancing from fixed point, making the sphere move around it.

What is important to clarify, is that we must not make the mistake of thinking that when the planet is approaching the Sun, the attractive force prevails, whereas, when it is moving away from it, the repulsive one prevails.

In fact, between the two forces there is always absolute equilibrium: what changes is only the orientation of the force \(F_{rx} \), which is direct more towards the inside of the orbit when the planet is approaching the Sun, and more towards the outside when the planet is moving away from it.

This is important to understand that centripetal acceleration always exists, even when the planet is moving away from the Sun, and so also for the centrifugal one, which exists even when the planet is approaching the star.

It's also important to say that the centripetal acceleration and the attractive gravity acceleration are misaligned in all points of the orbit, except in the perihelion: here the two accelerations are aligned, as well as, from the outer side of the orbit, the centrifugal acceleration and the repulsive gravity acceleration are aligned.

In addition to being aligned, the aforesaid 4 accelerations are also equal in magnitude, because the gravity accelerations, both attractive and repulsive, are orthogonal to the motion, whereby the attractive gravity acceleration becomes
equal to the centripetal acceleration, and the repulsive gravity acceleration becomes equal to the centrifugal acceleration, so we can write the following equation, valid, we repeat, only for perihelion:

\[a_{ga} = a_{cp} = a_{gr} = a_{cf} \] \hspace{1cm} (42)

where:

- \(a_{ga} \) is attractive gravity acceleration;
- \(a_{cp} \) is centripetal acceleration;
- \(a_{gr} \) is repulsive gravity acceleration;
- \(a_{cf} \) is centrifugal acceleration.

The accelerations were represented without the above symbol of the vector, because, by being all aligned, it’s possible to operate algebraically by adding or subtracting their magnitude.
5.1 - Perihelion precession

The assumption of the existence in the perihelion of four equal accelerations operating on the planets and summable algebraically, by having the same orientation and sense (the centripetal one added to the attractive gravity, and the centrifugal one to repulsive gravity), reverberates its effects, as we shall see, on the perihelion precession phenomenon, because of the particularity of this point.

As mentioned earlier, in the perihelion it's possible to sum the centripetal acceleration to the attractive gravity acceleration because the latter is orthogonal to the motion, so it does not split into tangential component and normal component to the motion, but both components have orientation turned towards the sun; similarly, we can sum centrifugal acceleration to the repulsive gravity acceleration, because the latter is not splitted into radial component and tangential component, but both components have the same direction: radial (i.e. both lying on the extension of the Sun-planet axis).

At this point, placing us in clear break with the Newtonian theory, where gravity is conceived of nothing more than a centripetal force, thus generating only centripetal acceleration, not also attractive gravity acceleration, it must be clarified, if it has not been done sufficiently until now, that here a clear conceptual split was made between the two accelerations (of attractive gravity and centripetal one), by having two different effects, as we have already said above, and the reasons for this split are identical to those on which the distinction between repulsive gravity acceleration and centrifugal acceleration is based: it was only thanks to this conceptual separation between the two accelerations that it was possible to sum them in perihelion.

The bizarre thing, however, is that, in the perihelion of the cosmic pendulum, we have not only that the centripetal acceleration is summable to attractive gravity acceleration, on the one hand, and the centrifugal acceleration is
summable to the repulsive gravity acceleration, on the other hand (as it is said above), but it also happens that the two opposite gravitational accelerations, so strengthened by the increase due to the other two accelerations (centripetal and centrifugal), don’t cancel each other out, but are both summable with respect to the perihelion precession shift.

In fact, as will be shown shortly, the orbital perihelion precession depends on the sum of the four mentioned accelerations (attractive gravity, repulsive gravity, centripetal and centrifugal).

So let’s see if the assumption from which the theory proposed here moves is true, i.e. if it’s true that in perihelion, and only in it, the algebraic sum of the four accelerations (centripetal, centrifugal, attractive gravity and repulsive gravity) influences the perihelion precession motion.

In this regard it should be remembered that, by we having shown before that each point of the planetary orbit is characterized by the acceleration law of the harmonic oscillator pendulum \(g = \omega^2 x \) (where \(\omega \) is the angular velocity of the specific point, to be calculated in the manner illustrated above), I assumed that the aforementioned acceleration law, only with regard to the effects of precession perihelion motion, was equal to:

\[
4 g_{\text{(perihelion)}} = \dot{\omega}^2 x \quad (43)
\]

where:

- \(g_{\text{(perihelion)}} \) is gravity acceleration due to the solar attraction in perihelion;
- \(\dot{\omega} = \) is the precession angular velocity;
- \(x \) is planet position, that is, its projection on the abscissas axis of the harmonic oscillator, which in the perihelion coincides with the maximum oscillation, i.e. with the radius, therefore with the semi-major axis \(a \) (since we have approximated the planetary orbits at the circumferences of radius equal to said semi-axis).

Before \(g_{\text{(perihelion)}} \) there is 4 because we have assumed that, in perihelion, the four accelerations (of attractive gravity, of repulsive gravity, centripetal, and centrifugal) are equal and algebraically summable to each other.

From (43) we can obtain the precession angular velocity:
\[
4g_{(\text{perihelion})} = \dot{\omega}^2 a \quad \Rightarrow \quad \dot{\omega} = \sqrt{\frac{4g_{(\text{perihelion})}}{a}}
\]

\[
\dot{\omega} = 2 \sqrt{\frac{g_{(\text{perihelion})}}{a}}
\]

(44)

• Calculation of Mercury's perihelion precession velocity

Let us now compute, by means of (44), the Mercury's perihelion precession velocity which, net of the gravitational perturbations due to the other planets and net of other causes incident however on the precession in question, is equal, as it's known, to 43.1 ± 0.55 arcseconds/century

First of all, it’s necessary to calculate the gravity acceleration that the Sun generates on Mercury in perihelion.

\[
g_{(\text{perihelion})} = \frac{GM}{(\text{perihelion})^2}
\]

(45)

where:

\[G = 6.67433 \times 10^{-11}\]

\[M = \text{mass of the Sun (1.9891} \times 10^{30} \text{ kg)\]

Mercury’s perihelion = 46,001,046,044 meters

By replacing in (45) the above-mentioned values, and by knowing Mercury’s semi-major axis (\(a\)) is 57,909,175,678 meters, we have:

\[g_{(\text{perihelion})} = 0.06273 \text{ m/sec}^2\]

By replacing in (44) the \(g\) value found above and the semi-major axis value of Mercury's orbit, we have:

\[
\dot{\omega} = 2 \sqrt{\frac{0.06273}{57,909,175,678}}
\]

\[\dot{\omega} = 0.000002081584 \text{ rad/ year}\]

By converting the radians in arcseconds/year, we have:

\[\dot{\omega} = 0.4294 \text{ arcsec./ year}\]

By multiplying by 100:

\[\dot{\omega} = 42.94 \text{ arcsec./ century — C.V.D.}\]

At this point it is necessary to make a clarification.
As we have illustrated above, the 4 accelerations (centrifugal, centripetal, of attractive gravity and repulsive gravity) are algebraically joinable together only at the moment when the planet occupies the perihelion.

It is therefore an instantaneous condition, which nevertheless influences the whole planetary orbit with the perihelion precession phenomenon.

By being an instantaneous situation, which lasts for an indefinitely small time, there is the problem to understand how to relate the precession speed with the time, by being an instant indefinitely smaller than a second.

Now, by we having obtained in (44) the measurement of the angular velocity in radians per second (because \(g_{\text{perihelion}} \) is measured in \(\text{m/sec}^2 \)), and since the "second" being a fraction of a terrestrial "year", it’s necessary to investigate whether it is possible to relate the "instant" to the "second".

To this end we observe that the instant is not quantifiable, by having a merely conceptual value, as the point for spatial quantities.

A temporal interval, in fact, is composed of an infinite number of instants, similarly, a segment is composed of an infinite number of points.

It is not possible, therefore, to estimate how many times the instant is smaller than the second, as it is not possible to say how many times the point is smaller than the centimeter.

Therefore, if we want to adapt a speed measured in seconds of terrestrial year to a movement that takes place in a single point of the orbit and for a single moment, like the perihelion precession motion, we need to adjust the time scale used to measure the speed in question at the concept of "instant", and, since the fundamental temporal unit that we used in the measurement scale is the year (because the second is a fraction of the terrestrial year), the body's speed can only be compared to the terrestrial year.

We can therefore say that at the moment when Mercury occupies perihelion, the planet's perihelion shift velocity is 0.4294 arcseconds/year.

Multiplying by 100 we will have:

\[\dot{\omega} = 42.94 \text{ arcsecond/century} \]

which is precisely the perihelion precession velocity of Mercury.
We report below the table of perihelion precession velocities of all the planets obtained from (44), and compare them with the values obtained by the theory of relativity.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Precession observed by Newcomb</th>
<th>Precession predicted by R. Napolitano’s theory</th>
<th>Precession predicted by Einstein’s theory</th>
<th>Precession observed after Newcomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>43.4 ± 2.1</td>
<td>42.94</td>
<td>42.98</td>
<td>43.1 ± 0.55</td>
</tr>
<tr>
<td>Venus</td>
<td>10.6 ± 36.5</td>
<td>13.44</td>
<td>8.61</td>
<td>8.4 ± 4.8</td>
</tr>
<tr>
<td>Earth</td>
<td>6.9 ± 7.8</td>
<td>8.35</td>
<td>3.84</td>
<td>5 ± 1.2</td>
</tr>
<tr>
<td>Mars</td>
<td>9 ± 3.8</td>
<td>4.81</td>
<td>1.35</td>
<td>8</td>
</tr>
<tr>
<td>Jupiter</td>
<td>-------</td>
<td>0.7</td>
<td>0.0623</td>
<td>-------</td>
</tr>
<tr>
<td>Saturn</td>
<td>-------</td>
<td>0.293</td>
<td>0.0137</td>
<td>-------</td>
</tr>
<tr>
<td>Uranus</td>
<td>-------</td>
<td>0.1023</td>
<td>0.0024</td>
<td>-------</td>
</tr>
<tr>
<td>Neptune</td>
<td>-------</td>
<td>0.05024</td>
<td>0.0008</td>
<td>-------</td>
</tr>
<tr>
<td>Pluto</td>
<td>-------</td>
<td>0.00412</td>
<td>0.0000005</td>
<td>-------</td>
</tr>
</tbody>
</table>

* The values are in arcseconds/century

As can be seen from the table above, the two theories are substantially equivalent for the inner planets.

As for the outer planets (i.e. Jupiter, Saturn, Uranus, Neptune and Pluto) the two theories diverge sharply: therefore one of the two theories is wrong.

It is up to the astronomers the final judgment on which of the two theories is the correct one, not easy judgment, because of the very small quantity of observational studies on the perihelion precession of outer planets.

- **5.2 - Gravity force: exception to the first principle of dynamics**

But how is it possible that, when the planet is in perihelion, where the attractive force is aligned with the repulsive one, these two forces do not cancel
each other out, but give life to the perihelion precession shift?

It’s a mystery that, in my opinion, can be explained in only one way, that is, believing that the clash between the attractive and repulsive gravitational force gives rise to a particular type of energy — that we’ll define “containing energy” — arising from the forced non-birth, in the perihelion, of the F_{rx} force, which prevents the planet from occupying the perihelion it had previously occupied, by forcing it to "cut" the angle more towards the inside and preventing the elliptical orbit from closing itself, thus giving life to that particular flower-shaped orbit, which we see in the image on next page:

The perihelion precession motion, in essence, derives from the fact that, in the aforesaid point, the energy arising from the forced non-birth of F_{rx} force cannot find another outlet except in the aforementioned motion, so this energy is channeled in the only possible way, i.e. by causing an impediment for the planet to reoccupy the previous perihelion, which ultimately produces the shift movement of the apsis line.

This confirms the absolute singularity of the gravitational force, which, considering the mathematical findings obtained here, demonstrates that it does not succumb to the first principle of dynamics, according to which two opposing forces cancel each other, but that it gives rise, whenever these two forces derive from a single body (the central one), to two movements around it: the revolution of the bodies around the attractor-repeller, and periapsis precession motion, i.e. the orbital point closest to the central body.
So, there would be two exceptions to the first principle of Newton's dynamics that seems to occur in celestial mechanics, because even in the points other than perihelion the two opposing gravitational forces do not cancel out, but generate the revolution motion, thanks to the F_{rx} force arising from the different pressure (or energy) values existing in the *attractio*-repulsio zone.

The trajectory described by the perihelion precession motion is circular because, in the aforementioned point, the alignment of the attractive and repulsive gravity forces gives rise to a *containing-energy*, i.e. generating like a wall that stems the movement of the planet, preventing it from re-occupying the specific point in which this energy arises.

In other words the trajectory described by the perihelion precession motion is circular, because such is the trajectory described by a body launched at a certain speed with a tangential direction and subjected only to a constraint which generates centripetal acceleration (as the example of the ball tied to a rope seen above).

We talked about "*containing-energy" to differentiate it from the "*revolution energy" which, unlike the first one, is not an impediment (by not generating only an obstacle), but it is the source of the movement of the bodies around the attractor-repulsor.

This containing energy arising only in perihelion would have this formula:

$$U = m \times 4g \times R$$ \hspace{1cm} (45-bis)

As we notice, this energy differs from the potential energy of exclusively attractive field for the presence of 4 before g.

- **5.3 - The deflection of stars-light behind the Sun**

As it’s known, one of the proofs of relativity is the fact that from the Earth it is possible to see the light emitted by stars positioned behind the Sun, which we should not therefore see.

The proof consists first of all in the fact that the light is considered not to have a mass, so that the circumstance that is deviated near the Sun could not depend by gravity force exerted by the star, but by the fact that the space around the Sun is curved by its mass, and consequently the light of the star behind the Sun cannot help but be deflected and be visible to us on Earth.
Another presumed proof of the validity of relativity is, secondly, the measurement of the deflection angle, which is twice that of the Newtonian theory, but in harmony with relativity theory.

Well, by the result we have reached in (44), it is easy to explain why the evidence shows that the deflection angle of light is twice the one predicted by Newton’s theory.

In this regard it should be noted that the hyperbolic orbit described by the ray of light emitted by the star behind the Sun is subjected, at the point where the deflection occurs (which is the one closest to the Sun), to the same characteristics as the perihelion of elliptical orbits, i.e. the equality among the 4 accelerations (attractive gravity, centripetal, repulsive gravity and centrifugal), as well as the fact that they are all aligned with each other (albeit with the first two opposite to the second two), from which we have their summability with regard to perihelion precession which, as shown above, justifies the 4 before \(g \) in the acceleration law of the harmonic oscillator \(g = \omega^2 x \), which then becomes, with respect to the perihelion precession motion:

\[
4g(\text{perihelion}) = \dot{\omega}^2 a \rightarrow \dot{\omega} = 2 \sqrt{\frac{g(\text{perihelion})}{a}}
\]

Consequently, at the point where the deflection of light occurs, it is subjected, similarly to the perihelion of planetary orbits, to the precession motion, which takes place with an angular velocity equal to twice the angular velocity of the revolution motion of the planets around the Sun.

In fact, as we have seen above, the acceleration law to which the planets are subjected coincides perfectly with the one of the harmonic oscillator, i.e. \(g = \omega^2 x \), which in perihelion becomes \(\omega = \sqrt{\frac{g(\text{perihelion})}{a}} \), which is exactly half the value of the angular precession velocity we have reached in (44), and this is the reason why the deflection angle that the light undergoes at the point closest to the Sun is twice what is obtained from Newton’s theory.

Basically, light is also subjected to gravity, like any macroscopic body, and even subjected to precession motion, like planets and like all bodies with mass, and precession was not taken into account in the calculation of the angle deflection by
Newton’s theory.

In other words, the trajectory described by light is not the one that should be according to the Newtonian theory, because the point closest to the Sun "precedes" with respect to the one predicted by the aforementioned theory, because, due to the containing-energy which is generated at the point where the deflection occurs, the light is forced to follow a more internal path in such a way as to cut the angle, similarly to what happens for the precession of the perihelion of the planetary orbits, so that its angular velocity will increase in twice the size of the Newtonian theory, and therefore the deflection angle of the light can only be twice as much as expected.

After all, this is in harmony with the so-called "dual" nature of the photon, which is believed to be a corpuscle and a wave at same time.

If, therefore, the photon is "also" a corpuscle, there is no strangeness in the fact that it is affected by gravitational attraction in the same way as any other massive body, thus also undergoing the precession motion when it passes at the point closest to the attractor-repulsor.

- 5.4 - The black hole radius

A further confirmation of the fact that the light, like every body with mass, is subjected to the precession movement is the applicability of the perihelion precession formula we have obtained in (44) also to black holes, as will be shown in below.

The black hole, as it’s known, has the particularity of being able to trap in its gravitational field any object ends up in its range of action, including light.

Let's see if it is possible to calculate by the (44) the radius of the black hole, that is the limit beyond which nothing, once entered, can escape it.

Assuming that the cause of the impossibility for light to come out of the black hole is the same that prevents the planets from occupying the previous perihelion, causing its precession — that is, a particular type of containing-energy arising from the alignment between the attractive gravity force and repulsive gravity force (due to the non-arising of the force \(F_{r\perp} \)), that forces the body to "cut" the angle more inward — and that this alignment of forces occurs not in a single
point, like instead occurs in the case of the perihelion of planetary orbit, but along the entire circumference delimiting the black hole, we will have that the angular velocity of light around the black hole due to the "continuous" precession to which it is subjected by the aforementioned energy, will be equal to:

$$\dot{\omega} = 2 \sqrt{\frac{g}{R}} \quad (46)$$

where R is the radius of the black hole which, by having a circular structure, dispenses us from speaking of periapsis and semi-major axis, and this allows us to consider the radius both in the numerator (for the calculation of g) and in the denominator, so g will be equal to:

$$g = \frac{GM}{R^2}$$

and (46) becomes:

$$\dot{\omega} = 2 \sqrt{\frac{GM}{R^2}} \sqrt{\frac{GM}{R^3}} \quad (47)$$

But, since we hypothesized that the precession is "continuous", that is to say that it operates not in a single point of the trajectory followed by the light around the black hole, but uninterrupted along the whole circumference of the black hole, we can equal the (47) to the angular velocity proper to the circular motion, which is:

$$\omega = \frac{2 \pi}{T} \quad (48)$$

Therefore, from the comparison between (47) and (48) we can write:

$$2 \sqrt{\frac{GM}{R^3}} = \frac{2 \pi}{T}$$

$$\Rightarrow \frac{1}{2} \sqrt{\frac{R^3}{GM}} = \frac{T}{2 \pi}$$

Multiplying both sides by 2π, we have:

$$\pi \sqrt{\frac{R^3}{GM}} = T$$

By squaring both sides:
\begin{align*}
\pi^2 \frac{R^3}{GM} &= T^2 \\
\Rightarrow R^3 &= \frac{T^2GM}{\pi^2} \tag{49}
\end{align*}

But we also know that, in circular motion, \(T\) is equal to:
\[T = \frac{2\pi R}{V}\]

and that in our case \(V\) can be replaced with the speed of light \(c\), because we are verifying the applicability of (44) to a black hole which, as is known, is capable of blocking the light too, so we will have:
\[T = \frac{2\pi R}{c}\]

by replacing the aforementioned value of \(T\) in (49), we will have:
\[R^3 = \left(\frac{2\pi R}{c}\right)^2 \frac{GM}{\pi^2}\]
\[\Rightarrow R^3 = \frac{4\pi^2 R^2 GM}{c^2 \pi^2}\]
\[\Rightarrow R^3 = \frac{4R^2 GM}{c^2}\]

by dividing both sides by \(R^2\), we’ll have:
\[R = \frac{4GM}{c^2}\] \tag{50}

This equation expresses the value of the distance from the center of the black hole within which everything, including the light, once entered, no longer comes out.

Let’s now try to verify concretely the efficacy of (50) using it to calculate the radius of the black hole \(\textit{Sagittarius A}^*\) located at the center of the Milky Way, taking as its mass the average one resulting from the different estimates made by the astronomers, that is 3.75 million times the mass of the Sun.

\[M_{\textit{Sagittarius A}} = 3.75 \times 1,000,000 \text{ mass of Sun} = 7.35967 \times 10^{36} \text{ kg}\]
\[G = 0.000000000667433\]
\[c^2 = 89,875,517,873,681,764\]

By replacing in (50) the above-mentioned values, we have:
\[
R = \frac{4 \times 0.000000000667433 \times (7.35967 \times 10^{36})}{89,875,517,873,681,764} \\
R = 22.157.162 \text{ km}
\]
As you can see the result to which (50) leads, equal to about 22 million Km, is in good agreement with the observational estimates, which quantify the radius of *Sagittarius A*\(^*\) in about 22 million km.

We can therefore conclude that, with good probability, the black hole generates, at least at a distance equal to the value obtainable from (50), a gravitational containing-energy that prevents the bodies, once entered inside that limit, from coming out, similarly to what happens to perihelion of planetary orbits, where we have seen that the particular energy deriving from the alignment of the two opposing gravitational forces prevents the planet from re-occupying the previous perihelion, forcing it to assume a more internal trajectory that prevents the elliptical orbit from closing, giving it the typical "flower" shape.

This, on the one hand, confirms the susceptibility of light to undergo the precession motion, like any other body with a mass and, on the other, opens new scenarios for the study and understanding of black holes, which would not be, on my opinion, what remains of the gravitational collapse of the mass of a star, compacted until to assume a much smaller radius than it originary had, as theorized by Schwarzschild, but would be, as will be better clarified later, a concentrations of disjoined protons, which would be confined within the radius expressed by (50) by the gravitational containing-energy resulting from the attractive-repulsive force-field generated by protons themselves, as we will better illustrate later.

The radius of Schwarzschild, in fact, is notoriously equal to \(R = \frac{2GM}{c^2} \), that is the half of the radius we have reached in (50), so that not only it doesn’t correspond to the radius of *Sagittarius A*\(^*\) resulting from the observations, but what is most striking is that at the center of the Milky Way no object with radius equal to the one predicted by Schwarzschild is observed, which should instead be observed if, as the aforesaid scientist speculates, the black hole was really the residue of the gravitational collapse of a big star.

In fact, a super-compact mass like the one that, according to Schwarzschild's theory, the black hole should have at the center of the Milky Way, would not be a microscopic dot — such as the one in which a planet as big as Earth could be compacted (just 8 mm) — but it should have a radius of 11 million km,
therefore it should be undoubtedly observable from the Earth even at a distance of 27,000 light-years like the one that separates us from the center of our galaxy, not only because at that distance we can observe bodies with a radius much less than 11 million km, but also because it would be a super compact (very dense) mass, which as such should reflect very well the light that touches it.

Instead, by assuming that the black hole consists only of protons, we can also explain its invisibility, because a concentration of disjoined protons, although high, is unsuitable to reflect the light, as anyone else microscopic particle, so, when a ray of light crosses the limit predicted by (50), it crosses undisturbed the whole of the inner part of the black hole, because of the absence of internal massive bodies able to reflect it, up to the opposite side of the circle, beyond which it doesn't manages to push itself because of the containing-energy that arises precisely on the edge of the aforementioned circle from the attractive-repulsive force-field generated, as will be seen below, by the protons present in the black hole.

This energy, by being present on the whole circumference of the black hole, forces the ray to move in perpetuity around the center of the hole, similarly to what happens in the perihelion precession of planetary orbits, in which case the planet cannot re-occupy the perihelion it had previously occupied, but is forced to bend more inwardly because of the containing-energy created by the alignment, in perihelion, between the attractive and repulsive gravitational forces (in turn resulting from the non-arising of force F_{rx}) with the difference, compared to the black hole, that, since this energy arises only in perihelion, it does not prevent the planet, once exceeded the aforesaid point, from moving away from the Sun, albeit to the smallest extent possible and not indefinitely (until the arrival in aphelion).

This way of interpreting the black hole, bringing together in a single category all the types of known black holes (supermassive and stellar) — which would differ only in size — avoids to speculate questionable differences between the two types of black holes based on alleged, but not plausible, different origins.

- 5.5 - The nuclear radius: gravito-electric force

Let's see now if it is possible, by using our theory, to obtain the atomic nuclear radius.
We know from Einstein that the energy contained in the atomic nucleus by
the very fact of having a mass, which we will define "Mass energy", is equal to
\[E_m = Mc^2 \], where \(M \) is the mass of the nucleus.

Now, let's suppose that this energy is contained by an identical energy to the
one existing in the orbital periapsis and at the limit of the black hole, we would
have as a logical consequence the equality between the two energies (the “mass
energy” \(E_m \) and the “containing-energy” \(E_c \)), otherwise the nucleus would explode,
so we will have:

\[E_c = E_m \quad (51) \]
\[\Rightarrow E_c = Mc^2 \quad (52) \]

It’s now necessary to translate into mathematical language the containing-
energy concept \(E_c \), which exists only in the attractive-repulsive zone of gravitational
fields.

It is undoubtedly a gravitational potential energy, but it is distinguished
from the potential revolution-energy as we’ve stated above.

Therefore, before containing-energy, we need to define conceptually, and
then translate into mathematical language, the gravitational potential revolution-energy.

As it’s known, the gravitational potential energy of a body subjected to the
attractive gravity force is:

\[U = F_g \ast R \quad (52\text{-bis}) \]

where \(F_g \) is gravity force which, by virtue of the second principle of
dynamics, can also be written as follows:

\[F_g = m \ast g \]

Therefore the (52-bis) becomes:

\[U = m \ast g \ast R \]

Where \(m \) is the mass of the attracted body, \(g \) is the gravity acceleration and
\(R \) is the distance of the attracted body from the center of the attractor body (for
instance the Earth).

The ratio of direct proportionality between energy and distance, rather than
inverse proportionality (that instead we have in the equation of gravity force), is
explained by the fact that here we observe the phenomenon of gravitational attraction in terms of the potentiality of the body subjected to a given gravitational force, located at a certain height and free to fall, to affect the surrounding reality (in particular by impacting the ground).

It is obvious that the higher up the body is located, the greater its gravitational potential will be, because the damage it will cause to the earth's soil is the greater, the greater the height from which it begins to fall is (in this case, in fact, a body would reach the earth's soil with the greater speed, the greater the distance from the Earth).

However, in the attractive-repulsive zone things are different.

If we admit, indeed, that the effect of the attractive-repulsive field is not to make the bodies fall towards the central attractor-repulsor, but to make them move around it at decreasing speed as the distance from the central body increases, it would follow that the formula of the gravitational potential revolution-energy \(E_r \) would be as follows:

\[
E_r = \frac{F_g R}{\pi} \tag{53}
\]

Therefore:

\[
E_r = \frac{m * g}{R \pi} \tag{53-bis}
\]

This time the distance \(R \) is in the denominator, because, the greater is the distance, the lower will be the revolution speed produced by the attractive-repulsive field, then, in the final analysis, the lower will be the energy of mass body \(m \).

The term \(\pi \) appears because, as we have explained above, we have hypothesized that a body inserted in an attractive-repulsive field reaches its maximum speed after a half-turn (precisely \(\pi \)).

However, (53-bis) must be appropriately modified for the gravitational potential containing-energy.

Above we have seen, in fact, that the acceleration law of the perihelion precession motion, made possible by the containing-energy that is created in perihelion, differs from the acceleration law of the harmonic oscillator (to which the revolution motion is subjected), due to the presence of the 4 before \(g \), then, to obtain a mathematical equation that expresses the gravitational potential containing-energy \(E_c \),
it is necessary to modify (53-bis) as follows:

\[E_c = \frac{m \cdot 4g}{R \pi} \]

(54)

But this equation must still be modified if to be applied to the atomic nucleus.

Here, in fact, even if we admit that gravity operates, it would not be the only operating force, since it is not possible to neglect electric one.

Therefore I have supposed that in the atom, gravity force and electric force joined together, giving rise to the gravito-electric force \(F_{ge} \) (or, if you prefer, electro-gravitational force) having this magnitude:

\[F_{ge} = \frac{GMm}{R^2} \]

(54-bis)

where \(K \) is the Coulomb’s constant, and I also supposed that it was necessary to replace in (54) \(m \) with \(M \), i.e. with the mass of the nucleus itself, because we are analyzing the gravito-electric containing-energy possessed by the nucleus (which is able of controlling, blocking, containing the mass energy \(E = Mc^2 \)), not the gravito-electric revolution-energy (53), which is present in the space surrounding the nucleus and which is able to make the electrons move around the nucleus itself, so that (54) becomes:

\[E_c = \frac{M \cdot 4g_e}{R \pi} \]

(55)

where \(g_e \) is gravito-electric acceleration.

Now we replace in (52) the value of \(E_c \) just found, and we’ll have:

\[\frac{M \cdot 4g_e}{R \pi} = Mc^2 \]

(56)

From (54-bis) we can derive the gravito-electric acceleration \(g_e \) exerted by the nucleus on its own surface:

\[g_e = \frac{GM}{R^2} \]

(56-bis)

where \(R \) is the nuclear radius.

So (56) becomes:

\[\frac{M}{R \pi} \cdot \frac{4GM}{R^2} = Mc^2 \]
\[\frac{4kGM^2}{R^3 \pi} = Mc^2 \]

(56-ter)

Let’s divide both sides by \(M \):

\[\frac{4kGM}{R^3 \pi} = c^2 \]

\[4kGM = R^3 \pi c^2 \]

\[R^3 = \frac{4kGM}{\pi c^2} \]

\[R = 3 \sqrt[3]{\frac{4kGM}{\pi c^2}} \]

(57)

It’s worth to specify that (57) doesn’t express the nuclear charge radius, but expresses the radius of nuclear containing potential energy, i.e. the range of this energy.

Let’s now examine the concrete efficacy of (57), trying to calculate the nuclear radius of different atoms (chosen randomly in the periodic table of elements), and compare it to the radius observed by nuclear physicists.

Let’s start with the gold atom.

It’s opportune to state that the formula that physicists have deduced experimentally for the calculation of the nuclear charge radius is the following:

\[R = r_0 * \sqrt[3]{A} * 10^{-15} \text{ meters} \]

(58)

Where \(r_0 \) is equal to 1.2, and \(A \) is the mass number, i.e. the sum of protons and neutrons (it is indicated at the top left next to the element symbol in the periodic table of the elements).

It should be noted that (58) expresses the charge radius, namely the radius resulting from the charged particles scattering experiments. These experiments [2] show that the nuclear charge radius is the distance at which the nuclear density is reduced by 50% with respect to its maximum central value (not without reason it is defined as half-density radius, and as average radius, by being the root mean square of the values).

Now, we’ll see below that, by dividing by 2 the right-hand side of (57) we’ll have just the value of charge radius given by (58), so we can say that the range of nuclear gravito-electric potential, given by (57), is equal to twice the charge radius.
\[R = \frac{1}{2} \sqrt[3]{\frac{4KGM}{\pi c^2}} \quad (59) \]

Let’s see if (59) is true.

Well, the mass number of the gold atom is:

\[A = 197 \]

so the "experimental" radius deriving from (58) is:

\[R = 1.2 \times 10^{-15} \times 5.8 \text{ meters} \]
\[R = 6.9823 \times 10^{-15} \text{ meters} \quad (60) \]

Let’s now calculate the nuclear radius of the aforesaid atom by means of (59), where:

- \(M \) is the mass of nucleus = \((A \times 1.66054 \times 10^{-27}) \) kg
- \(K \) is Coulomb’s constant = \(8.99 \times 10^9 \)
- \(G \) is gravitational constant = \(6.67433 \times 10^{-11} \)
- \(\pi = 3.14 \)
- \(c^2 = \text{speed of light squared (89875517873681764)} \)

For convenience we quote below (59) and replace in it the values, written above, of \(M, G, K, \pi, \) and \(c^2 \).

\[R = \frac{1}{2} \sqrt[3]{\frac{4KGM}{\pi c^2}} \]
\[R = \frac{1}{2} \sqrt[3]{\frac{4 \times (8.99 \times 10^9) \times (6.67433 \times 10^{-11}) \times (197 \times 1.66054 \times 10^{-27})}{3.1415 \times 89875517873681764}} \]
\[R = 7.031 \times 10^{-15} \text{ meters} \quad (61) \]

We now compare the theoretical value of the nuclear radius we have obtained in (61) and the value of the radius obtained by the empirical formula (60):

\[\frac{7.031 \times 10^{-15}}{6.9823 \times 10^{-15}} = 1.0069 \]

As you can see, the margin of error is practically non-existent.

Anyway, the slight discrepancy reduces to a ratio of 1.002 if one gives \(r_0 \) the value of 1.2049 \(fm \) resulting from reference [3], pag. 203 and from reference [4], pag. 626.

Let us now apply (59) to different atoms randomly chosen from the periodic table of elements (we choose only some of them for convenience).
The above table fully confirms the correctness of the formula (59) and, consequently, of (57).

It’s worth to repeat that (57) doesn’t express the nuclear charge radius, but the radius (better the “range”) of gravito-electric containing potential energy of nucleus.

After all, the formula (57) is in good agreement with the nuclear size measurement method derived from the nuclear binding energy [2].

In fact the charged particles scattering is not the only way to empirically determine the nuclear radius, but there also exists another method based on the difference in nuclear binding energy between two mirror nuclei (for example of \(^3\)He and of \(^3\)H).

In the reference [2], paragraph 3.2.7.2, pag. 44-45, indeed, it has been pointed out that, by measuring the difference in binding energy between the mentioned two mirror nuclei, and by hypothesizing that this difference was ascribable only to the difference in Coulomb potentials, it is possible to calculate the radius of the nuclei of \(^3\)He and of \(^3\)H — both of them endowed with a mass number \(A\) equal to
3 — and the result is $3.4 \, fm$ in both cases, which is in very good accord with the result of our formula (57), i.e. $3.48 \, fm$ (the little discrepancy very likely is due to the fact that other factors, like the difference between proton and neutron masses, are not taken into account, since it has been assumed, we repeat, that the difference in binding energy is attributable only to the differences in Coulomb potentials between two nuclei).

We have thus demonstrate that gravity, whatever its cause, affects not only the macroscopic world, but also the microscopic one, albeit with the particularity of merging with the electric force.

Moreover, the joint action of the two forces is completely consistent with the so-called "dual" nature of the fundamental particles: the corpuscular aspect of the nucleons (protons and neutrons) creates gravitational force, the undulatory aspect of nucleons originates electric force.

Would the formula (57) be the proof of the famous "quantum gravity"?

Beyond the terminological questions, we reduce as much as we want the persuasiveness of the reasoning that led us to (57), we cannot deny the existence of gravity force even at the quantum level, at least at the nuclear level. The aforementioned formula, in fact, is clear: at the level of the atomic nucleus, the gravity force and the electric force act together to give life to an energy, expressed by (55), which allows to contain the energy inherent in the mass itself ($E = mc^2$).

The "containing" function of the energy expressed in (55) is confirmed by the derivative character of this formula with respect to the orbital periapsis precession formula (44) and to the black hole radius formula (50), where we have the same kind of energetic nature (i.e. containing-energy).

But the equality between mass energy E_m and containing-energy E_c seen in (51) testifies, in the final analysis, the existence of an attractive-repulsive gravito-electric field also within the atom, by we having used, as regarding the second energy, the gravitational potential containing-energy formula, which is an exclusive prerogative of the attractive-repulsive field, where the relation between energy and distance is of inverse proportionality, rather than direct (as instead we have in the gravitational potential energy existing in the exclusively attractive gravitational field).

The existence of such an attractive-repulsive forces-field would therefore be
the element that unites the macro-world mechanics with the micro-world one, as well as the dynamics deriving from this field.

- **5.6 - The non-decreasing velocity of galaxy stars: dark matter crisis**

As it's known, the stars orbit the black hole at almost constant orbital velocity, unlike the Keplerian system (like our solar system), in which orbital velocity of celestial bodies decreases with the increase of distance from the Sun.

In truth, the stars of the galaxies behave according to the Keplerian system (and therefore with the Newtonian mechanics), only in the proximity zone, the one closest to the black hole, where the stars motion respect the Newtonian gravitational model, in which gravity force is inversely proportional to the distance from the attractor.

After passing that proximity zone, the orbital velocity of the stars remains substantially constant, until the end of the galactic disk, where it returns to increase.

The science explains the stability of the stars orbit located in the intermediate zone (which, we repeat, move at constant speed) hypothesizing the existence of dark matter (not visible) inside the galaxies, which "would help" the gravity force exerted by the black hole to keep them within the range of the hole itself, thus preventing the stars from moving away from it permanently, despite of their high speed with respect to the gravity generated by the mass of the black hole.

This dark matter would have the characteristic of not being observable, although it exerts gravitational force and represents about 75%, or perhaps even more, of the overall mass that makes up the universe.

However, despite of the considerable efforts made by researchers both in the nuclear and in the astronomy physics, it has not yet been possible to find direct evidence of dark matter.

Below we propose a possible explanation of the strange phenomenon of the constancy of the orbital velocity of the stars, hypothesizing the existence of an attractive-repulsive *gravito-electric* forces-field that would arise starting from a certain distance from the black hole, i.e. beyond the zone where instead the attractive-repulsive gravitational (not gravito-electric) field would operate.
From the strange non-observability of the black hole, it has been hypothesized that it was composed only of protons (without therefore neutrons and electrons), not joined together to form a single body, due to the repulsive force among them that would preclude this.

Furthermore, we have hypothesized that the galactic system could be compared to the atom system, where the black hole would perform the same functions as the atomic nucleus, and the stars orbiting the black hole would be the electrons orbiting the nucleus.

If this were true, the equation \(E = M c^2 \), which expresses the energy possessed by the nucleus by the very fact of having a mass, should undergo a modification with regard to the galactic nucleus (the black hole).

If the black hole nucleus is only composed of protons, the consequence could be that the energy it possesses will be directly proportional not to its mass, but to its charge \(Q \), since the protons have an electric charge, so it is reasonable to assume that the Einsteinian formula seen above becomes:

\[
E = Q c^2
\] \((62) \)

Let's see if (62) is true.

By assuming that the black hole exerts an attractive-repulsive gravito-electric field from a certain distance from it, responsible for the revolution of the stars around it, it follows that the gravito-electric revolution-energy possessed by the aforementioned stars will be equal to the right-hand side of (53):

\[
E_r = \frac{m_s g_e}{R \pi}
\] \((63) \)

Where \(m \) is the total mass of the visible stars of the Milky Way, so without the hypothetical dark matter, and \(g_e \) is gravito-electric acceleration seen in (56-bis).

Now, if it is true that the energy expressed by (62) is responsible for the revolution of the stars around the black hole, it must be equal to the gravito-electric revolution-energy seen in (63), therefore, from the comparison of the (63) and (62) we can write:

\[
\frac{m_s g_e}{R \pi} = Q c^2
\] \((64) \)
where \(g_e = \frac{GKM}{R^2} \) is gravito-electric acceleration exerted by the black hole on the stars of galaxy.

So (64) becomes:

\[
\frac{GM}{R} \cdot \frac{Km}{R^2 \pi} = Qc^2
\]

(65)

But from Newtonian mechanics, to which the mechanics proposed here are inspired, we also know that:

\[
v = \sqrt{\frac{GM}{R}} \implies v^2 = \frac{GM}{R}
\]

by replacing in (65) \(\frac{GM}{R} \) with \(v^2 \), we’ll have:

\[
v^2 \cdot \frac{mK}{R^2 \pi} = Qc^2
\]

\[
\implies v^2 = \frac{Qc^2R^2 \pi}{mK}
\]

\[
\implies v = cR \sqrt{\frac{Q \pi}{mK}}
\]

(66)

Since the velocity of the stars does not decrease with the increase of distance from the black hole, we can hypothesize that the attractive-repulsive gravito-electric field generated by the protons does not depend on the distance, so we can impose as a condition that the radius is \(R = 1 \), then the (66) becomes:

\[
\implies v = c \sqrt{\frac{Q \pi}{mK}}
\]

(67)

Now let's try to calculate, by using (67), the speed of the stars of the Milky Way (our galaxy), which (excluding those closest to the black hole, to which the Newtonian formula \(v = \sqrt{\frac{GM}{R}} \) is applicable) orbit the central black hole \(Sagittarius A^* \) at an average orbital velocity, almost constant, estimated between 220 and 240 km/sec.

First of all, it is necessary to determine the electric charge \(Q \) of \(Sagittarius A^* \).

To this end it is necessary to determine the number of protons making up \(Sagittarius A^* \), and then multiply it by the electric charge of the single proton.
To quantify the number of protons located inside Sagittarius A* it is enough to divide the mass of the latter by the mass of the single proton.

Mass of Sagittarius A* = \(3.75 \times 10^6\) \(M_{\text{Sun}}\) = \(3.75 \times 10^6 \times 1.9891 \times 10^{30}\) kg

Mass of proton = \(1.66054 \times 10^{-27}\) kg

Number of protons making up Sag. A* = \(\frac{3.75 \times 10^6 \times 1.9891 \times 10^{30}}{1.66054 \times 10^{-27}}\) = 4.4919875462199043684584532742361 \(\times 10^{63}\) (68)

To obtain the electric charge \(Q\) of Sagittarius A* we multiply the number of protons obtained in (68) by the charge of the single proton, which is equal to 1.621 \(\times 10^{-19}\) Coulomb, so we’ll have:

\[Q = (4.4919875462199043684584532742361 \times 10^{63}) \times (1.621 \times 10^{-19})\]

\[Q = 7.2815118124224649812711527575367 \times 10^{44}\] Coulomb \(\text{ (69)}\)

Let us now determine the value \(m\) of the total mass of the stars of the Milky Way.

According to astronomers, it ranges from a minimum of 200 to a maximum of 350 billion solar masses \((1.9891 \times 10^{30} \text{ kg})\).

Applying the minimum estimate (200 billion solar masses), \(m\) will be equal to:

\[m = (200 \times 10^9) \times (1.9891 \times 10^{30}) = 3.9782 \times 10^{41}\] kg \(\text{ (70)}\)

We now replace in (67) the values of \(Q\) and \(m\) found respectively in (69) and in (70), and also those, already known, of \(c, \pi\) e \(K\):

\[v = 299,792,458 \times \sqrt{\frac{7.2815118124224649812711527575367 \times 10^{44} \times 3.14}{(3.9782 \times 10^{41}) \times (8.99 \times 10^9)}}\]

\[v = 239,702 \text{ m/sec}\]

\[v = 239.7 \text{ Km/sec} \text{ (70-bis)}\]

As we can note, the stars orbital velocity of the Milky Way predicted by (67) is perfectly in accordance with the observation, whose estimates range, we repeat, from 220 to 240 \(\text{km/sec}\).

We have thus shown that the stars orbital velocity is directly proportional to the electric charge of the black hole, and inversely proportional to the total mass of the visible stars that make up the galaxy, without considering the contribution of dark
matter, whose real existence seems to be no more so certain.

- **5.7 - Black holes: “proton stars”**

According to the mathematical findings obtained here, it is extremely probable that the black hole is not what remains of the gravitational collapse of a star, as current opinion holds, but is a concentration of protons, which can lead us to coin, in their regards, the definition of "proton stars".

Such protons would not be joined together to form a single massive body (which could justify their non-observability), by remaining completely autonomous particles among which would operate electric repulsion, even though opposed by the gravitational containing-energy generated by the protons corpuscular nature, which forces these latter to remain confined within the radius given by (50).

In summary, the corpuscular aspect of such proton particles would give rise to two types of gravitational energy:

1) gravitational containing-energy (arising from the collision between the attractive and repulsive gravitational forces generated by the same protons, due to the non-arising of the force $F_{r\chi}$), which would oppose the movement of protons (like we’ll say better later), confining them, we repeat, within a circumference of radius equal to the value expressed by (50);

2) gravitational revolution-energy, which would exist in the proximity zone (the one closest to the black hole), which would cause the revolution of the stars around the black hole according to the Keplerian-Newtonian model, i.e. with decreasing speed as the distance from the center increases ($v = \sqrt{\frac{GM}{R}}$).

Starting from a certain distance from the black hole, the attractive-repulsive gravitational field would turn into an attractive-repulsive gravito-electric field, ascribable to the undulating aspect of the protons of the black hole, generating gravito-electric revolution-energy, responsible for the revolution at almost constant speed of the stars around the central black nucleus.
Anyway, the change of the modus-operandi of the gravitational force according to the spatial zone observed, would not be a novelty, by we having already found this peculiarity in the examination of the solar system, in which there is similarly a proximity zone where gravity is only attractive, and a farther one, where gravity changes its effect to become attractive and repulsive at the same time.

This is all I can say about the black holes at this point of the present work, but I will make it clearer in the next paragraphs (5.11, 5.12 and 5.13).

• 5.8 - The speed and the orbital radius of the electrons around the nucleus

If it is true that the atom can be compared to a galaxy — but we already had a confirmation demonstrating the full correctness of the equation $E = Qc^2$ seen in (62), which, referring to the protons of the black hole, shows that they behaves, with respect to the galaxy, in the same way as the nucleus of the atom behaves with respect to the atom itself, in which the similar equation $E = Mc^2$ applies — we try to determine the orbital velocity of the electrons around the nucleus, using the same logical-mathematical process seen above for the orbital velocity of the stars, even though we don't have a sure parameter as a reference, since the electron velocity having never been experimentally measured.

By assuming, analogously to what has been done for the stars of galaxies, that nuclear energy is responsible for the revolution of the electrons around the nucleus, and that therefore this exerts an attractive-repulsive gravito-electric field starting from a certain distance from it, it would follow, as a logical consequence, the comparison between nuclear energy equation $E = Mc^2$ and the gravito-electric revolution-energy equation we have seen in (63), so we will have:

$$\frac{m \times g_e}{R \pi} = M c^2$$

(71)

Where m is the total mass of the electrons, M is the mass of the nucleus, and g_e is the gravito-electric acceleration generated by the nucleus on the electrons.

We have seen above that $g_e = \frac{GM}{R^2}$, so (71) becomes:

$$\frac{GM}{R} \times \frac{km}{R^2 \pi} = M c^2$$

(72)
But from Newtonian mechanics we know that \(v = \sqrt{\frac{GM}{R}} \), so \(v^2 = \frac{GM}{R} \).

By replacing in the \(\frac{GM}{R} \) with \(v^2 \), we’ll have:

\[
\begin{align*}
\nu^2 \times \frac{mk}{R^2 \pi} &= Mc^2 \\
\Rightarrow \nu^2 &= \frac{Mc^2 R^2 \pi}{mk} \\
\Rightarrow \nu &= cR \sqrt{\frac{M \pi}{mk}}
\end{align*}
\] (73)

By assuming that the velocity of the electrons does not decrease with the increase of distance from the nucleus, analogously to what happens for the stars of the galaxies, we can hypothesize that the attractive-repulsive *gravito-electric* field generated by the atomic nucleus does not depend on the distance, so we can impose as a condition that the radius is \(R = 1 \), so the (74) becomes:

\[
\Rightarrow \nu = c \sqrt{\frac{M \pi}{mk}}
\] (74)

Now let’s try to calculate the speed of the electrons of the hydrogen atom, which, according to the theory proposed here, should orbit the nucleus at the speed expressed by (75), where, it is repeated, \(m \) is the total mass of the electrons and \(M \) is the mass of the nucleus.

\(m_{(electrons \, H)} = \) number of electrons of Hydrogen \(\times (9.11 \times 10^{-31}) = \\
= 1 \times (9.11 \times 10^{-31}) = 9.11 \times 10^{-31}; \)

\(M_{(nucleus \, H)} = \) Mass number \(A \times (1.66054 \times 10^{-27}) = 1 \times 1.66054 \times 10^{-27} \)

We now replace the above values of \(m \) and \(M \) in the (75), also those already known of \(c, \pi \) and \(K \):

\[
\nu = 299,792,458 \sqrt{\frac{1 \times (1.66054 \times 10^{-27}) \times 3.14}{(9.11 \times 10^{-31}) \times (8.99 \times 10^7)}}
\]

\[
\nu = 239,262 \, m/sec
\]

\[
\nu = 239,262 \, Km/sec \quad \text{(75-bis)}
\]

This is the theoretical speed of electrons orbiting around the hydrogen atomic nucleus: as we can see, the velocity of the electrons obtained in (75-bis) is practically identical to the orbital velocity of the stars of the Milky Way we have reached in (70-bis): this further confirms our assumption that the galaxy system is
very similar to the atom system.

It is also true that, for atoms with a higher mass number, the velocity of the electrons changes (for example, for the gold atom, the speed of the electrons predicted by (75) is around 375 km/sec), but its value is not too far from the orbital velocity of the stars usually found in galaxies.

Note that the model proposed here differs from the one proposed by Rutherford, who hypothesized that the atom system was similar to the solar system, where the electron was considered to be subjected, according to the Newtonian model, only to electric attractive force.

This model was not accepted because it was pointed out that the electron, while rotating around the nucleus, should lose energy, and then fall on the nucleus.

But in our model, in which the electron is subjected to an attractive-repulsive field, this risk is averted precisely by the repulsive force.

Let’s see if (75) can find a confirmation in experimental data.

From experiments [3] we know that in heavy atoms the lowest electron orbital radius is about 100 times larger than the nuclear charge radius (in particular see page 121 of reference [3]): let’s see if we can demonstrate this by means of our theory.

Let’s take the lead atom, notoriously heavy (its mass number \(A \) is 208).

Let’s calculate by (75) the velocity of electrons of lead atom.

We know that in the lead atom the atomic number is 82, so, to calculate the total mass of electrons \(m \) we have to multiply the atomic mass 82 by the electron mass \(9.11 \times 10^{-31} \text{ kg} \):

\[
m = 7.4702 \times 10^{-29} \text{ kg}
\]

Now let’s replace in (75) the above value of \(m \) and the value of nuclear mass of lead atom \(208 \times 1.66054 \times 10^{-27} \):

\[
v = 299,792,458 \sqrt{\frac{208 \times (1.66054 \times 10^{-27}) \times 3.1415}{(7.4702 \times 10^{-29}) \times (8.99 \times 10^9)}}
\]

\[
v = 381,065 \text{ m/sec} \quad (75\text{-ter})
\]

Now let’s calculate the lowest electron orbital radius of lead atom.

For this purpose we can consider a nuclear model in which the nucleus is orbited not by shadow nucleons, but by electrons, so we can use the formula (53) and compare it to the double of kinetic energy of electrons (because, we repeat, this time
we assume that the orbiting particles within the nucleus are these latter):

$$\frac{F_{ge}}{R \pi} = m v^2$$

$$\frac{m \cdot g_e}{R \pi} = m v^2$$

(75-quater)

where \(m \) is the total mass of electrons of lead atom, and \(v \) is the velocity of its electron expressed in (75-ter).

This time we have to use the gravito-electric revolution potential energy (without 4) because we have assumed that the electrons are not endowed with the speed of light (like we’ll see better at the end of paragraph 5.12), so we can take as \(v \) in the (75-quater) the value of electron velocity derived by (75), \(i.e. 381,065 \, m/sec \).

From (75-quater) we have:

$$\frac{G KM}{R^2} \cdot \frac{m}{R \pi} = m v^2$$

$$\Rightarrow \frac{G KM m}{R^3 \pi} = m v^2$$

$$\Rightarrow G KM = R^3 \pi v^2$$

$$\Rightarrow R^3 = \frac{G KM}{\pi v^2}$$

$$\Rightarrow R = \sqrt[3]{\frac{G KM}{\pi v^2}}$$

(75-quinquies)

$$R = \sqrt[3]{\frac{(8.99 \cdot 10^9) \cdot (6.67433 \cdot 10^{-11}) \cdot (208 \cdot 1.66054 \cdot 10^{-27})}{3.1415 \cdot (381,065)^2}}$$

$$R = 7.6874 \cdot 10^{-13} \, meters$$

(75-sexies)

This is the theoretical value of lowest electron orbital radius of lead atom.

Let’s compare the theoretical radius obtained in (75-sexies) to the nuclear charge radius of lead atom given by (59), because in reference [3] the comparison is done with regard to nuclear charge radius (1.2 \(\cdot A^{\frac{1}{3}} \) fm):

$$\frac{7.6874 \cdot 10^{-13}}{7.1596 \cdot 10^{-15}} = 107.37$$

So we have demonstrated that the formulae (75) and (75-quinquies) are correct, since the theoretical value of electron orbital radius given by the mentioned formulae is equal to about 100 times the nuclear charge radius of lead atom (heavy atom).
It’s worth to precise that (75-quinquies) expresses the lowest electron orbital radius because this is again the “ideal radius” of electron, where the orbital stability is maximum because at this distance from the nuclear center the gravito-electric potential energy of the electrons equals twice their kinetic energy.

Since the experiments of which it’s spoken in the reference [3] tell us that the ratio of 100/1 between the lowest electron orbital radius and nuclear charge radius regards only heavy nuclei, now we try to calculate the hydrogen electron orbit, the lightest nucleus, in order to demonstrate that the (75) is again correct (indeed the resultant ratio we’ll be greater than 100).

Let’s use the velocity of electrons of hydrogen atom obtained in (75-bis): 239,262 m/sec.

Now let’s calculate the lowest radius of electron orbit of hydrogen atom using the formula (75-quinquies):

\[R = \sqrt[3]{\frac{KGM}{\pi v^2}} \]

\[R = \sqrt[3]{\left(\frac{8.99 \times 10^9 \times 6.67433 \times 10^{-11} \times 1.66054 \times 10^{-27}}{3.1415 \times (239,262)^2}\right)} \]

\[R = 1.7694 \times 10^{-13} \text{ meters} \quad (75-septies) \]

Let’s compare the theoretical radius of electron orbit obtained above to nuclear charge radius of hydrogen atom given by (59), and we’ll see that the first is larger than the second of much more than 100 times (about 150 times):

\[\frac{1.7694 \times 10^{-13}}{1.20835 \times 10^{-15}} = 146.43 \]

We have again demonstrated, therefore, that the formulae (75) and (75-quinquies) are both correct, because from them one obtains that the theoretical value of the lowest electron orbital radius is about 100 times larger than the nuclear charge radius only in heavy atoms, in perfect accordance with experiments.

So now we can write better the formula (75-quinquies) where, we repeat, \(v \) is equal to the right-hand side of (75), therefore let’s replace in (75-quinquies) \(v \) with the mentioned right-hand side:

\[R = \sqrt[3]{\frac{GKM}{\pi v^2}} \]
\[
R = 3 \sqrt{\frac{GKM}{\pi \left(c \frac{|M \pi}{mK} \right)^2}}
\]

\[
R = 3 \sqrt{\frac{GKM}{\pi^2 c^2 M \frac{m}{mK}}}
\]

\[
R = 3 \sqrt{\frac{GK^2 m}{\pi^2 c^2}} \quad (75\text{-octies})
\]

This is the lowest orbital radius of electrons: as we can see it doesn’t depend on nuclear mass, but only on total mass of electrons \((m)\).

Anyway it’s worth to specify that (75-octies) is not applicable to the galactic system, because here the potential energy of central system (proton star) is different from the potential energy concerning surrounding space, by the first being gravitational and the second being gravito-electric (except the innermost part of surrounding space, where it is gravitational).

Let’s verify, now, if our theory allows to determine also the maximum length of atomic radius, i.e. the highest electron orbit.

Let’s take the hydrogen atom.

We have already seen that in order to obtain the maximum velocity of electron generated by the nucleus by means of the entanglement bond existing between nucleons and electrons, one has to impose in formula (74) the condition \(R = 1\).

Therefore, analogously, in order to determine the maximum extension of electron orbital radius at which it’s possible to keep the orbital velocity of electrons constant, one has to impose in formula of electron orbital radius (75-quinques) the condition \(v = 1\):

\[
R = 3 \sqrt{\frac{KGM}{\pi (1)^2}}
\]

\[
\Rightarrow R = 3 \sqrt{\frac{KGM}{\pi}} \quad (75\text{-novies})
\]

In (75-novies) let’s replace \(M\) with the mass of hydrogen nucleus:

\[
R = 3 \sqrt{\frac{(8.99 \times 10^9) \times (6.67433 \times 10^{-11}) \times (1.66054 \times 10^{-27})}{3.1415}}
\]
The range of electron orbital radius around the nucleus is from the minimum value given by (75-octies) to the maximum value given by (75-novies).

- 5.9 - Principle of specific asymmetry between gravitational potential energy and kinetic energy as an ideal condition of orbital stability

Here we will show that in our universe there exists a fundamental principle according to which the dynamic equilibrium between two (or more) bodies — intended as a potentially perpetual orbit of one body around another one or around the mutual center of mass — will be the most stable, if the gravitational potential energy to which the orbiting body is subjected tends to be the double of its kinetic energy, or the double of the kinetic energy of the body which makes it move through an entanglement relationship.

In other words, a body orbits in the most stable way (therefore potentially forever) around the attractor-repeller or the mutual center of mass if the following condition exists:

\[E_p = 2 E_k \]

(76)

where \(E_p \) is the gravitational potential energy to which the orbiting body is subjected and \(E_k \) is its kinetic energy or the kinetic energy of the entangled body responsible for its movement.

The balance between the two energies is "asymmetrical" because there must never be equality between them; is "specific" because a generic disproportion between the two energies is not sufficient, but a very precise level of inequality must be reached, i.e. the potential energy must be equal to twice the kinetic energy; moreover it is "ideal" because if the condition indicated in (76) is not reached, the orbit will not
necessarily be unstable, but it will certainly be less stable.

This principle can be demonstrated by comparing the values of potential and kinetic energy both in the macrocosm and in the microcosm.

Let’s start from the macrocosm, in particular from the solar system.

We know that in the solar system the gravitational potential energy is expressed by (52-bis), which we have seen to become, by virtue of the second principle of dynamics:

\[U = m \times g \times R \] \hspace{1cm} (77)

This formula is the one to which we must necessarily resort in our case, since in the solar system it is not possible to use the formula (53), although the latter is typical of the attractive-repulsive field, for the reasons we’ll say in the next paragraph.

Well, let’s see if our assumption is true, i.e. if there exists a fundamental principle in our universe according to which, in order to reach the ideal condition of stability of the dynamic equilibrium between two (or more) bodies bonded by gravity force, gravitational potential energy to which a body is subjected must be equal to twice its kinetic energy.

If this is true, then in our solar system we will have that, for each planet, the following relation will be operating:

\[U = 2E_k \] \hspace{1cm} (78)

where \(E_k \) is the kinetic energy of the planet, that is equal to:

\[E_k = \frac{1}{2} m v^2 \] \hspace{1cm} (79)

By replacing the left-hand side of (78) with the right-hand side of (77), and by also replacing \(E_k \) with its value written in (79), we have that:

\[m \times g \times R = 2 \left(\frac{1}{2} m v^2 \right) \]

\[\Rightarrow \quad m \times g \times R = 2 \left(\frac{1}{2} m v^2 \right) \]

\[\Rightarrow \quad g \times R = v^2 \]

\[\Rightarrow \quad \frac{GM}{R^2} \times R = v^2 \]

\[\Rightarrow \quad \frac{GM}{R} = v^2 \]
which is precisely the value of the orbital velocity of the planets, which demonstrates the existence of the principle in question at the macroscopic level.

This principle finds in turn a foundation in the principle of the least possible approach and the least possible distancing, which we have seen above be satisfied to a greater extent, the smaller the distance between the foci is, i.e. if eccentricity is as small as possible, and in fact the (79-bis) notoriously expresses the speed necessary to obtain an (almost) perfectly circular orbit.

It should be reiterated that, if the principle expressed in (76) is not respected, the orbit will not be unstable, but it will only be less stable, that is, it will have a higher eccentricity degree until it becomes hyperbolic if the potential energy equals the kinetic one.

Let’s see if this principle also exists in the atom.

Let’s start from the nucleus.

Let’s assume that the nucleons (protons and neutrons) do not stand still inside the nucleus, but they move at the speed of light.

This is made possible in theory by the fact that, as we will see later, the sum of the volume of the nucleons is always lower than the volume of the nucleus itself (more or less in a ratio of 1 : 3), so it is reasonable to assume that this space serves to the nucleons to move.

Now, if the principle expressed by (76) also operates within the nucleus, then we’ll have that the potential energy of the nucleons, expressed by the left-hand side of the (56-ter), and generated by attractive-repulsive field produced by the nucleons themselves, will be equal to twice the kinetic energy of the nucleons, so we can write:

\[\frac{4kGM^2}{R^3\pi} = 2 \left(\frac{1}{2} Mc^2 \right) \]

\[\frac{4kGM^2}{R^3\pi} = Mc^2 \]

\[\frac{4kGM^2}{R^3\pi} = Mc^2 \]

\[\frac{4kGM}{R^3\pi} = c^2 \]
\[c = \sqrt{\frac{4kG M}{R^3 \pi}} \]

(80)

And indeed, from the calculations, the right-hand side of the (80) is just equal to the speed of light, provided that one gives \(R \) the value obtained by (57).

It is very probable, therefore, that the nucleons move within the nucleus at the speed of light, as it would seem confirmed by the fact, it is repeated, that the volume of the nucleus is always greater than the sum of the volume of the single nucleons.

But do the nucleons move with a straight or circular motion?

The presence of the 4 above \(g \) in the formula (55) of the containing potential energy possessed by the nucleus makes us incline for the second hypothesis, as this number can be justified only by hypothesizing the circular movement of the nucleons around the center of nucleus, since only from this type of motion the centripetal and centrifugal acceleration arise, to be added to the attractive gravito-electric acceleration and to the repulsive gravito-electric acceleration (in all they make 4 equal accelerations), as we have seen above.

But how is it possible that the nucleons move around the center of the nucleus if there is nothing in this point?

In other words, if the nucleons are in orbit around the center of nucleus, it means that there is nothing in the center, yet a body can orbit around another body or around the mutual center of mass, but it certainly cannot revolve around a point in which there is no other massive body.

How to solve the impasse?

The solution lies in (56-ter). Let’s bring it back here:

\[\frac{4kGM^2}{R^3 \pi} = Mc^2 \]

The left-hand side of the above equation expresses, as mentioned several times, the gravito-electric potential energy of nucleus.

How is it possible that it depends on the square of the mass of the nucleons?

Usually the potential energy to which is subjected a body revolving around an attractor body depends not only on the mass of the attractor, but also on the one of the attracted body:

\[U = m \cdot g \cdot R \]
\[U = m \frac{GM}{R^2} \cdot R \]

where \(m \) is, in fact, the mass of the orbiting body and \(M \) the mass of the central body.

How is it possible, then, that the potential energy of the nucleons — the central body — depends only on their mass (squared), and not also on the mass of the orbiting body?

The only possible explanation, in my opinion, is to believe that the nucleon behaves simultaneously both as orbited body and as orbiting body, namely that stays at same time both at the center of the nucleus and also in orbit around it at the distance given by (57).

In other words, it is as if the nucleon, placed at the center of the nucleus, projected its own shadow onto the "shell" of the nucleus, and this shadow moved at the speed of light around the central nucleon (or nucleons).

The fact that the orbiting particle is similar to a shadow of the central nucleon also allows to explain how it is possible that the central nucleon remains motionless while its alter-ego moves at the speed of light around it, whereas it would be difficult to solve with recourse to pure wave-particle duality, which would not explain the immobility of the central nucleon, on the one hand, and the mobility of its orbiting alter-ego, on the other; moreover, the recourse to the idea of "orbiting shadow nucleon", to be understood as an alter-ego of the central one, also allows to explain why, as results from the experiments, the density of the nucleus is concentrated in its center.

In this perspective the so-called Copenhagen interpretation of the double-slit experiment would seem to be confirmed (albeit with the clarification we will give below), according to which the same photon, thrown on a very thin gold plate, crosses at the same time two slits made on such gold plate, thanks to the dual nature of the photon, as opposed to the interpretation of De Broglie, who instead proposed that the photon has no dual nature (both of wave and of particle), but that the wave is something different from the particle, so the experiment of double slit, in his opinion, should be interpreted as meaning that a slit is crossed by the photon and the other is crossed by the wave, on which the photon would move.

In other words it is probable that the two phenomena are both attributable to
the particular “dual” nature of the fundamental particles, to which at this point the nucleons (protons and neutrons) must also belong, so that the nucleon must be considered a particle and a wave at the same time, but with the particularity of moving not in unison with the wave, but projecting its shadow through the wave, and consequently find itself in two different places at the same time (both in the center of the nucleus and in orbit onto its shell), even if I realize that any attempt to describe this very strange phenomenon of wave-particle dualism can seem clumsy.

This would confirm the theory of the "dual" nature of the fundamental particles proposed by quantum mechanics.

After all, the experiments [1] show that:

- the nucleons are not point-like particles, by showing no well-defined surface, according to their dual nature emerged in the present work;
- they have a high angular moment, as evidence of their circular movement and of their high velocity, in agreement with the results reached here.

But are the nucleons, located at the center of the nucleus, aggregated or disjointed?

I cannot formulate hypotheses in this regard, unless we admit the existence of the strong nuclear force among the nucleons, in which case we should be inclined for the first hypothesis (aggregation between nucleons), but to this question we’ll give a more precise answer in the paragraph 5.15).

Let's now analyze, by way of example, the hydrogen atom, whose nucleus has only one proton inside of it.

It's known that, after the Antognini’s experiment of 2010, confirmed by subsequent experiments, the proton radius is equal to about 0.84 femtometers (1 femtometer is equal to 10^{-15} meters), but the radius of the nucleus, expressed by the (57), is equal to 2.4167 femtometers, so the volume of the nucleus is almost three times the volume of the proton (and this is true even if the value of 0.88 femtometers is given to the proton radius, as believed before the Antognini’s experiment, and even if we use “average” radius given by [59]).

The range of nuclear containing potential energy given by (57) can be defined as the "ideal" radius of the nucleus — equal to twice the charge radius
expressed by (59) — by being this the dimension of the radius at which the nucleus achieves maximum stability, because only with this value of the radius the containing potential energy expressed by the left-hand side of the (56-ter) perfectly equals the double of kinetic energy of the nucleons \((E = Mc^2)\), fully satisfying the principle of specific asymmetry between the two energies stated in (76), like we will see better in paragraph 5.13.

The nuclear potential radius cannot be equal to the charge radius, because otherwise the containing energy would exceed the double of kinetic energy of the nucleons, with the risk of implosion of the nucleus itself.

I cannot determine what is the limit beyond which the overcoming of the potential energy with respect to the double of kinetic one involves the implosion of the nucleus, although it is reasonable to hypothesize that this limit coincides with the distance at which the shadow nucleon (or nucleons) is no longer able to move.

However, it is possible to predict with greater theoretical certainty the limit beyond which the explosion of the nucleus should occur, which should happen, using a logic process similar to the one used to determine the escape velocity of the planets, when the potential energy of the nucleus is reduced until to equal the kinetic energy of the nucleons composing it:

\[
\begin{align*}
E_c &= E_k \\
\Rightarrow \frac{4GKM^2}{R^3\pi} &= \frac{1}{2} Mc^2 \\
\Rightarrow \frac{8GKM^2}{R^3\pi} &= 4Mc^2 \\
\Rightarrow R^3\pi c^2 &= 8GKM \\
\Rightarrow R &= \frac{3}{\sqrt{\frac{8GKM}{\pi c^2}}} \tag{81}
\end{align*}
\]

The value expressed by (81), greater than the one given by (57) is, therefore, the length of the nuclear radius at which the containing potential energy of the nucleus equals the kinetic energy of the nucleons, implying the explosion of the nucleus and the consequent release of energy.

As already mentioned, the reasoning just made is analogous to what is normally done to theoretically determine the escape velocity of planets, where, for this purpose, the equality between the gravitational potential energy of the planet
and its kinetic energy is imposed:

\[F_g R = \frac{1}{2} m v^2 \]
\[\rightarrow m g R = \frac{1}{2} m v^2 \]
\[\rightarrow m \frac{GM}{R^2} R = \frac{1}{2} m v^2 \]
\[\rightarrow m \frac{GM}{R^2} R = \frac{1}{2} m v^2 \]
\[\rightarrow \frac{2GM}{R} = v^2 \]
\[\rightarrow V = \sqrt{\frac{2GM}{R}} \]

We now use the same reasoning to determine the consequences of equality between the potential revolution energy of electrons and the kinetic energy.

According to the principle of specific asymmetry hypothesized here, the potential energy to which the electrons are subjected must be equal to twice the kinetic energy of the entangled body responsible for their movement: in this case, indeed, the second part of the aforementioned principle is applicable ("or the double of the kinetic energy of the body that makes it move through an entanglement relationship"), by we having hypothesized that the electron is moved by the kinetic energy of the nucleons, which is "transmitted" (even if this term is improper) to the electron evidently through the entanglement relationship of which it's reasonable to suppose the existence, therefore without energy dispersion and without any time of information transmission.

Consequently we must equal the revolution potential energy of electrons, expressed by the left-hand side of (73), to the kinetic energy \(E_k \) of the nucleons:

\[v^2 \frac{mK}{R^2 \pi} = \frac{1}{2} Mc^2 \]

where \(M \) is the mass of nucleons and \(m \) the mass of electrons;

\[\rightarrow v^2 = \frac{Mc^2R^2 \pi}{2mK} \]
\[\rightarrow v = cR \sqrt{\frac{M \pi}{2mK}} \]

By imposing again \(R = 1 \) for the reasons indicated in the paragraph 5.8, we’ll have:
\[v = c \sqrt{\frac{M \pi}{2mK}} \]

(82)

\[v = 169.143 \text{ Km/sec} \]

This is the theoretical speed at which the electron of the hydrogen atom should be forced to move to emit electromagnetic radiation in the form of a photon emission.

It’s worth to specify that this is not the distance at which the electron should move if its speed was 169,143 meters/sec, but the distance at which the electron would move at 169,143 meters/sec if the gravito-electric repulsive force formed with the gravito-electric attractive force the same angle as that formed between them at the distance obtained in (75-septies): the reason of this will be explained in paragraph 5.14.

It’s important to state that the velocity given by (82) is not the escape velocity of electrons, but the velocity at which the electron emits electromagnetic radiation.

This assumption is confirmed by the well-known experimental data according to which, by reducing the energy of an electron, it emits electromagnetic radiation.

In particular, note that the speed given by (82) is lower than the one imposed by the attractive-repulsive field generated by the nucleons (which in 75-bis we have seen to be, for the aforementioned hydrogen atom, about 240 km/sec), so that the surplus of energy that would be created instantaneously due to the entanglement bond presumably existing between nucleons and electrons, would cause the emission, by the electron whose speed is forcibly reduced, of energy in the form of electromagnetic radiation (but maybe it would be more appropriate to define them gravito-electric radiation).

But the reduction of the velocity of the electron, consequent to the diminution of its energy, is only one of the abstractly verifiable possibilities.

In fact, it can also happen that the electron whose energy is reduced, despite keeping constant its velocity of revolution around the nucleus, moves onto a lower energy level, i.e. going onto an orbit farther from the nucleus.

In fact later we will see that, assuming the analogy between the atom and
the galaxy — at least under the profile of the gravito-electric revolution field that would exist in the space surrounding the central nucleus — it is not hazardous to assume that the speed of the electrons, like the one of stars, remains constant, despite not all of them move at the same distance from the nucleus, and we will see that this is abstractly achievable in a model based on the pendulum principle, if we think about the possibility that the repulsive gravito-electric force, even if decreases in intensity proportionally to the attractive gravito-electric force, formed with the latter an angle always greater in relation to the increase of distance from the nucleus, so as to keep constant the F_{rx} force, and therefore constant the orbital velocity.

In this second hypothesis, the emission of the photon would be due to the displacement of the electron onto an orbit with a larger radius, where, despite a lower revolution energy, there is an equal revolution speed, as we shall see later in the paragraph 5.14.

In particular the distance from nucleus of hydrogen atom at which the electron would emit electromagnetic (or, maybe, more likely gravito-electric) radiations would be given by the formula (75-quinques), with v equal to the value expressed by (82):

$$R = \frac{3 \sqrt{GKM}}{\pi v^2}$$

$$R = \sqrt{\frac{6.67433 \times 10^{-11} \times 8.99 \times 10^9 \times (1 + 1.66054 \times 10^{-27})}{3.1415 \times (169,143)^2}}$$

$$R = 2.2297 \times 10^{-13} \text{ meters}$$

The same result is also obtained by imposing the equality between the potential energy of electrons and their kinetic energy, taking as v the value given by (75-bis), i.e. 239.262 m/sec.

$$\frac{GKMm}{R^3 \pi} = \frac{1}{2} mv^2$$

$$R = \frac{3 \sqrt{2GKM}}{\pi v^2}$$

(82-bis)

$$R = 2.2297 \times 10^{-13} \text{ meters}$$

So, in the (82-bis), we can replace v by the right-hand side of (75):
\[R = \frac{2GM}{\sqrt{\pi \ast (c \ast \frac{M \pi}{mK})}} \]

\[R = \frac{2GK^2m}{\pi^2c^2} \]

(82-ter)

\[R = \sqrt{\frac{2 \ast (6.67433 \ast 10^{-11}) \ast (8.99 \ast 10^9)^2 \ast (1 \ast 9,11 \ast 10^{-31})}{(3.1415)^2 \ast (299,792,458)^2}} \]

\[R = 2.2297 \ast 10^{-13} \text{ meters} \]

The equation (82-ter) expresses therefore the orbital radius of electron from which it begins to emit gravito-electric radiation in the form of photon release.

But at this point a question arises: if the velocity of electrons is constant, how it’s possible that the system nucleus-electron is stable?

In other words, the orbit is stable if the potential energy is equal to twice the kinetic energy of orbiting body, but, if the velocity of electrons doesn’t decrease with the distance, at a certain point (i.e. the radius expressed by 82-ter) the kinetic energy of electrons will be equal to the potential energy, and the dynamic equilibrium between them should break.

Why does this not happen in the atom?

The only possible explanation to this answer is to believe that the entanglement bond existing between nucleons and electrons guarantees the atom’s stability. In fact, by having imposed in (71) the equality between potential energy of the electrons and the double of kinetic energy of nucleons, we have derived the velocity of all the electrons, given by the ratio between the total mass of the nucleons and the total mass of the electrons, so when this velocity is respected and the electron moves within the maximum radius given by (75-novies), the system nucleus-electron is still balanced, even though is less stable.

This entanglement bond also manifests itself with the emission of photons when the distance given by (82-ter) is exceeded: in this way the electron loses energy and returns to the innermost level, the most stable one, because here the potential energy of the electrons is greater than their kinetic energy.

In other words, when the electron is in the instability zone, i.e. beyond the distance given by (82-ter), the nucleus instantaneously “tells” the electron to release photon in order to lose energy and to come back to the stability zone (the
lowest one), and a possible indirect evidence of this instantaneous communication is precisely the fact that the (theoretical) photon mass is, we repeat, so similar to the proton mass squared.

After all, the theoretical mass [7] of the photon is about 2×10^{-54} kg, and this value is very near to the proton mass squared, i.e. 2.75×10^{-54} kg, so it’s reasonable to hypothesize that the photon is emitted by the electron through the entanglement bond existing between the latter and the nucleus, in which we have seen that the containing potential energy depends on the mass of the nucleons squared.

We have therefore demonstrated, or proved to demonstrate, the existence of the universal principle of specific asymmetry between gravitational potential energy and kinetic one as an ideal condition of stability of the orbit of a body around the attractor-repeller or around the mutual center of mass, which, on the one hand, makes it possible to understand what the nuclear energy formula $E = Mc^2$ derives from, but, on the other, it highlights all the limits of the principle of energy conservation, because one question remain open to which it is difficult to give an answer:

1) By we having demonstrate that in the nucleus the containing potential energy works, not the revolution energy, a question arises: what determines the movement of the nucleons inside the nucleus at the speed of light?

- **5.10 - The potential energy of the attractive-repulsive gravitational field and the potential energy of the attractive-repulsive gravito-electric field: differences**

At this point we must face the delicate question, which emerged at the beginning of paragraph 5.9, of the strange difference between the potential energy of the gravitational attractive-repulsive field, and the potential energy of the gravito-electric attractive-repulsive field, by being the first directly proportional to the distance, and the second (both containing and of revolution) inversely proportional to it.

If there exists in both cases attractive-repulsive fields, why do not they have
the same potential energy?

The not easy answer can be found in the following statement contained in the paragraph 1.3:

“It’s important to understand that the birth of force F_{rx}, and therefore the composition of the two forces F_{rx} and F_{ry} in F_r, occurs only when the planet occupies a new point in the orbit.

Before that moment the two forces present in each points of the attractive-repulsive field cancel each other out from the dynamic point of view, because they have the same magnitude, the same orientation and opposite sense, but their collision generates energy (or pressure, it’s not very clear to me), and this energy has different values depending on the point considered: closer to the Sun the energy would be greater than that existing in the points furthest from the star.

When the planet moves to the next point in the orbit, the F_r force, due to the birth of the F_{rx} force, will result from the composition of the two forces F_{rx} and F_{ry}, and in this way it will no longer have the same orientation as the attractive force F_a, and this creates the same type of forces-field that exists in the harmonic oscillator pendulum, in particular two equal but not opposite forces (not aligned), which in turn determines the movement of the planet around the Sun according to the principle illustrated in the paragraph 1.13.”

These statements contain an impropriety: how can we talk about the potential energy of revolution of the gravitational attractive-repulsive field if the two forces were born opposed and aligned, and subsequently become, only thanks to the birth of the F_{rx} force, misaligned?

In other words, the F_{rx} force is not the consequence of the originary misalignment between F_r force and F_a force, but it is its cause, since attractive force and repulsive force were born aligned, and later they cease to be so once the planet occupies a specific point of the field, because of the arising of F_{rx} force, which, by composing with F_{ry} force (by virtue of principle of composition of forces), will give rise to the change of orientation of F_r force.

So in the gravitational attractive-repulsive field there is no real potential
energy of revolution, because in every point of the field the two forces were born aligned, and the phenomenon of the planet's revolution around the Sun is most likely due to different levels of pressure, rather than of energy, that are created in the area of attractio-repulsio depending on the distance from the central body.

In the paragraph 1.3 I had anticipated, indeed, that it was not clear to me whether the clash between the attractive and repulsive gravitational force gave rise to energy or pressure, but now I think we can prefer the second option.

And this is also true in perihelion, where there not exist a real originary containing-energy, but an energy that becomes such only "accidentally", due to the non-arising of F_{rx} force, although the latter is abstractly suitable for to arise.

In other words, the non-birth of F_{rx} force in perihelion is not due to ontological reasons, i.e. connected to the particular nature of the attractive-repulsive gravitational field, but occurs only as a consequence of the principle of energy conservation, which precludes the planet, once reached the perihelion, from continuing to approach the Sun (in which case, in fact, it would approach both the foci simultaneously, and the attractive gravity force would prevail over the repulsive one).

This is the reason why the alignment in the perihelion of the attractive and repulsive forces does not affect the gravitational potential, which remains the one of the exclusively attractive field, i.e. directly proportional to the distance R, but with the only difference of the presence of 4 before g, like we have seen in (45-bis):

$$U = m \times 4g \times R$$

If we use this formula to be compared to the double of kinetic energy of the planet, we’ll have:

$$m \times 4g \times R = mv^2$$
$$\rightarrow \frac{4GM}{R^2} \times R = v^2$$
$$\rightarrow v^2 = \frac{4GM}{R^2} \times R$$
$$\rightarrow v = 2\sqrt{\frac{GM}{R}}$$

This is the orbital velocity at which the planet should travel if the elliptical orbit was perfectly closed, i.e. if there was no perihelion precession phenomenon (which prevents this closure), in order to cover the angle in the same time as that spent
by the planet thanks to the abbreviated path (more internal) guaranteed by the precession motion.

Things are different in the gravito-electric attractive-repulsive field.

From the full effectiveness of the formula (53-bis) of the gravito-electric revolution energy in the atom and in the galaxies, we must, in fact, infer that in this type of attractive-repulsive field things do not go as in the gravitational attractive-repulsive field, and this, in my opinion, can only be explained by hypothesizing that the repulsive gravito-electric force arises already misaligned with respect to the attractive one, and then splits into the two forces \(\overrightarrow{F_{rx}} \) and \(\overrightarrow{F_{ry}} \).

Only in this way one can states that every point of the attractive-repulsive gravito-electric field has the abstract and ontological aptitude to make the bodies to revolve around the central body — or around the mutual center of mass, if the orbiting body doesn’t have a negligible mass with respect to the orbited one — because in this case the \(\overrightarrow{F_{rx}} \) force already arises, in every point of the field, before the orbiting body occupies one of them, i.e. it is not the cause of the successive misalignment between repulsive and attractive force, but it is the consequence of this originary non-alignment.

A similar reasoning applies to the nuclear gravito-electric containing potential energy (formula 55), which arises in the nucleus from the forced alignment of the two gravito-electric forces (attractive and repulsive), which occurs not so much in order to safeguard the principle of energy conservation, unlike what we have seen for the perihelion of planetary orbits, but as for different accidentally reasons described at the end of paragraph 5.12, which cause, in while the nucleon moves in its orbit around the nucleus and in every single point of its path, the forced alignment of the two forces, and this successive forced alignment implies the arising of the containing energy, which inevitably affects the formula of the potential energy of the bodies subjected to this field (which will not only be inversely proportional to the distance, but will also depend on 4 times the gravito-electric acceleration).

Certainly it is not easy to understand, regarding the revolution energy, how it is possible that the repulsive gravito-electric force arises not aligned with respect to the attractive one, and moreover with such an angle that makes the body moves around the attractor-repeller according to the principle of the least possible approach and of
the least possible distancing, but by now it is a given fact that quantum mechanics is fruitful of bizarre things.

- **5.11 - The radius of neutron stars: differences with respect to the proton stars**

 Neutron stars (to which the pulsars also belong) are, as the name suggests, celestial bodies made up solely of neutrons.

 The characteristic of neutron stars is to have a very high density: in fact a typical neutron star has a mass of about 1.4 solar masses, but has a radius of just 10 - 15 km, very small if compared to the radius of our Sun, equal to about 696,000 km.

 Such a high density can only be found inside the atom's nucleus, so neutron stars are an important test to verify the validity of the theory here exposed.

 Let's try then to calculate, by means of (59), the radius of a typical neutron star, i.e. with mass equal to about 1.4 solar masses.

 For convenience, we report below (59):

 \[R = \frac{1}{2} \sqrt[3]{\frac{4 \pi G M}{c^2}} \]

 where \(M \) is the mass of the neutron star, equal, as we said, to \(1.4 \times 1.9891 \times 10^{30} \) kg.

 \[
 R = \frac{1}{2} \sqrt[3]{\frac{4 \pi (8.99 \times 10^9) \times (6.67433 \times 10^{-11}) \times (1.4 \times 1.9891 \times 10^{30})}{3.1415 \times 89,875,517,873,681,764}}
 \]

 \[
 R = 14,356 \text{ meters}
 \]

 \[
 R = 14.3 \text{ Km}
 \]

 As we note, (59) is perfectly applicable also to neutron stars, by being in full agreement with astronomical estimates, thus confirming not only the universal character of the theory here exposed, but also the actual similarity between neutron star and the nucleus of the atom, already detected by astronomers.

 In truth, the one resulting from (59) should be the distance from the center of the star at which its density is reduced by 50% with respect to its maximum value (i.e. the central value), so the range of containing potential energy of neutron star, at which nuclear density is reduced of 100%, should be that predicted by (57), which would be
the range of gravito-electric containing potential energy of neutron star.

Assuming the similarity with the nucleus of the atom, it is possible to hypothesize for neutron stars, like we have done for the atomic nucleus, that neutrons move within the star at the speed of light.

In particular, the central neutrons, aggregated thanks to the gravitational force, would have a "dual" nature, both corpuscular and undulatory, which would replicate the same conditions seen for the nucleons, so that their “shadows” (i.e. their mobile alter-egos) would revolve around the central neutrons at the speed of light at the distance given by (57).

We can therefore hypothesize that, also with respect to neutron stars, one can applies the principle, stated by (76), of specific asymmetry between the potential energy of the neutrons and their kinetic energy, so the radius given by (57) would be the "ideal" radius of the neutrons star, namely the radius that guarantees maximum stability of the star, since it makes the containing potential energy of shadow neutrons equal to twice their kinetic energy.

Accordingly, if the radius increases with respect to the value given by (57), the star would become less stable, until it explodes once the potential energy of the neutrons is reduced until to equal their kinetic energy, i.e. when the radius assumes the value expressed by (81).

It’s very likely, therefore, that neutrons of pulsar generate a containing gravito-electric attractive-repulsive field capable of containing the kinetic energy of the "shadow neutrons" themselves, making them rotate in perpetuity around the center of the star occupied by the “real” central neutrons.

The gravito-electric nature of the containing attractive-repulsive field generated by the central neutrons of pulsar shows us that these differ from the proton stars (the so-called black holes), since the protons remain confined within the "black hole" radius because of the containing attractive-repulsive field having gravitational nature (not gravito-electric), generated by protons themselves.

Another difference could be the fact that, in the neutron star, the shadow particles orbits around their corresponding “real” alter ego, instead, in the proton stars, the real particles orbit around the shadow particles, which this time are located in the center of the star.
This can explain the reason why the black hole is stable, presumably because among central shadow particles there is no repulsive force, but only attractive one.

This central lump of shadow particles would generate the attractive-repulsive gravitational containing field that would be able to contain the “real” orbiting protons within the radius expressed by (50).

These real orbiting protons, moving at speed of light around their central shadow particles, would have — unlike the shadow particles orbiting around the center of atomic nucleus as well as around the center of neutron star — all the property of the protons, i.e. a mass and a charge, so it’s reasonable to argue that they will produce kinetic energy of mass \(E = \frac{1}{2} M c^2 \), and kinetic energy of charge \(E = \frac{1}{2} Q c^2 \).

The second kind of energy would be a new kind of energy, never tested before, so this statement can only have a speculative character, even though, by comparing the gravito-electric revolution potential energy of stars to the double of such a “charge kinetic energy” of protons orbiting inside the black hole, like we have done in (64), we are able to explain the orbital velocity of the stars around the central black hole of the galaxy, as we have seen in (70-bis).

So we can conclude that, if there exists the “kinetic energy of charge”, the real protons orbiting at speed of light around their corresponding shadow particles lump located at the center of the black hole, produce a gravito-electric attractive-repulsive field of revolution, that makes the stars move around the black hole to a constant velocity and through an entanglement relation.

Another difference between the two stars seems to be the fact that the neutron star causes the rotation of the planets around it by virtue of an attractive-repulsive field of gravitational nature, therefore with decreasing speed in relation to the increase of distance from the central star, instead the proton star determines the rotation of the stars around it by virtue of an attractive-repulsive field of gravitational nature only in the proximity zone, which then turns, with regards to the stars located at a certain distance from the center, into a gravito-electric field of revolution (resulting in almost constant velocity of galaxy stars).

A possible element in common between the two stars could be the fact that the
“kinetic energy of mass” \(E = \frac{1}{2} MC^2 \) possessed both by the orbiting real protons — due to the fact that they also have a mass, not only a charge — and by the orbiting shadow neutrons should theoretically produce a gravito-electric attractive-repulsive field of revolution that makes the microscopic particles orbit in the innermost part of space surrounding the black hole and surrounding the neutron star (presumably the electrons, like it happens in the atom, in which the electrons are moved by the kinetic energy of mass of orbiting shadow nucleons), again through an entanglement relationship.

Therefore, both stars have some aspect in common with the atom as a whole, but they are not perfectly superimposable to it: the neutron stars is similar to the nucleus of the atom only in terms of density, but not also with respect to the nature of the forces-field that it generates in the surrounding space, which is gravitational, not gravito-electric like the one generated by the nucleus of the atom; the proton stars, on the contrary, can be assimilated to atoms only by the nature (gravito-electric) of the forces-field generated in its surrounding space, but not also with regards to the density, which remains much lower than the one of the atomic nucleus, by being the real protons confined within the black holes by the containing attractive-repulsive field having a gravitational nature and generated by the central shadow protons, less strong than the containing gravito-electric attractive-repulsive field existing in the nucleus of atom generated by the central real nucleons that makes the shadow orbiting nucleons be confined within the nucleus itself.

- **5.12 - The characteristics of shadow particles connected to protons and to neutrons**

If we agree with all the above, it is possible to reconstruct the characteristics of the shadow particles related to protons and to neutrons:

1) The shadow particle has a mass equal to the mass of its corresponding real particle;
2) despite this, the shadow particle is not able to change the center of mass around which there is the orbiting movement, that remains located in the center of nucleus, not at the intermediate distance between the shadow particle and the real one, precisely because it is a self-orbiting
phenomenon;

3) they can assume the role of orbiting particles (as it occurs in the nucleus of the atom and in the neutron stars) or of orbited particles (as it happens in the black holes);

4) in both cases they are not suitable for reflecting the light that invests them;

5) they are indirectly detectable in the alfa-particles and neutron scattering experiments. These experiments, indeed, show that the alfa-particles beam and the neutron beam are only partially deviated by the target nucleus, in the sense that a part of this particles is absorbed in the collision, “disappearing” (the word is used in reference [3], pag. 514). For these reason the nuclear “optical model”, in order to solve the problem from the mathematical point of view, assumes that the nuclear potential be in part real and in part “imaginary”, and this second part of the potential would be responsible for the partial absorption of particles beam.

Well, we can reasonably suppose that the imaginary part of optical potential, which allows to better fit the data, can find a physical explanation in the shadow particles proposed in the present work, by we having already arrived at the conclusion that this particles are not charged and are unsuitable for reflecting the photons and, at this point, each kind of particle.

After all, it has been shown [5] that the imaginary part of optical potential is proportional to the real part, which is in accord with our theoretical results, since our nuclear radius given by (57) being exactly equal to twice the charge radius deduced experimentally (hence the proportionality ratio is 1 : 1).

6) when they assume the role of orbiting particles (i.e. in the atomic nucleus and in neutron star), they move at the speed of light and produce only mass kinetic energy \(E = \frac{1}{2} Mc^2 \) (not also charge kinetic energy \(E = \frac{1}{2} Qc^2 \)), which generate a gravito-electric attractive-repulsive filed of revolution that makes the electrons to revolve around the atomic nucleus, and maybe around the innermost part of space surrounding the black hole and surrounding the neutron star;
7) when they play the role of orbited central particles, they produce — consistently with the absence of charge resulting from the previous point — an attractive-repulsive containing field having an exclusively gravitational nature, that binds the corresponding real particles, which are moving at the speed of light by their nature, to revolve around the central shadow particles. In fact, if we place the equality between the containing gravitational potential energy seen in the (45-bis) and twice the kinetic energy of mass of protons, we will have just right the radius of the black hole that we have obtained in (50):

\[m \times 4g \times R = Mc^2 \]

now we replace \(m \) with \(M \) because we have assumed that the protons of black hole are self-orbiting particles:

\[\Rightarrow M \times 4g \times R = Mc^2 \]
\[\Rightarrow \frac{M4GM}{R^2} \times R = Mc^2 \]
\[\Rightarrow \frac{4GM^2}{R} = Mc^2 \]
\[\Rightarrow \frac{4GM}{R} = c^2 \]
\[\Rightarrow 4GM = Rc^2 \]
\[\Rightarrow R = \frac{4GM}{c^2} \]

8) in this latter case, once the maximum distance at which the real particles can orbit is exceeded (i.e. beyond the radius of the black hole), the central shadow particles generate a gravitational attractive-repulsive field having a non-containing nature, which implies — due to the differences in pressure deriving from the clash between attractive gravity and repulsive gravity in relation to the distance from the center — the revolution of the macroscopic bodies (not endowed with charge) inserted therein at decreasing speed in relation to the increase of distance from the center (which then, reached a certain distance from the aforesaid center, turns into a gravito-electric attractive-repulsive field of revolution, implying constant orbital velocity of the macroscopic bodies inserted therein, and generated by the “kinetic energy of charge” \(E = \frac{1}{2} Qc^2 \) produced by the real particles
orbiting within the proton star around their corresponding central shadow particles, energy that is "transmitted" to the macroscopic bodies that orbit around the central system – i.e. the proton star – due to the entanglement bond existing between these orbiting bodies and the real particles orbiting inside the mentioned central system).

At this point a question arises: in the previous point 7) we have seen that the gravitational potential energy operating in the black hole is the same as that operating in the phenomenon of perihelion precession, but how is this possible?

In other words, in the perihelion precession we have seen that the cause of the non-arising of the F_{rx} force is the principle of conservation of energy, which prevents the planet, once arrived in the perihelion, from approaching further the sun, forcing it to move away from the star as little as possible, which is achieved precisely by the alignment between the two opposed forces (the attractive and the repulsive one), and then, ultimately, by the failed-birth of the F_{rx} force.

But all this cannot happen also in the black hole, because here there exists a containing energy during the whole path of the real orbiting protons, whose speed is not caused by the attractive-repulsive field, but it is only dammed by this field, so there is no reason for the principle of conservation of energy to come to the aid, which is a limitation regarding the principle of the minor possible approach to the attractor-repeller, but the latter principle applies only in presence of revolution energy (or of revolution movement due to different levels of pressure, like it happens in gravitational attractive-repulsive field), which instead does not subsist, it is repeated, inside the black hole, therefore it is asked what is the cause that prevents the arising of the force F_{rx} in the black hole.

The only possible answer is to believe that the principle that prevents the birth of the aforementioned force is the impossibility of overcoming the speed of light, which would instead be overcome if the protons, already endowed by their own nature with the same speed of photons (about 300 thousand km/sec), received, by virtue of the birth of the F_{rx} force, a further acceleration.

A similar reasoning applies to the gravito-electric containing field that there exists in the nucleus of the atom and in the neutron star, where the two gravito-electric forces (attractive and repulsive), even if they arise misaligned, become aligned as soon
as the orbiting particle, which travels at the speed of light by its own nature, occupies a determined point of the orbit, otherwise it would receive a further acceleration due to the F_{rx} force: in this perspective it’s more appropriate to say that, in this case, it occurs a suppression rather than a failed birth of F_{rx} force.

- **5.13 - The self-orbiting phenomenon: mathematical tests**

It is now necessary to demonstrate mathematically the self-orbiting phenomenon which above we have hypothesized to exist within the nucleus of atom, inside the black hole and inside the neutron stars.

Let’s start from the nucleus of atom, and precisely from the equation (56-ter):

$$\frac{4KGM^2}{R^3\pi} = Mc^2$$

Let’s check, by means of calculations, if the above equation is true.

Let’s consider the hydrogen atom, whose nucleus contains only one proton and let’s replace in the aforementioned equation the values of K, G, M, R and c, where R is the ideal radius of nucleus, namely the one expressed by (57), and M is the mass of proton.

$$\frac{4*(8.99 \times 10^9) \times (6.67433 \times 10^{-11}) \times (1.66054 \times 10^{-27})^2}{(2.4167 \times 10^{-15})^3 \times 3.1415} = (1.66054 \times 10^{-27}) \times (299,792,458)^2$$

$$\Rightarrow 1.4924 \times 10^{-10} = 1.4924 \times 10^{-10}$$

Now let’s consider the black hole, and check whether the equation (83) is true:

$$\frac{4GM^2}{R} = Mc^2$$

Let’s replace in the above equation the values of G, M, R and c, where R is black hole radius expressed by (50) and M is the mass of black hole of Milky Way, equal to 3.75×10^6 solar masses.

$$\frac{4 \times (6.67433 \times 10^{-11}) \times (3.75 \times 10^6 \times 1.9891 \times 10^{30})^2}{22,157,162,000} = (3.75 \times 10^6 \times 1.9891 \times 10^{30}) \times (299,792,458)^2$$

$$\Rightarrow 6.7039 \times 10^{53} = 6.7039 \times 10^{53}$$

Finally, let’s have a look at the neutron stars, in particular by invoking again the equation (56-ter), which above we have seen to be applicable even to the type of
stars in question:

\[\frac{4KGm^2}{R^3\pi} = Mc^2 \]

Let’s replace in the above equation the values of \(K, G, M, R \) and \(c \), where \(R \) is the ideal radius of neutron star given by (57) and \(M \) is the mass of a typical neutron star, equal to 1.4 solar masses.

\[
\frac{4 \times (8.99 \times 10^9) \times (6.67433 \times 10^{-11}) \times (1.4 \times 1.9891 \times 10^{30})^2}{(28,712)^2 \times 3.1415} = (1.4 \times 1.9891 \times 10^{30}) \times (299,792,458)^2
\]

\[\rightarrow 2.5027 \times 10^{47} = 2.5027 \times 10^{47} \]

We have thus demonstrated — based on the fact that the containing potential energy (left-hand side of formula 56-ter and of formula 83) depends on the square of the mass of the central particles, and on the fact that this energy is equal to twice the kinetic energy of mass of orbiting particles, thus satisfying the principle of specific asymmetry enshrined in (76) — that in the atomic nucleus, in the black hole (proton star) as well as in the neutron star there exists the self-orbiting strange phenomenon, according to which one or more elementary particles, in particular protons and neutrons, revolve around themselves, with the difference that in the atomic nucleus and in neutron stars the shadow particles revolve around the real ones located in the center, while in the proton star the real particles very likely revolve around the central lump made up of shadow ones.

In either case, the orbiting particles move at the speed of light.

5.14 - The reason of non-decreasing velocity of stars and of electrons

It’s time to solve another enigma: how is it possible that the velocity of the stars and electrons (assuming the atom-galaxy similarity) remains constant, even if the distance increases, despite of the revolution energy decreases depending on the increase of distance?

In other words, if the gravito-electric revolution energy to which the stars of the galaxies and the electrons of the atoms are subjected decreases with the increase of distance from the central nucleus, how is it possible that the orbital velocity remains constant?

The pendulum model proposed here allows once again to give an answer, if we
think of the possibility that the $\overrightarrow{F_r}$ force had, with the increase of distance, an orientation more and more tilted with respect to the $\overrightarrow{F_a}$ force, i.e. if the angle between the repulsive and the attractive force increased with distance to an extent sufficient to keep the $\overrightarrow{F_{rx}}$ force, and therefore the orbital velocity, constant.

In this way, although the energy of revolution decreases, the revolution speed remains constant, and this is not a paradox, because if hypothetically one succeeds in making the repulsive force to assume, in all points of the attractive-repulsive field, always the same angle with respect to the attractive force, regardless of the distance from the nucleus, the inner electrons would orbit at higher speed than the outer ones.

What counts, in order of quantifying the energy of revolution, is the ontological potentiality of a given point in the field to make the electron move at a certain speed, no matter if, due to a mere factual inconvenience (the increasing angulation of the repulsive force with respect to the attractive one in relation to the increase of distance from the nucleus), the revolution velocity of the electrons remains constant: a certain point of the attractive-repulsive field will still have the abstract and ontological potentiality to move the electron at an orbital speed higher than the speed at which another point, farthest from the nucleus, would move it.

However, the angulation of the repulsive force with respect to the attractive one cannot grow indefinitely, but will find a limit in the principle of the least possible approach and the least possible distancing, which precludes the orbiting body from moving to the adjacent point characterized by an equal energy value — that is, to the point equidistant from the center, thus describing an arc of circumference — imposing it to move to the adjacent point characterized by the least strong, or least weak possible energy value, describing an elliptical orbit.

In other words, the atom and the galaxy will extend up to that point beyond which the repulsive gravity force, in order to keep the orbital velocity (respectively of electrons and of stars) constant, should have an orientation orthogonal to the orientation of attractive gravity force, which, as we said, is precluded by the necessary ellipticity of the orbit.

This is the reason why, even if the gravito-electric potential energy operates up to an infinite distance, the atom and the galaxy do not have an infinite extension.
5.15 – **The gravito-electric force: differences with the electric force and the gravitational force**

If one agrees with all the above, the gravito-electric force is characterized by the following features:

1) It acts among fundamental particles. It doesn’t act between non-fundamental particles, among which the electric force acts;

2) It acts among the nucleons in the nucleus, in which case it is exclusively attractive (under the assumption that the neutrons neutralize the repulsive force between protons), and between the nucleons and the electrons by means of an entanglement bond, in which case it is attractive and repulsive at same time.

Instead, between charged particles, even though fundamental, with same sign (for example protons and protons), the electric repulsion force operates, as it is shown by the scattering experiments among alpha particles (nuclei of \(^4\)H stripped of electrons, thus positively charged) and the target nucleus, also endowed with a positive charge. In fact, these experiments allowed to deduce the charge radius of the nucleus from the amplitude of angle of deflection of alpha particle beam resulting from the collision with the nucleus, and this was possible by taking into account the Coulomb potential, and it means that between the particles of the same sign does not operate the gravito-electric force, but the electric one;

3) It acts, through an entanglement bond, between the real protons orbiting in the proton star and the stars of the galaxy located beyond the innermost band of space surrounding the black hole, in which case it is attractive-repulsive at same time;

4) It acts, through an entanglement bond, between the real protons orbiting in proton star and the electrons that most likely revolve in the innermost band of space surrounding the proton star, in which case it is attractive-repulsive at same time;

5) It acts, through an entanglement bond, between the shadow neutrons orbiting in neutron star and the electrons that most likely revolve in the innermost band of space surrounding the neutron star, in which case it is
attractive-repulsive at same time;

6) It acts among the central shadow neutrons of neutron star, in which case it is exclusively attractive;

7) It also acts in the self-orbiting phenomenon between the real particles and the corresponding shadow particles, provided that the orbiting particles are the shadow ones (therefore not also in the proton stars, where we have seen that the central shadow particles generate a containing gravitational attractive-repulsive field, not gravito-electric), in which case it is attractive-repulsive at same time;

8) Unlike the gravitational force and the electric one, the gravito-electric force, when it doesn’t act in the self-orbiting phenomenon, is expressed through an entanglement relationship, implying the teleportation of the state of movement of the self-orbiting particles to the bodies (i.e. the stars of the galaxy) or to the electrons that orbit around them, so that the orbit of the bodies or of the electrons will be as stable as possible if the potential gravito-electric energy to which they are subjected is equal to twice their kinetic energy, but, due just to this entanglement bond, if the kinetic energy equals the potential energy, or even exceeds it, the balance doesn’t break provided that the orbiting body or the orbiting electron move at the velocity given by the “entanglement velocity equation” — i.e. by (67), for the stars of galaxy, and by (75), for the electrons of atom — within the maximum distance predicted, only for the electrons of atoms, by (75-novies), and in the latter case the nucleus “tells” the electrons, that instantaneously receive the input, to emit photon in order to lose energy and to reach the innermost stability zone — within the range between the ideal radius given by (75-octies) and that given by (82-ter) — where the gravito-electric potential energy is greater than the kinetic one, thus restoring the dynamic balance between nucleus and electrons;

9) Since it depends on the product of mass of particles, not on their charge, it behaves more like the gravitational force rather than the electric one, in the sense that, like the gravitational force, it can be exclusively attractive (among the nucleons, or among central shadow neutrons of neutron star),
or attractive and repulsive at same time (between nucleons and electrons),
instead the electric force can be only attractive or only repulsive, but not
attractive and repulsive at same time.

- 5.16 - The Heisenberg's uncertainty principle: ontological
characteristic of microscopic particles, or human limit?

The principle states that it is not possible to predict the position and velocity
of a microscopic particle.

Heisenberg initially formulated this principle in consideration of the
extremely small size of the microscopic particles, whose position and velocity
would have been altered by the photon beam necessary to observe them, so it was
originarily thought more in the sense of a human limit than in the sense of a natural
law, but later was interpreted by quantum mechanics in a more rigorous sense, that
is as an ontological characteristic of microscopic particles, so that it was improper
to speak of position and velocity, by they having "dual" nature, i.e. both of particles
and waves, which would have made the two parameters (speed and position) not
applicable to the microscopic world.

Anyway, the present work has revealed the possibility of predicting with
extreme precision both the velocity and the orbit of nucleons and of electrons, the
latter to be presumed almost perfectly circular (better to say almost perfectly
spherical, by the nucleon and the electron being not only a particle, but "also" a
wave) if the potential containing-energy of nucleons (or of electrons) equals twice
their kinetic energy, and with an elliptical shape increasingly eccentric (correctly
saying, an ellipsoid, i.e. a sphere increasingly crushed at the poles, similar to a
rugby ball) as the first energy approaches, reducing itself, the value of the second,
which is why it seems appropriate to interpret Heisenberg’s uncertainty principle in
its origininary less rigorous sense, that is, as a human limit affecting the observation
activity, rather than as a basic principle of nature.

After all, if the fundamental particles are "also" particles, in addition to
being waves, nothing strange if they behave like all the particles, namely by always
having a certain speed and position; otherwise these particles would be treated only
as waves, which seems decidedly incongruous.
• 5.17 - Gravitational entanglement

The results achieved here — which seem to lead with high probability in favor of the existence of an attractive-repulsive field even within the atom, even though characterized by the merger of the gravitational force with the electric one, so as to be able to define it as an attractive-repulsive gravito-electric forces-field — argue in favor of the existence, in the macroscopic world, of a gravitational ligament between bodies endowed with mass very similar to the one existing between two microscopic particles, which allows us to bring the macroscopic gravitational phenomenon in the entanglement.

The gravity force and the gravito-electric one, indeed, according the results achieved here, don’t seem to be the consequence of any intermediation action, either by a field, as Einstein hypothesized, nor by the exotic particles exchanged between the bodies (the so-called "gravitons"), as quantum mechanics hypothesizes.

I realize that it is difficult to imagine gravitational interaction without the intermediation of anything, yet it is in my opinion what happens: it is an inexplicable action at a distance immediately operating, even though this is not entirely correct, since an intermediary would anyway exist, that is the gravitational (or gravito-electric) ligament, but, as it has been said widely, it would operate instantly, contracting or dilating depending on whether it was attractive or repulsive, which would make the principle of locality, postulated by the theory of relativity with respect to gravitational interaction, inapplicable.

Although it is counterintuitive, we cannot help but notice that it is so, as also happens in the phenomenon of quantum entanglement, where two particles (called "entangled", i.e. "intertwined"", "linked" to each other) behave as if they were joined together, although they are physically miles away, in the sense that, if you act on a particle, observing it, the other is immediately affected, always by having the opposite spin (rotation direction) and the same polarization with respect to the observed particle, and all this happens, I repeat, immediately, even if there is an infinite distance between the particles.

Force of gravity, even in its gravito-electric variant, can be therefore considered a case of entanglement, in the sense that the bodies, all the bodies of the
universe, provided that they have mass, are as related to each other, and if suddenly the mass of one varied, all other bodies would be immediately affected, even if placed at an infinite distance between them, exactly as it happens in quantum entanglement, although in this last case the effect between the entangled particles is not attractive, but of different kind.

- **5.18 - Conclusions**

In the present work, by moving from the assumption that the Sun (and all the massive bodies) produces, starting from a certain distance from it, attractive and repulsive gravitational forces at the same time, giving life to the movement of the planets according to the same principles of pendulum, I managed to derive a perihelion precession formula, a black hole radius formula and, above all, a formula of atomic nuclear radius, which was missing until now, all in excellent agreement with the observation and in a completely independent way of the Einstein’s theory of relativity.

I have also shown that the nuclear radius formula can also be successfully used to predict the radius of neutron stars.

Furthermore I have found — always through the same principles that allowed me to achieve the above results, in particular through the modification of the Newtonian gravitational potential, in turn due to the different modus-operandi of gravity force — a formula of the non-decreasing orbital velocity of galactic stars, without considering dark matter.

From the mathematic results here obtained, I have demonstrate the existence of a gravitational *containing-energy* both in the perihelion precession phenomenon and in the black hole, that, in this latter case, prevents the bodies that enter the black hole, including the light, from coming out of it, as is shown by the fact that I have obtained the radius of the black hole from the perihelion precession angular velocity.

Then I have demonstrated the black hole is composed only of protons, and that it’s similar to the nucleus of the atom and, analogously, the galaxy is similar to the atom, since the stars moving around the central nucleus in the same way as the electrons move around the atomic nucleus.
I have also found another similitude among atomic nucleus, black hole and neutron stars, namely the self-orbiting phenomenon existing in all the cases.

From the mathematical findings obtained in the present work it has also emerged the existence, both at the microscopic and the macroscopic level, of the *gravito-electric* force (or, if you prefer, *electro-gravitational* force), resulting from the merging of the gravitational force with the electric one, working exactly in accordance with Newtonian mechanics, although modified by the introduction of a repulsive force in addition and in opposition to the attractive one, that makes us understand the universe always works in the same way, both in macro and in micro.

It is also emerged the existence of the universal principle of specific asymmetry between gravitational potential energy and kinetic energy, as a cause of nuclear energy \(E = Mc^2 \).

In this perspective, the present work can represent a potential unifying way between the macrocosm and microcosm mechanics.

References

Italian version

Una possibile strada unificatrice tra la meccanica classica e la meccanica quantistica

Autore: Roberto Napolitano (nato a Napoli il 07/04/1975)

Contatti LENNYUS@ALICE.IT

Cell: +39.333.25.08.601

Abstract

Nel presente lavoro, muovendo dal presupposto che il Sole (e tutti i corpi massivi) produca, a partire da una certa distanza da esso, forza gravitazionale attrattiva e repulsiva allo stesso tempo, dando vita al movimento dei pianeti attorno ad esso secondo lo stesso schema del pendolo, sono riuscito a ricavare una formula della velocità angolare di precessione del perielio, una formula del raggio del buco nero e, soprattutto, una formula del raggio nucleare atomico, che fino ad allora mancava, il tutto in ottimo accordo con l'osservazione e in modo completamente indipendente della teoria della relatività di Einstein.

Ho dimostrato inoltre che la formula del raggio nucleare è in grado di prevedere con successo anche il raggio delle stelle di neutroni.

Sono riuscito altresì a ricavare — sempre attraverso l'applicazione degli stessi principi che mi hanno consentito di raggiungere i menzionati risultati, in particolare attraverso la modifica del potenziale gravitazionale newtoniano, a sua volta dovuta al diverso modus operandi della forza di gravità — una formula della velocità orbitale non decrescente delle stelle delle galassie, senza ricorrere al contributo dell’ipotetica materia oscura.

Ho dimostrato ancora che il buco nero è composto solo da protoni e che è simile al nucleo dell’atomo e che, analogamente, la galassia è simile all’atomo: le stelle si muovono attorno al nucleo centrale nello stesso modo in cui si muovono gli elettroni attorno al nucleo atomico.

Ho dimostrato ancora la sussistenza di un’ulteriore similitudine tra nucleo atomico, buco nero e stelle di neutroni, ossia il fenomeno dell’auto-orbitazione che
li accomuna tutti.

Dai riscontri matematici ottenuti nel presente lavoro è emersa anche l’esistenza, sia a livello microscopico che macroscopico, della forza **gravito-elettrica** (o, se si preferisce, forza elettro-gravitazionale) risultante dalla fusione della forza gravitazionale con quella elettrica, e che funziona esattamente in accordo con la meccanica newtoniana, sia pur modificata mediante l’introduzione di una forza repulsiva in aggiunta e in contrapposizione a quella attrattiva.

E’ emerso inoltre l’esistenza del principio universale (operante sia nel macrocosmo che nel microcosmo) di asimmetria specifica tra energia potenziale gravitazionale e energia cinetica, quale causa dell’energia nucleare \(E = M c^2 \).

In questa prospettiva, il presente lavoro può rappresentare una potenziale via unificatrice tra la meccanica del macrocosmo e quella del microcosmo.

Capitolo I
Il pendolo nell’universo

Galileo, uno dei più grandi scienziati di sempre, rimase a dir poco affascinato dal moto del pendolo, studiandolo tanto da sviscerarne ogni più piccolo segreto.

Si accorse, tra le altre cose, che l’ampiezza dell’oscillazione in fase ascendente è lievemente inferiore all’ampiezza dell’oscillazione in fase discendente, da cui dedusse che il pendolo, se non vi fosse l’attrito con l’aria, si muoverebbe in eterno.

Eppure non intravide alcuna analogia col moto dei pianeti, anch’esso eterno.

Ma veniamo a noi.

Si sa che il pendolo è un sistema formato da un punto fisso detto “fulcro”, a cui è legato un filo, alla cui opposta estremità è fissata una sfera in modo che non possa cadere a Terra per la forza di gravità.

La traiettoria descritta dal pendolo è perfettamente circolare o, meglio, descrive un arco di circonferenza più o meno grande a seconda dell’ampiezza dell’oscillazione di partenza.

Ad un certo punto mi sono chiesto cosa accadrebbe se l’attrazione gravitazionale esterna provenisse non da un lato soltanto, sottostante al pendolo, ma lo circondasse a 360 gradi.

A tale interrogativo ho risposto basandomi più sulla logica che su esperimenti reali, anche perché non è affatto semplice ricreare le condizioni dell’esempio di cui sopra, e la risposta è stata che il pendolo dovrebbe fare un giro completo attorno al fulcro e, se non vi fosse l’attrito con l’aria, il giro si dovrebbe ripetere in eterno, esattamente come accade nel moto dei pianeti.

Ma come potrebbe l’attrazione esterna circondare il pendolo a 360°?

Semplice, immaginando che il fulcro eserciti sul grave una forza sia attrattiva che repulsiva, contemporaneamente.

Questa semplice considerazione mi ha consentito di cogliere una forte analogia tra pendolo e sistema solare.

Ho quindi ipotizzato che il sistema solare costituisse un pendolo, per l’esattezza un particolare tipo di pendolo, nel quale cioè l’attrazione gravitazionale esterna non proviene da un lato soltanto, come nel pendolo classico, ma lo circonda a
360 gradi.

Più precisamente il pendolo cosmico sarebbe così composto: il fulcro del pendolo sarebbe il Sole; il grave, anzi i gravi appesi ai diversi fili, sarebbero i pianeti; la forza di gravità esercitata dalla Terra sul grave del pendolo sarebbe sostituita, nel sistema solare, da una forza repulsiva esercitata sui pianeti dal Sole medesimo.

Ho ipotizzato, in particolare, che il Sole (ma anche tutti gli altri corpi celesti, inclusi i pianeti) esercitasse, oltre una certa distanza da esso, non solo una forza attrattiva, ma anche una forza repulsiva, di pari intensità rispetto alla prima.

Figura 1 – Pendolo-oscillatore armonico (con oscillazioni piccolissime)

Come risulta evidente dalla figura, nel pendolo galileiano c’è un solo punto di equilibrio, il punto O, attorno al quale oscilla il grave.

Il grave è sottoposto sempre a due forze: la forza di gravità, definita anche forza peso (\vec{F}_g indicata in rosso) e la reazione vincolare (forza \vec{T}, indicata in blu) che agisce sul grave per il fatto di essere ancorato al fulcro tramite il filo.
La forza \vec{F}_g si scompone in due forze:

- la forza \vec{F}_{gy}, componente della forza di gravità con direzione radiale (prolungamento del raggio).

- La forza \vec{F}_{gx}, componente della forza peso con direzione tangente alla traiettoria del pendolo: questa forza è la responsabile del movimento del pendolo ed esiste perché la forza peso e la tensione del filo non giacciono sulla stessa retta.

La forza \vec{T} consiste in una reazione vincolare da parte del fulcro, a cui il grave è fissato tramite il filo.

In altri termini, il grave, essendo vincolato al fulcro tramite il filo, reagisce alla forza \vec{F}_g con una forza \vec{T} perfettamente identica alla prima.

Questa perfetta identità tra le due forze opera continuamente durante tutto il movimento oscillatorio del pendolo, quindi, al continuo variare della forza \vec{F}_g, varia di continuo e nella stessa misura anche la forza \vec{T}.

Pertanto, in fase discendente, la forza \vec{F}_g aumenta progressivamente man mano che il grave si avvicina al suolo e, all’aumentare di essa, aumenta contemporaneamente anche la forza \vec{T} di un’egual misura.

Del resto l’aumento della velocità è dovuto proprio all’aumento della forza di gravità che opera sul grave in fase discendente.

In fase ascendente, poi, la forza \vec{F}_g diminuisce progressivamente man mano che il pendolo si allontana dal suolo e, a tale diminuzione di \vec{F}_g, corrisponde una contemporanea diminuzione in egual misura della forza \vec{T}.

La diminuzione della velocità è dovuta al fatto che il grave si muove in direzione opposta al verso della forza di gravità.

Si può quindi affermare che, nel pendolo-oscillatore armonico si verifica sempre questa equazione:

$$\vec{F}_g = -\vec{T}$$ \hspace{1cm} (1)

Il segno meno davanti a \vec{T} sta a significare che le due forze hanno verso opposto.

In verità questa equazione si verifica solo nel pendolo con ampiezza di oscillazione molto piccola, definito, come si è detto, “oscillatore armonico”.
Quando l’oscillazione è molto piccola e il filo è molto lungo, la velocità del pendolo è minima, per cui la forza centripeta diventa trascurabile.

Non va sottaciuto a tale riguardo che Galileo fece i suoi esperimenti sul pendolo esaminando il movimento di una lanterna appesa al soffitto di una chiesa tramite una catena lunga circa 20 metri, ed in un siffatto pendolo il movimento è lentissimo perché il periodo di un pendolo aumenta con l’aumentare del filo, e conseguentemente l’accelerazione centripeta diventa trascurabile perché essa diminuisce col diminuire della velocità e con l’aumentare del raggio \(A_c = \frac{v^2}{R} \).

Come dimostrerò tra breve, anche il sistema solare costituisce un insieme di pendoli oscillatori armonici tutti aventi fulcro nel Sole, nel quale i pianeti – ma il principio può estendersi a tutti i corpi dell’universo movendosi di moto circolare o ellittico attorno ad un centro gravitazionale – sono sottoposti alle medesime due forze a cui è sottoposta la sfera del pendolo oscillatore armonico ed, in particolare, ad una forza centrale proveniente dal Sole (attrattiva), ed una forza repulsiva che spinge il pianeta verso l’esterno dell’orbita, di eguale intensità, proveniente sempre dal Sole.

Nella figura a pagina seguente è rappresentato l’ipotetico diagramma delle forze che andrebbe realizzato se il sistema solare fosse un pendolo, quindi supponendo che la fase di avvicinamento al perielio fosse identica alla fase discendente del pendolo, e che la fase di avvicinamento all’afelio fosse identica alla fase ascendente del pendolo, con l’unica differenza che il moto non è oscillatorio, ma ha sempre lo stesso verso (antiorario).
Figura n. 2 – Ipotesi di pendolo cosmico oscillatore armonico
Come si nota dalla precedente figura, l’unico punto in cui le forze attrattiva e repulsiva si annullano, essendo esattamente opposte, è il perielio: ciò avviene perché, come si vedrà meglio in seguito, il pianeta, dal punto successivo al perielio, comincia ad allontanarsi dal Sole, e ciò può avvenire solo se, nell’istante in cui il pianeta occupa il perielio, esso è soggetto a due forze che si annulano a vicenda, nel qual caso, per il primo principio della dinamica, il corpo si muove, ancorché solo per un istante, di moto rettilineo, sicché cesserà di avvicinarsi, curvando, al Sole, e comincerà ad allontanarsi da esso il meno possibile.

Quando, invece, il pianeta è in afelio, le due forze non si annullano, perché, diversamente, il pianeta continuerebbe ad allontanarsi dal Sole, ma ciò violerebbe il principio di conservazione dell’energia, perché ne risulterebbe soppressa la forza attrattiva, come si vedrà meglio in seguito, per cui, in quel punto, la forza repulsiva non può avere direzione radiale ed annullarsi con quella attrattiva.

In questo modo si vengono a replicare nelle orbite planetarie le stesse condizioni fisiche del pendolo, nel quale, come si è visto nella figura a pagina 111, c’è un solo punto in cui le due forze (la gravità terrestre e la tensione del filo) si annullano, ossia il punto più vicino alla Terra, definito “punto di equilibrio”, dove l’intensità dello scontro tra esse è massimo.

Tale punto di equilibrio dell’oscillatore armonico, dunque, equivale esattamente al perielio del pendolo cosmico, benché quest’ultimo non possa definirsi propriamente un “punto di equilibrio”, perché, se fosse così, il pianeta oscillerebbe attorno ad esso, ma, come è noto, ciò non avviene.

Il fatto che non si tratti di punto di equilibrio nel senso proprio del termine ha anche un’altra implicazione fondamentale: qualora il pianeta, per qualsiasi motivo (più teorico che pratico) si fermasse nel perielio, esso, una volta rimosso l’ipotetico ostacolo, non resterebbe immobile come farebbe il grave dell’oscillatore armonico, ma riprenderebbe a girare attorno al Sole, sia pur non descrivendo la medesima orbita di prima, bensi un’orbita caratterizzata dal fatto che il punto di arresto, che si è ipotizzato essere il perielio, divenne il nuovo afelio, con la conseguenza che il nuovo perielio si collocherebbe nel punto esattamente opposto a quello in cui si trovava prima dell’arresto.

Ciò avviene perché, come si chiarirà meglio in seguito, l’afelio è il punto da
cui inizia il moto dei corpi celesti soggetti ad un campo gravitazionale attrattivo-repulsivo, analogamente al pendolo, nel quale il movimento del grave comincia dal punto della traiettoria in cui la forza di gravità è minore.

Ho ipotizzato che la forza di gravità attrattiva fosse sempre controbilanciata da quella repulsiva, perché, altrimenti, il pianeta prima o poi finirebbe per collidere contro il Sole, a causa dell’attrazione gravitazionale esercitata da quest’ultimo, la quale, in mancanza della forza repulsiva, dovrebbe, a rigor di logica, inevitabilmente logorare, con il suo incessante operare, la distanza pianeta-Sole.

Il solo movimento del corpo, infatti, non può ritenersi sufficiente per contrastare la forza di gravità, perché questa è una forza agente, non una semplice reazione vincolare, come si vedrà meglio in seguito.

Quindi ho supposto che la forza \(\vec{T} \), che nel pendolo classico esercita sulla sfera una reazione vincolare, fosse sostituita, nel pendolo cosmico, dalla forza di gravità attrattiva proveniente dal Sole, che ho denominato \(\vec{F}_a \) (forza attrattiva), e che la forza \(\vec{F}_g \), che nel pendolo classico esercita attrazione esterna, fosse sostituita, nel pendolo cosmico, dalla forza di gravità repulsiva proveniente sempre dal Sole, che ho denominato \(\vec{F}_r \) (forza repulsiva).

Ho ipotizzato in sostanza che nel sistema solare si verificasse sempre questa equazione:

\[
\vec{F}_r = - \vec{F}_a
\]

Dove \(\vec{F}_a \) è la forza di gravità attrattiva e \(\vec{F}_r \) è la forza di gravità repulsiva.

Il segno meno davanti a \(\vec{F}_a \) indica che le due forze hanno verso opposto.

Verrebbe dunque a crearsi la medesima situazione di scontro tra forze che sussiste nel pendolo classico, dove abbiamo visto che:

\[
\vec{F}_g = - \vec{T}.
\]

Consequentemente ho ipotizzato che, nel sistema solare, l’accelerazione di gravità attrattiva, che chiameremo “\(ga \)” sia sempre uguale alla accelerazione di gravità repulsiva, che chiameremo “\(gr \)”, per cui si avrebbe la seguente equazione:

\[
\vec{g}r = - \vec{g}a
\]

Il segno meno davanti a \(\vec{g}r \) indica che le forze da cui scaturiscono le due accelerazioni hanno verso opposto.
La non cumulabilità tra accelerazione centripeta ed accelerazione di gravità nel moto dei pianeti

E’ importante precisare che è stato possibile ipotizzare nella (2) l’uguaglianza tra le due accelerazioni (la attrattiva e la repulsiva), come nell’ossillatore armonico, in quanto, pur essendo i pianeti soggetti a forza centripeta, non è possibile cumulare l’accelerazione centripeta a quella di gravità, eccetto nel perielio come vedremo meglio in seguito.

Il motivo di tale preclusione risiede nel fatto che la forza di gravità solare, nell’attrarre i pianeti verso il centro, indirettamente ne impedisce l’allontanamento in linea retta e, in tal modo, si comporta “anche” da vincolo generante forza centripeta.

La forza centripeta, infatti, può essere definita come quella forza che impedisce l’allontanamento in linea retta del corpo dal centro, facendolo curvare attorno ad esso, per cui, se la forza centrale è attrattiva, come quella gravitazionale, essa si comporta anche da vincolo, perché chi attrae un corpo ne impedisce anche l’allontanamento (come se fosse una fune a cui è agganciato il pianeta), ma la forza di gravità non è solo un vincolo, generando anche un’attrazione sul corpo che tende a farlo avvicinare al centro.

Essendo l’accelerazione centripeta la velocità con cui il corpo moventesi di moto curvilineo muta la direzione del vettore velocità tangenziale in un determinato intervallo di tempo, possiamo dire che, quando la forza centrale è attrattiva, come quella gravitazionale, l’accelerazione centripeta può considerarsi un effetto indiretto della forza centrale e che, quindi, accelerazione centripeta e accelerazione di gravità non possano cumularsi, non essendo generate da due forze diverse, ma essendo due effetti distinti (quello diretto-attrattivo e quello indiretto-vincolare) di un’unica forza (la forza gravitazionale attrattiva).

Esse possono essere sommate solo nel perielio, dove hanno la stessa direzione, e quindi lo stesso effetto, come si vedrà meglio in seguito.

La forza \(F_{rx} \)

Ma a questo punto sorge un interrogativo: da cosa deriva la forza \(F_{rx} \)?

La domanda nasce perché, nel pendolo classico, la sua forza omologa \(F_{gx} \) deriva dal fatto che la forza di gravità non ha la stessa direzione della reazione
vincolare, quindi si scompone in due forze, di cui una è proprio \(\overrightarrow{F_{gx}} \).

Nel pendolo cosmico, invece, la forza repulsiva avrebbe la stessa direzione di quella attrattiva, quindi, a rigor di logica, la forza \(\overrightarrow{F_{rx}} \) non dovrebbe sorgere.

L’unica spiegazione possibile è quella di ritenere che tale forza nasca dal fatto che il Sole crea un campo attrattivo-repulsivo a 360 gradi, quindi determini l’insorgenza non di una sola coppia di forze opposte operanti unicamente sul pianeta (una attrattiva ed una repulsiva) che si dovrebbero annullare a vicenda, con conseguente stato di quiete del pianeta, ma di un infinito numero di coppie di forze uguali e divergenti, con conseguenti diversi livelli di pressione o energia (non mi è del tutto chiaro di cosa si tratti esattamente) scaturenti dal loro contrasto, e questo farebbe sì che il pianeta ruoti attorno al Sole secondo il principio illustrato a pagine 128 e seguenti.

La figura sottostante ci aiuterà a comprendere meglio il peculiare fenomeno del pendolo sottoposto ad un’azione attrattivo-repulsiva a 360 gradi da parte del fulcro.

Figura 3
Quello che è importante capire è che la nascita della forza \vec{F}_{rx}, e quindi la composizione delle due forze \vec{F}_{rx} ed \vec{F}_{ry} in \vec{F}_r, avviene solo quando il pianeta occupa un nuovo punto dell’orbita.

Prima di quel momento le due forze presenti in ciascuno dei punti del campo attrattivo-repulsivo si annullano a vicenda, sotto il profilo dinamico, perché esse hanno uguale intensità e verso opposto, ma il loro scontro genera energia (o pressione, non mi è molto chiaro), e questa energia assume valori diversi a seconda del punto considerato: più vicino al Sole l’energia sarebbe maggiore di quella esistente nei punti più lontani dall’astro.

Nel momento in cui il pianeta si sposta nel successivo punto dell’orbita, la forza \vec{F}_r, a causa della nascita della forza \vec{F}_{rx}, risulterà dalla composizione di \vec{F}_{rx} ed \vec{F}_{ry}, ed in questo modo essa non avrà più la stessa direzione della forza attrattiva \vec{F}_a, e questo crea il medesimo tipo di campo di forze che sussiste nel pendolo oscillatore armonico, in particolare due forze uguali ma non opposte (non giacenti, cioè, sulla medesima retta), il che a sua volta determina il movimento del pianeta attorno al Sole secondo il principio illustrato a pagina 128 e seguenti.

Questa è una mia supposizione, mai essendo stato osservato in natura il comportamento di un corpus insirito in un campo di forze attrattivo-repulsivo generato da un unico corpo centrale, ma credo che questa mia deduzione sia l’unica in grado di spiegare la causa del movimento dei corpi celesti attorno ad un corpo centrale, che altrimenti dovrebbe essere ascritto ad una misteriosa spinta, anzi a molteplici spinte (avendo ogni pianeta una velocità diversa dagli altri), il che, a dire il vero, è alquanto inverosimile.

A tal proposito si osserva che qualsiasi campo di forze conosciuto (magnetico, elettromagnetico, elettrico) non esercita mai contemporaneamente due forze opposte, e mai nella stessa regione di spazio.

Nel campo magnetico, ad esempio, le cariche magnetiche si dispongono in maniera polare, cioè un tipo di carica si concentra in un polo del magnete, e la carica opposta si concentra nel lato opposto del magnete, per cui lo spazio circostante al
magnete può dividersi in due zone: una pervasa da carica positiva, e l’altra pervasa da carica negativa.

Nel campo elettrico, poi, le cariche opposte non derivano mai dallo stesso corpo (come ad esempio il campo elettrico attrattivo-repulsivo generato da due fili vicini, nel qual caso un filo è attraversato da corrente elettrica positiva, e l’altro da corrente elettrica negativa).

Quindi, nel ricostruire il comportamento di un corpo inserito in un campo gravitazionale al tempo stesso attrattivo e repulsivo, ho dovuto procedere necessariamente alla formulazione di ipotesi e, tra tutte, la più verosimile mi è sembrata quella secondo cui un tale tipo di campo di forze darebbe luogo all’insorgenza di un pendolo con movimento non oscillatorio, ma rotatorio attorno al fulcro.

L’alternativa sarebbe quella di ritenere che il corpo inserito in un tale tipo di campo rimanga in uno stato di quiete, tra due forze opposte, ma questo sembrerebbe contraddetto non solo dal menzionato fenomeno dei detriti satellitari, che non cadono sull’atmosfera dopo l’impatto, ma anche dal fatto che, come si vedrà tra breve, i pianeti si muovono proprio nello stesso tempo, con la stessa velocità angolare e soprattutto con la stessa legge oraria dell’oscillatore armonico galileiano, il che fa supporre che si creino con alta probabilità le condizioni per la nascita di un pendolo, quindi la presenza di due forze confliggenti sul pianeta, sia pur non “opposte”.

Del resto, le analogie con il pendolo di Galileo non si limitano all’applicabilità al moto dei pianeti delle predetti leggi matematiche che regolano il moto dell’oscillatore armonico, sussistendone anche altre di tipo fisico, enunciate qui di seguito.

Analogie fisiche tra sistema solare e pendolo

- **Prima analogia**

 Il grave del pendolo si muove attorno ad un punto fisso, detto fulcro, come i pianeti si muovono attorno ad un punto fisso, il Sole.

- **Seconda analogia**

 Il moto dei pianeti è perpetuo, come perpetuo sarebbe quello del pendolo in
mancanza di attrito con l’aria e se il filo fosse perfettamente inestensibile.

- **Terza analogia**

 I pianeti si muovono di moto non uniformemente accelerato quando si dirigono verso l’attrattore.

 Più precisamente i pianeti accelerano non uniformemente quando si muovono in direzione del perielio (punto dell’orbita più vicino al Sole e di massima velocità orbitale), analogamente al pendolo, che accelera non uniformemente in fase discendente, raggiungendo la massima velocità lineare nel punto più vicino alla Terra.

 Quando il pianeta si dirige verso il perielio, si avvicina progressivamente al Sole, sia pure non direttamente, per cui aumenta l’intensità dello scontro tra \vec{F}_a e \vec{F}_r, come si vede dalla figura 2.

 Il progressivo aumento delle due forze opposte determina anche il progressivo aumento della velocità orbitale del pianeta, fino ad arrivare alla massima velocità nel perielio.

 L’aumento della velocità del pianeta è dato dal fatto che l’aumento dell’intensità delle forze divergenti che operano sul pianeta fa sì che aumenti anche la forza \vec{F}_{rx}.

 La forza \vec{F}_{rx} infatti, può nascere solo se si ipotizza la contemporanea riduzione della forza che spinge il pianeta verso l’esterno (\vec{F}_r), altrimenti si creerebbe una forza dal nulla, il che violerebbe il principio di conservazione dell’energia.

 Pertanto, maggiore è la forza \vec{F}_r, maggiore sarà la forza \vec{F}_{rx} grazie alla quale il pianeta si sposterà verso il vicino punto dell’orbita che, dal punto di vista pressorio, è il meno forte tra i più forti, o il meno debole tra i più deboli, come si vedrà tra breve.

 La fase di avvicinamento al perielio è assimilabile, dunque, alla fase discendente del pendolo galileiano, dove il grave, nel mentre accelera progressivamente man mano che si avvicina alla superficie della Terra, è sottoposto a due forze divergenti ed uguali, sia pur non “opposte”, che aumentano gradualmente di intensità: l’analogia tra i due fenomeni è confermata dal fatto che, in entrambi i casi, l’accelerazione non è uniforme.

 Il perielio è assimilabile, dunque, al punto di equilibrio dell’oscillatore
armonico galileiano, ma tale similitudine è limitata al fatto che in entrambi i casi le due forze contrastanti si annullano a vicenda, ma, come si è anticipato sopra, il perielio non va assolutamente qualificato un punto di equilibrio, perché, se per ipotesi il pianeta si fermasse nel perielio, non resterebbe immobile come accadrebbe all’oscillatore armonico qualora si fermasse nel punto di equilibrio, ma ricomincerebbe a girare attorno all’attrattore-repulsore con una nuova orbita avente l’afelio nel vecchio perielio.

- **Quarta analogia**

I pianeti decelerano in modo non uniforme quando si muovono in direzione dell’afelio (punto più lontano dal Sole e di minima velocità orbitale), analogamente al pendolo, il quale decelera non uniformemente in fase ascendente, raggiungendo la minima velocità tangenziale nel punto più lontano dalla Terra.

Quando il pianeta si allontana dal perielio e si dirige verso l’afelio, l’intensità dello scontro tra forza attrattiva e forza repulsiva diminuisce progressivamente, fino a toccare il minimo in afelio, e ciò determina la riduzione della forza \(F_r \) e, quindi, il rallentamento del pianeta: l’analogia tra i due fenomeni è confermata dal fatto che, in entrambi i casi, la decelerazione non è uniforme.

Vengono in tal modo a replicarsi nel sistema solare le stesse condizioni che sussistono nel pendolo classico: una forza gravitazionale esterna che spinge il corpo lontano dal centro contrastata continuamente ed adeguatamente da una forza rivolta verso il punto fisso, non opposta alla prima.

E’ importante precisare che il pianeta, durante questa fase, rallenta perché la forza gravitazionale attrattiva proveniente dal Sole si oppone alla direzione della velocità del pianeta, non essendo ortogonale al moto, per cui lo ostacola facendolo rallentare, ma non a sufficienza da far diventare parabolica l’orbita, essendo ciò scongiurato dal fondamentale apporto della componente tangenziale della forza repulsiva \(F_r \), che appunto consente di preservare l’ellitticità dell’orbita, e quindi la sua stabilità nel tempo.

Come si è anticipato innanzi, l’afelio, punto dell’orbita in cui la gravità è minore, è quello da cui comincia il moto dei corpi celesti inseriti in un campo attrattivo repulsivo, similmente a quanto accade nel pendolo, nel quale il moto inizia
dal punto in cui la forza di gravità è minore.

Analogie matematiche tra sistema solare e pendolo

- Quinta analogia

Quanto alle analogie matematiche, in primis vi è l’analogia secondo la quale il periodo orbitale dei pianeti, cioè il tempo in cui i pianeti compiono un giro completo attorno al Sole, dipende, come dimostrerò più avanti, dalla forza di gravità repulsiva e dalla distanza dal Sole, più precisamente il tempo di rivoluzione del pianeta è espresso dalla seguente formula:

\[T = 2 \pi \sqrt{\frac{l}{g}} \]

che è esattamente la legge che regola il periodo dell’oscillatore armonico scoperta da Galileo, dove “l”, nel pendolo di Galileo, è la lunghezza del filo a cui è appesa la sfera, e “g” è l’accelerazione di gravità esercitata sulla sfera dalla Terra (o dal diverso pianeta sulla cui superficie venga eventualmente posizionato il pendolo), mentre, nel pendolo “cosmico” (cioè quello che io ho intravisto nel sistema solare), “l” diventa la distanza media tra pianeta e Sole (ossia il semiasse maggiore “a”), e “g” diventa l’accelerazione di gravità repulsiva media che il pianeta subisce a causa della forza repulsiva solare.

La formula in questione è quella che regola il periodo di un particolare tipo di pendolo detto “oscillatore armonico”, nel quale, come si è già detto, l’ampiezza dell’oscillazione è talmente piccola che non consente il sorgere della forza centripeta se non in misura trascurabile, stante la minima velocità del grave unita alla rilevante lunghezza del raggio, per cui anche qui, come nel pendolo cosmico, si verifica una continua uguaglianza tra forza centrale e forza esterna.

Nel pendolo con oscillazioni non piccole, invece, il pendolo è sottoposto anche alla forza centripeta, poiché si muove di moto circolare (più precisamente si tratta di arco di circonferenza), per cui la forza centrale complessiva (tensione del filo) è uguale alla somma tra forza peso e forza centripeta.

Quindi, nel pendolo cosmico, la forza di gravità repulsiva, che sopra abbiamo indicato con \(\vec{F}_r \), ha la stessa funzione che la forza di gravità terrestre svolge nell’oscillatore armonico di Galileo, cioè quella di spingere il corpo lontano dal centro.
e, conseguentemente, come la forza di gravità terrestre è uguale alla tensione del filo nell’oscillatore armonico di Galileo, analogamente la forza di gravità repulsiva è uguale alla forza di gravità attrattiva nel pendolo cosmico, perché in quest’ultimo non è possibile cumulare l’accelerazione centripeta con l’accelerazione di gravità, eccetto nel perielio, come si chiarirà meglio in seguito.

L’analogia tra i due fenomeni (pendolo oscillatore armonico e sistema solare) ci consente di applicare al sistema solare la legge che regola il periodo del pendolo oscillatore armonico.

L’unica differenza tra i due pendoli è che quello galileiano oscilla da un lato all’altro attorno al punto di equilibrio, mentre quello cosmico compie un giro completo attorno al centro, ma ciò è dovuto al continuo cambio di direzione della forza di gravità repulsiva, come si è visto nella figura n. 2, ed al fatto che in esso non esiste un vero e proprio punto di equilibrio, come si è precisato innanzi.

- **Sesta analogia**

La velocità angolare dei pianeti per compiere un giro completo attorno al Sole è pari alla cosiddetta pulsazione dell’oscillatore armonico galileiano, ossia alla sua velocità angolare.

La pulsazione dell’oscillatore armonico, come è noto è:

\[\omega = \sqrt{\frac{l}{g}} \]

Come si dimostrerà *infra*, la formula della velocità angolare dei pianeti è esattamente uguale alla soprastante formula del pendolo, sicché avremo:

\[\omega = \sqrt{\frac{a}{g}} \]

Dove \(a \) è il semiasse maggiore.

- **Settima analogia**

La legge oraria dei pianeti è uguale alla legge oraria dell’oscillatore armonico. E’ noto che la legge oraria dell’oscillatore armonico galileiano:

\[g = \omega^2 x \]

dove \(x \) è la posizione del corpo, ossia la sua proiezione sull’asse delle ascisse.
Come si dimostrerà in seguito, questa è la legge oraria che regola anche il moto di rivoluzione dei pianeti attorno al Sole.

- **Approfondimento sulla forza** \vec{F}_{rx}

Come già si è detto, ma il discorso merita un approfondimento, essa non nasce dal nulla, ma dalla riduzione di \vec{F}_r.

Più precisamente, quando il pianeta si sposta da un punto all’altro della sua orbita, accade che la forza \vec{F}_r – la quale prima dell’avvento del pianeta in quel punto era perfettamente opposta ed uguale ad \vec{F}_a – si riduce di una quantità sufficiente per consentire il sorgere di una forza che permetta al pianeta di spostarsi nel successivo punto dell’orbita, nel rispetto dei due principi enunciati tra breve.

Derivando la forza \vec{F}_{rx} dalla riduzione della forza \vec{F}_r, ne consegue che, da un lato, non viene violato il principio di conservazione dell’energia – secondo il quale nulla si crea o si distrugge, ma tutto si trasforma o si cede – e, dall’altro, si consente al pianeta di muoversi all’interno del campo attrattivo-repulsivo.

Ricapitolando, \vec{F}_r si riduce in \vec{F}_{xy} e il *sur plus* di energia derivante da tale riduzione dà vita alla forza \vec{F}_{rx}.

La risultante tra \vec{F}_{rx} ed \vec{F}_{xy} sarà proprio uguale ad \vec{F}_r, ma, per effetto di questa composizione delle due forze, la forza \vec{F}_r non giacerà più sulla stessa retta su cui giace \vec{F}_a, come accadeva quando quel determinato punto dell’orbita non era ancora occupato dal pianeta, e questo fa sì che le due forze attrattiva e repulsiva non saranno più “opposte”, per cui non si annulleranno più, e questo determinerà la traiettoria curva del pianeta, secondo lo stesso principio che regola il pendolo.

E’ opportuno precisare al riguardo che quelli enunciati tra breve (pag. 128 e seg.) sono i principi “fisici” su cui si fonda il moto perpetuo dei corpi celesti attorno ad un corpo centrale, che tuttavia non consentono di calcolare matematicamente, cioè concretamente, quali siano detti punti (a tal fine occorre rifarsi alle leggi matematiche del pendolo oscillatore armonico), ma solo di capire la ragione fisica della particolare orbita (ellittica) dei pianeti.

Tale meccanismo fisico è quello che sta alla base di un particolare tipo di pendolo, nel quale il centro esercita una forza sia attrattiva che repulsiva sul grave, a
360 gradi, e le prove a supporto dell’esistenza di questo particolare fenomeno fisico sarebbero, a mio avviso, non soltanto le analogie fisiche e matematiche tra pendolo e sistema solare viste sopra, ma anche l’ellitticità dell’orbita dei pianeti.

Vediamo perché.

- **La causa del moto dei pianeti attorno al Sole e di tutti i corpi celesti moventisi attorno ad un determinato centro gravitazionale**

Il big-bang ha probabilmente dato origine alle masse dei corpi celesti, ma non anche al loro movimento nello spazio.

Il movimento sarebbe dovuto, a mio avviso, all’esistenza di un campo di forze attrattivo-repulsivo generato dal corpo massivo centrale, a partire da una certa distanza da esso, direttamente proporzionale alla massa: maggiore è la massa, maggiore sarebbe la distanza a partire dalla quale nascerebbe la forza repulsiva in aggiunta a quella attrattiva.

Ho ipotizzato, in particolare, che un corpo inserito in un campo attrattivo-repulsivo non resterebbe fermo in virtù dell’annullamento di due forze opposte di stampo newtoniano, come ad una prima analisi si potrebbe pensare, ma si muoverebbe attorno al centro, perché il corpo, pur essendo sottoposto a due forze opposte, avvertirebbe la presenza attorno a sé di diversi valori di pressione dovuti alla diversa intensità dello scontro tra le forze attrattiva e repulsiva, a seconda della distanza dal corpo centrale (essendo la forza di gravità inversamente proporzionale al quadrato della distanza, e questo vale anche per la forza repulsiva).

In verità, questo appena descritto non sarebbe, a mio avviso, l’unico caso di campo di forze attrattivo-repulsivo, ma probabilmente ne esiste anche un altro in natura: quello che si forma attorno al nucleo dell’atomo, che causa il movimento perpetuo degli elettroni attorno ad esso, come si vedrà meglio alla fine del presente lavoro.

Lo scontro tra le due forze crea, dunque, le condizioni per la nascita del pendolo.

L’unica differenza tra pendolo galileiano e pendolo cosmico è che, come già si è detto, nel primo caso la forza di gravità proviene solo da un lato, per cui il pendolo non ruota, ma oscillà attorno al punto di equilibrio, mentre nel pendolo cosmico la
direzione della forza repulsiva cambia di continuo, e manca un reale punto di equilibrio, per cui l’oscillazione si tramuta in rotazione attorno al fulcro, ed inoltre nel pendolo galileiano la forza centrale è una reazione vincolare, mentre nel pendolo cosmico è una forza agente di natura attrattiva.

Ogni punto dell’orbita, quindi, non equivale mai, dal punto di vista del valore pressorio, a quello precedente né a quello successivo, perché sarà dotato di una pressione maggiore o minore a seconda se, rispettivamente, si trova più vicino o più lontano dal corpo centrale rispetto al punto in cui si trova il pianeta, e quest’ultimo, come si vedrà, tende a spostarsi, tra i punti con pressione più forte esistenti nel suo intorno, in quello con pressione meno forte, oppure, tra quelli con pressione più debole, in quello con pressione meno debole, a seconda se si trova, rispettivamente, nella fase di avvicinamento o di allontanamento rispetto al Sole.

- **La causa dell’ellitticità delle orbite**

Il movimento di un corpo immerso in un campo di forze attrattivo-repulsivo è governato dal principio descritto nelle pagine seguenti.

Prima di illustrare il principio giova riportare nuovamente a pagina seguente il disegno 3, visto a pagina 118.
Principio del minor avvicinamento possibile e del minor allontanamento possibile dall’attrattore-repulsore

Supponendo che un corpo inserito in un campo di forze gravitazionali attrattivo-repulsivo non resti in uno stato di quiete, ma si muova, è ragionevole ipotizzare che lo faccia avvicinandosi il meno possibile all’attrattore-repulsore e, successivamente, allontanandosi il meno possibile da esso, ciclicamente.

Lo scontro tra due forze opposte, infatti, genera un certo valore di pressione (o energia), e questa sarebbe decrescente in rapporto al quadrato della distanza dal corpo centrale, poiché l’intensità della forza gravitazionale diminuisce secondo tale rapporto anche con riguardo alla forza repulsiva, per cui, in un siffatto contesto pressorio non uniforme, appare più sensato ritenere che il corpo si muova saltando da un livello di pressione all’altro, ininterrottamente, anziché ipotizzare che esso si muova in modo circolare attorno all’attrattore-repulsore, a distanza costante da esso, nel qual caso il
corpo si muoverebbe insensatamente occupando sempre il medesimo livello di pressione.

E’ ragionevole ipotizzare, dunque, che la prima fase sia quella dell’avvicinamento, a cui segue quella dell’allontanamento, seguita nuovamente dall’avvicinamento e così via, in un ciclico susseguirsi delle due fasi.

Nella fase di avvicinamento all’attrattore-repulsore, il corpo è spinto, tra tutti i punti aventi un valore pressorio maggiore esistenti nel suo intorno, verso quello meno forte.

In termini geometrici, il pianeta, nella fase di avvicinamento al Sole, viene spinto, tra tutti i punti più vicini al Sole esistenti nel suo intorno, verso quello meno vicino.

Seguendo questo principio il pianeta si avvicina al corpo centrale il meno che sia possibile, cioè nella maniera più graduale possibile.

Come si vede nella figura a pagina precedente, il pianeta, dal punto A, si sposta in B (solo per motivi di chiarezza espositiva si è disegnato il punto B leggermente spostato da A, ma lo si deve immaginare come contiguo ad esso): tale punto, rispetto ad A, si avvicina al Sole il meno possibile.

Seguendo lo stesso criterio il pianeta si sposterà dal punto B al punto C, e così via, fino al raggiungimento del perielio, nella maniera più graduale possibile, in modo da non violare il principio di conservazione dell’energia, che risulterebbe leso se il corpo si avvicinasse all’attrattore-repulsore in maniera non sufficientemente graduale, sopprimendo così la forza repulsiva.

Ma in che modo un corpo A può avvicinarsi ad un corpo B il meno possibile?

L’unico modo è quello di far muovere A su una traiettoria ellittica nella quale B si trovi in uno dei fuochi, ed il secondo fuoco si trovi il più possibile vicino a B.

In tal modo A percorrerà una traiettoria caratterizzata dal fatto che, nel mentre si avvina a B, contemporaneamente si allontana il meno possibile da un punto vicinissimo a B, poiché, come si vedrà in appresso, l’ellisse è il luogo geometrico dei punti del piano dove ogni punto, rispetto a quello attiguo, si avvicina il meno possibile ad un fuoco ed, al contempo, si allontana il meno possibile dall’altro fuoco: in questo modo A si avvicinerà a B il meno possibile, poiché, mentre lo fa, si
allontana contemporaneamente il meno possibile da un punto (l’altro fuoco) che è vicinissimo a B.

Il principio del “minor avvicinamento possibile” all’attrattore-repulsore, tuttavia, non è applicabile in tutta l’orbita del pianeta.

E’ ragionevole supporre, infatti, che in un campo attrattivo-repulsivo generato da un corpo centrale, l’esistenza delle due forze opposte faccia sì che il minor avvicinamento possibile possa aver luogo solo fino ad un certo punto limite, oltre il quale l’ulteriore avvicinamento all’attrattore-repulsore violerebbe il principio di conservazione dell’energia, sopprimendo la forza repulsiva.

Il punto dove si verificherebbe, a mio avviso, questa particolare situazione limite è, nelle orbite planetarie, il perielio, oltre il quale, se il corpo continuasse ad avvicinarsi all’attrattore-repulsore, la forza repulsiva subirebbe un’illecita compressione, perché il corpo si avvicinerebbe contemporaneamente ad entrambi i fuochi, e così l’equilibrio si spezzerebbe in favore della forza attrattiva.

Conseguentemente il pianeta, una volta giunto nel perielio, comincia a muoversi rispettando un criterio solo formalmente diverso, ma sostanzialmente identico, al precedente, ossia quello del minor allontanamento possibile dall’attrattore-repulsore.

Il pianeta, dopo il perielio, riesce ad allontanarsi il meno possibile perché, come si è anticipato sopra, nel predetto punto le due forze sono esattamente contrapposte e quindi il pianeta si muove per un solo istante di moto rettilineo, poiché, solo muovendosi di moto rettilineo per quell’unico istante, il pianeta può cessare di avvicinarsi al Sole ed, al contempo, cominciare ad allontanarsi da esso il meno possibile.

Nella fase di allontanamento dall’attrattore-repulsore il pianeta è spinto, tra tutti i punti aventi un valore pressorio minore esistenti nel suo intorno, verso quello meno debole.

In termini geometrici il pianeta, nella fase di allontanamento dal Sole, è spinto, tra tutti i punti più lontani dal Sole esistenti nel suo intorno, verso quello meno lontano.

Seguendo questo principio il pianeta si allontana dal corpo centrale il meno che sia possibile.
Come si vede sempre nella figura a pagina 128, il pianeta, dal perielio, si sposta in E (solo per motivi di chiarezza espositiva si è disegnato il punto E leggermente spostato dal perielio, ma lo si deve immaginare come contiguo ad esso): tale punto è, al tempo stesso, più lontano dal Sole rispetto al perielio stesso, ma, tra tutti i punti più lontani dal Sole esistenti nell’intorno del perielio, è quello meno lontano.

Seguendo lo stesso criterio il pianeta si sposterà dal punto E al punto F, e così via, fino al raggiungimento dell’afelio, nella maniera più graduale possibile, in modo da non violare il principio di conservazione dell’energia, che risulterebbe leso se il corpo si allontanasse dall’attrattore-repulsore in maniera non sufficientemente graduale, sopprimendo così la forza attrattiva.

Ma in che modo un corpo A può allontanarsi da un corpo B il meno possibile?

L’unico modo è quello di far muovere A su una traiettoria ellittica nella quale B si trovi in uno dei fuochi, ed il secondo fuoco si trovi il più possibile vicino a B.

In tal modo A percorrerà una traiettoria caratterizzata dal fatto che, nel mentre si allontana da B, contemporaneamente si avvicina il meno possibile ad un punto vicinissimo a B, poiché, come si è anticipato sopra, *l’ellisse è il luogo geometrico dei punti del piano dove ogni punto, rispetto a quello attiguo, si allontana il meno possibile da un fuoco ed, al contempo, si avvicina il meno possibile all’altro fuoco*: in questo modo A si allontanerà da B il meno possibile, poiché, mentre lo fa, si avvicina simultaneamente il meno possibile ad un punto (l’altro fuoco) che è vicinissimo a B.

Tuttavia, il principio del “minor allontanamento possibile” dall’attrattore-repulsore non è applicabile in tutta l’orbita del pianeta.

E’ ragionevole supporre, infatti, che in un campo attrattivo-repulsivo generato da un corpo centrale, l’esistenza delle due forze opposte faccia si che il minor allontanamento possibile possa aver luogo solo fino ad un certo punto limite, oltre il quale, l’ulteriore allontanamento dall’attrattore-repulsore, violerebbe il principio di conservazione dell’energia, sopprimendo la forza attrattiva.

Il punto dove si verificherebbe, a mio avviso, questa particolare situazione limite è, nelle orbite planetarie, l’afelio, oltre il quale, se il corpo continuasse ad allontanarsi dall’attrattore-repulsore, la forza attrattiva ne risulterebbe soppressa,
poiché il corpo si allontanerebbe contemporaneamente da entrambi i fuochi, e così l’equilibrio si spezzerebbe in favore della forza repulsiva.

Pertanto il pianeta, una volta giunto in afelio, comincia a muoversi nuovamente secondo il principio, precedentemente enunciato, del minor avvicinamento possibile all’attrattore-repulsore, ed il ciclo si ripete all’infinito.

E’ opportuno precisare che in afelio, a differenza dal perielio, le due forze non si annullano, perché altrimenti il pianeta continuerebbe ad allontanarsi dal Sole, sopprimendo la forza attrattiva, sicché la forza repulsiva continua ad avere una direzione non radiale.

In sostanza, a mio avviso, il pianeta riuscirebbe a ruotare in perpetuo attorno all’attrattore-repulsore centrale perché, avvicinandosi e poi allontanandosi il meno possibile rispetto all’attrattore-repulsore centrale, rimarrebbe perennemente in uno stato di perfetto equilibrio dinamico tra le due forze gravitazionali opposte, preservando così inalterato il principio di conservazione dell’energia.

- **L’ellisse del giardiniere**

 A conferma di quanto detto sopra basta considerare che l’ellisse è definibile come “il luogo geometrico dei punti del piano esistenti attorno a due punti fissi detti fuochi, dove ogni punto, rispetto a quello attiguo, si avvicina il meno possibile ad un fuoco e, al contempo, si allontana il meno possibile dall’altro fuoco”.

 Questa definizione non è sostitutiva, bensì alternativa rispetto alla nozione tradizionale dell’ellisse intesa quale “il luogo geometrico dei punti del piano per i quali è costante la somma delle distanze da due punti fissi detti fuochi”, ma grazie ad essa è possibile osservare l’ellisse da una prospettiva del tutto nuova, dinamica se vogliamo, fondamentale per comprendere la ragione per cui le orbite dei pianeti del nostro sistema solare sono ellittiche.

 Dimostrazione

 La dimostrazione della validità della definizione alternativa dell’ellisse sopra coniata può apparire rudimentale, ma è a mio parere efficace.

 Nel disegno a pagina seguente si vede un giardiniere intento a tracciare un’ellisse seguendo un metodo spesso ignorato, ma valido.
Egli ha fissato due chiodi nel suolo e ha legato ad essi un filo di lunghezza maggiore rispetto alla distanza tra i chiodi.

Con una matita ha esercitato una pressione verso l’esterno per tendere il filo e, contemporaneamente, ha spostato la matita lateralmente per tracciare l’ellisse.

La cosa importante da notare in questo disegno è che le forze in gioco sono due:

1) la pressione verso l’esterno esercitata dal giardiniere con la matita, che genera la tensione del filo.

2) la reazione vincolare generata dal filo stesso.

A causa del filo, il giardiniere è vincolato nel tracciare il disegno: egli, mentre lo fa, si allontana il meno possibile da un fuoco e, al contempo, si avvicina il meno possibile all’altro fuoco.

Nel mentre si sposta, infatti, lo spago gli impone di allontanarsi da un chiodo e, contemporaneamente, avvicinarsi all’altro chiodo, perché il filo è legato ai due chiodi, quindi, quando aumenta la distanza da un chiodo, deve ridursi necessariamente la distanza dall’altro chiodo, altrimenti il filo si spezzerebbe, il che induce a concludere che non è possibile per il giardiniere allontanarsi contemporaneamente da entrambi i fuochi.
D’altro canto è da escludersi anche la possibilità dell’avvicinamento contemporaneo ai due fuochi, perché questo comporterebbe l’allentamento del filo, che invece deve restare sempre in tensione affinché possa ottenersi l’ellisse.

Possiamo affermare, pertanto, che l’ellisse è la rappresentazione grafica del movimento della matita del giardiniere, il cui spostamento dà luogo a due movimenti contemporanei rispetto ai due fuochi, allontanandosi il meno possibile da un fuoco ed, al contempo, avvicinandosi il meno possibile all’altro fuoco.

Escludendo le forze, irrilevanti in ambito geometrico, possiamo utilizzare la menzionata proprietà dell’ellisse per dimostrare ogni punto dell’ellisse soddisfa sempre due condizioni, ossia che, rispetto a quello attiguo, si avvicina il meno possibile ad un fuoco ed, al contempo, si allontana il meno possibile dall’altro fuoco, sicché possiamo affermare che l’ellisse è “il luogo geometrico dei punti del piano esistenti attorno a due punti fissi detti fuochi, dove ogni punto, rispetto a quello attiguo, si avvicina il meno possibile ad un fuoco ed, al contempo, si allontana il meno possibile dall’altro fuoco”

C.V.D.

L’ellisse del giardiniere, dunque, dimostra che la traiettoria descritta da un corpo inserito in un campo di forze attrattivo-repulsivo non può essere altro che ellittica, in quanto le due forze operanti nell’ellisse del giardiniere ben possono essere assimilate alle due forze contrastanti che caratterizzano un campo di forze attrattivo-repulsivo, e ciò riveste un’importanza fondamentale ai fini della dimostrazione dell’esistenza di un tale tipo di campo di forze attorno al Sole ed a tutti i corpi massivi.

- **Energia del campo gravitazionale attrattivo-repulsivo**

Quando parlo di energia del campo gravitazionale attrattivo-repulsivo, mi riferisco, dunque, ad un particolare tipo di energia insita solo nei campi attrattivo-repulsivi (come quello che molto probabilmente esiste anche attorno al nucleo dell’atomo, generato dai nucleoni), la quale esprime l’attitudine di un determinato punto del campo di far muovere qualsiasi corpo si trovi in esso, ed avente una massa trascurabile rispetto al corpo centrale, verso il punto che, tra quelli dotati di maggior pressione (o energia) rispetto a quella esistente nel punto occupato, è il punto con pressione meno forte, oppure di farlo muovere verso il punto che, tra quelli dotati di
minor pressione (o energia) rispetto a quella esistente nel punto occupato, è il punto con pressione meno debole, a seconda se si trovi, rispettivamente, nella fase di avvicinamento o in quella di allontanamento rispetto all’attrattore-repulsore.

Questa energia sarebbe decrescente in rapporto alla distanza dal centro e vedremo nel capitolo V quanto sia importante questo aspetto per la soluzione di molti problemi di astrofisica e di fisica nucleare.

- **Differenza tra campo di forze nulle e campo di forze che si annullano**

La differenza tra i due tipi di campo consiste nel fatto che, nel primo caso (campo di forze nulle), lo spazio è assolutamente privo di forze, mentre, nel secondo caso, lo spazio è pervaso da forze opposte (convergenti o divergenti) che si annullano.

La differenza non è meramente formale, in quanto, nel secondo caso, un corpo immerso nel campo di forze ben può subire delle modifiche fisiche proprio per effetto delle due forze opposte agenti su di esso (schiacciamento, deformazione).

Questa precisazione è importante per sgombrare il campo da eventuali dubbi che possano nascere in merito all’esistenza del campo attrattivo-repulsivo attorno al Sole il quale, si ripete, non equivale ad un campo di forze nulle.

- **L’afelio come punto da cui ha avuto inizio il moto dei pianeti**

Se si conviene sul fatto che la causa del movimento dei pianeti è l’esistenza di un campo gravitazionale attrattivo-repulsivo che genera un particolare tipo di pendolo che si muove non oscillando ma compiendo giri attorno al fulcro, allora risulterà anche abbastanza agevole ammettere che il punto a partire dal quale è iniziato il moto dei pianeti, probabilmente già da quando erano in uno stato di polveri protoplanetarie, è l’afelio, ossia il punto dell’orbita in cui la forza di gravità è minore, come accade anche nel pendolo, nel quale il moto comincia proprio dal punto in cui la gravità è minore.

- **La necessaria ellitticità dell’orbita dei corpi celesti attorno ad un corpo centrale**

L’adesione ad una siffatta visione del fenomeno del moto perpetuo dei corpi celesti, nella quale il moto obbedisce al principio sopra enunciato (del minor
avvicinamento possibile e del minor allontanamento possibile rispetto all’attrattore-repulsore) impone anche di ritenere che in tutti i sistemi gravitazionali (anche dissimili dal nostro, cioè quando i corpi del sistema sono di massa non trascurabile uno rispetto all’altro, ad esempio un sistema di due stelle binarie) siano possibili solo orbite di forma ellittica.

Capitolo II

Dimostrazioni matematiche

- **Dimostrazione della terza legge di Keplero ipotizzando che il sistema solare sia un oscillatore armonico**

Come ho anticipato innanzi, il periodo dell’orbita dei pianeti attorno al Sole è espresso dalla seguente formula, scoperta da Galileo con riguardo al pendolo-oscillatore armonico, ma applicabile, come si vedrà, anche al sistema solare,

\[
T = 2 \pi \sqrt{\frac{l}{g}}
\]

(3)
dove ho supposto che \(l\) sia la distanza media del pianeta dal Sole e \(g\) l’accelerazione di gravità repulsiva esercitata in media sul pianeta dal Sole (cioè quando esso si trova alla distanza media dall’astro).

Possiamo, quindi, scrivere la (3) anche nel seguente modo:

\[
T = 2\pi \sqrt{\frac{a}{g_{r\text{media}}}}
\]

(4)
dove \(a\) è il semiasse maggiore dell’orbita ellittica del pianeta che, come è noto, coincide proprio con la distanza media Sole-pianeta, e \(g_{r\text{media}}\) è l’accelerazione di gravità repulsiva media esercitata sul pianeta dal Sole.

Ma, avendo dimostrato che nell’oscillatore armonico cosmico, come in quello galileiano, l’accelerazione centripeta non si cumula all’accelerazione di gravità, abbiamo che \(g_r = -g_a\), e quindi la (4) diventa:

\[
T = 2\pi \sqrt{\frac{a}{g_{a\text{media}}}}
\]

(5)
dove g_{media} è l’accelerazione di gravità attrattiva media, ossia quella esercitata dal Sole quando il pianeta si trova alla distanza media.

In proposito è opportuno precisare che si è ritenuto di dover inserire nella (5) la distanza media pianeta-Sole, nonché l’accelerazione di gravità media, perché, trattandosi di un pendolo con orbita ellittica, la distanza dal fulcro cambia di continuo (a differenza di quello classico, che ha orbita circolare) e, conseguentemente, varia di continuo anche l’accelerazione di gravità derivante dal Sole, per cui l’inserimento dei menzionati valori medi mi è sembrata la cosa più logica da fare.

Ma sappiamo che:

$$g_{media} = \frac{GM}{a^2}$$ \hspace{1cm} (6)

quindi la (5) diventa:

$$T = 2\pi \sqrt{\frac{a}{GM}}$$ \hspace{1cm} (7)

che diventa:

$$T = 2\pi \sqrt{\frac{a^3}{GM}}$$ \hspace{1cm} (8)

Elevando al quadrato si ha:

$$T^2 = \frac{4\pi^2 a^3}{GM}$$ \hspace{1cm} (9)

Dividendo entrambi i membri per a^3 abbiamo:

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$$ \hspace{1cm} (10)

Che è proprio la terza legge di Keplero.

Abbiamo quindi dimostrato che la terza legge di Keplero dipende dalla forza di gravità, assumendo che il sistema solare sia un oscillatore armonico, e che, quindi, con alta probabilità esiste una forza di gravità repulsiva in aggiunta a quella attrattiva, come lascerebbe supporre l’uguaglianza tra la legge regolante il periodo di rivoluzione dei pianeti attorno al Sole e quella del periodo dell’oscillatore armonico.
Dimostrazione che il sistema planetario è un oscillatore armonico

Sappiamo che la pulsazione di un oscillatore armonico (la sua velocità angolare) è:

\[\omega = \sqrt{\frac{g}{l}} \]

(11)

Ora, se il sistema solare è un oscillatore armonico, la (11) dovrebbe diventare:

\[\omega = \sqrt{\frac{g}{a}} \]

(12)

Dove \(a \) è il semiasse maggiore.

Si deve dimostrare, quindi, che la sopraesposta relazione è vera.

Sappiamo che la velocità angolare è:

\[\omega = \frac{2\pi}{T} \]

(13)

Ma nei pianeti il periodo \(T \) è:

\[T = 2\pi \sqrt{\frac{a^3}{GM}} \]

(14)

Quindi:

\[\omega = \frac{2\pi}{2\pi \sqrt{\frac{a^3}{GM}}} \]

(15)

da cui

\[\omega = \frac{1}{\sqrt{\frac{a^3}{GM}}} \implies \omega = \sqrt{\frac{GM}{a^3}} \]

(16)

Ma sappiamo che:

\[g = \frac{GM}{a^2} \implies GM = ga^2 \]

(17)

Per cui, sostituendo nella (16), si ha:

\[\omega = \sqrt{\frac{g a^2}{a^3}} \]

(18)

\[\omega = \sqrt{\frac{g}{a}} \quad \textbf{C. V. D.} \]

(19)

Dimostriamo ora che l’accelerazione nel moto planetario segue la legge oraria dell’oscillatore armonico di Galileo, ossia:
\[g = \omega^2 x \]
\((20) \)

Dove \(x \) è la posizione del corpo, ossia la sua proiezione sull’asse delle ascisse.

Supponendo che il sistema solare sia un pendolo oscillatore armonico con raggio uguale al semiasse maggiore \(a \), e assimilandone le ellissi orbitali a delle circonferenze, come fece Newton, allora nel moto planetario dovrebbe verificarsi, se tale assunzione è corretta, che:

\[g = \omega^2 a \]
\((21) \)

Passiamo ora alla dimostrazione.

Nella (19) abbiamo visto che la velocità angolare dei pianeti è pari alla pulsazione dell’oscillatore armonico:

\[\omega = \sqrt{\frac{g}{a}} \]

Elevando al quadrato si ha:

\[\omega^2 = \frac{g}{a} \]
\((22) \)

Quindi:

\[g = \omega^2 a \quad \text{C. V. D.} \]
\((23) \)

Per capire se la (23) si applica solo ad un punto dell’orbita o a tutti i punti di essa, nel quale ultimo caso essa assurgerebbe a legge oraria del moto dei pianeti, occorre verificarlo sperimentalmente.

Orbene, qui di seguito, tramite la predetta formula, si calcolerà prima l’accelerazione di gravità in perielio e poi quella in afelio, e si dimostrerà che essa consente di calcolare con precisione sia l’una che l’altra, il che atesterà la natura di legge oraria della (23), ossia di legge che regola il complessivo andamento dei pianeti in tutta l’orbita, non solo in un unico punto.

A tal fine si sceglierà l’orbita di Mercurio che è caratterizzata, a causa della sua elevata eccentricità, da un perielio ed un afelio molto diversi l’uno dall’altro, sia in termini di distanza dal Sole, e quindi di accelerazione di gravità, che in termini di differenza di velocità rispetto alla velocità orbitale media.
• *Perielio di Mercurio*

Calcoliamo quindi la accelerazione di gravità in perielio usando la (23) e vediamo se essa è uguale alla accelerazione di gravità calcolata con la sua formula specifica $g = \frac{GM}{(p)\times}^2$.

A tal fine dobbiamo calcolare la velocità angolare esistente in perielio, che non è quella media, perché la velocità orbitale del pianeta varia in continuazione, e nel perielio la velocità è massima.

Conseguentemente ho pensato che la cosa migliore da fare fosse calcolare il raggio del cerchio osculatore in perielio (che, come è noto, è il cerchio che meglio approssima la curvatura esistente in un determinato punto di una curva non circolare), da utilizzare poi per calcolare il valore di T nella relazione della velocità angolare:

$$\omega = \frac{2\pi}{T} \quad (24)$$

Dalla relazione basilare della velocità sappiamo che:

$$T = \frac{S}{V} \quad (25)$$

Ma sappiamo anche che, nel caso di moto circolare:

$$S = 2\pi r \quad (26)$$

Dove r deve essere, come abbiamo detto, il raggio del cerchio osculatore che, nel perielio, è:

$$r = a(1 - e^2)$$

Dove a è, come sappiamo, il semiasse maggiore, ed e l’eccentricità.

Sapendo che il semiasse maggiore dell’orbita di Mercurio è

$$a = 57.909.176.000 \text{ metri}$$

E che l’eccentricità di Mercurio è:

$$e = 0,20563069$$

Il raggio del cerchio osculatore nel perielio di Mercurio è:

$$r = 57.909.175.999 \text{ metri}$$

Sostituimmo ora nella (26) il valore di r testé trovato:

$$S = 363.854.083.793 \text{ metri}$$

Sappiamo, poi, che in perielio la velocità orbitale di Mercurio è:

$$V = 58.980 \text{ m/sec}$$

Sostituimmo ora nella (25) i valori di S e di V qui sopra trovati:
\[T = \frac{363.854.083.793}{58.980} = 6.169.109 \]

Sostituiamo adesso nella (24) il sopraindice valore di T:

\[\omega = \frac{2\pi}{6.169.109} = 0,000001018491 \] (27)

Sostituiamo ora nella (23) il valore di \(\omega \) appena ricavato, ridicoliamo al quadrato e moltiplichiamolo per il semiasse maggiore \(a \) e otterremo:

\[g = 0,06007 \text{ m/sec}^2 \] (28)

Calcoliamo adesso l’accelerazione di gravità dovuta all’attrazione che il Sole esercita su Mercurio nel perielio usando la nota formula:

\[g = \frac{GM}{(perielio)^2} \] (29)

Dove G è la costante di gravitazione universale \(6,67433 * 10^{-11} \)
M è la massa del Sole: \(1,9891 * 10^{30} \) kg
E il perielio di Mercurio è 46.001.272.000 metri
Sostituiamo nella (29) i valori di G, M e perielio sopra riportati:

\[g = 0,06273 \] (30)

Mettiamo adesso in rapporto i due valori di \(g \) ottenuti nella (30) e nella (28):

\[\frac{0,06273}{0,06007} = 1,04 \]

Come si nota i valori di \(g \) trovati con la formula dell’oscillatore armonico (23) e con la formula specifica dell’accelerazione di gravità (29) sono praticamente identici, essendovi tra essi un margine di errore dello 0,4%.

E’ molto probabile che la lieve discrepanza si giustifichi alla luce del fatto che il calcolo del raggio del cerchio osculatore è un criterio di approssimazione che, in quanto tale, può risultare meno preciso quando i numeri coinvolti sono molto grandi, come quelli astronomici.

- **Afelio di Mercurio**

A questo punto, utilizzando sempre la formula dell’oscillatore armonico ricavata nella (23), calcoliamo l’accelerazione di gravità in afelio e vediamo se essa è uguale alla accelerazione di gravità calcolata con la sua formula specifica \(g = \frac{GM}{(afelio)^2} \).

A tal fine procediamo nello stesso modo visto per il perielio.
Dobbiamo calcolare, quindi, la velocità angolare esistente in afelio, che non è quella media, perché la velocità orbitale del pianeta varia in continuazione, e in afelio la velocità è minima.

Conseguentemente calcoliamo il raggio del cerchio osculatore in afelio (che, si ripete, è il cerchio che meglio approssima la curvatura esistente in un determinato punto di una curva non circolare), da utilizzare poi per calcolare il valore di T nella relazione della velocità angolare:

$$\omega = \frac{2\pi}{T} \quad (31)$$

Dalla relazione basilare della velocità sappiamo che:

$$T = \frac{s}{v} \quad (32)$$

Ma sappiamo anche che, nel caso di moto circolare:

$$S = 2\pi r \quad (33)$$

Dove r deve essere, come abbiamo detto, il raggio del cerchio osculatore che, in afelio è uguale al periello, perché nei due punti la curvatura è identica, quindi il valore di detto raggio è quello calcolato in periello:

$$r = 57.909.175.999 \text{ metri}$$

Sostituiamo nella (33) il valore di r su trascritto:

$$S = 363.854.083.793 \text{ metri}$$

Sappiamo, poi, che in afelio la velocità orbitale di Mercurio è:

$$V = 38.860 \text{ m/sec}$$

Sostituiamo nella (32) i valori di S e di V qui sopra trovati:

$$T = \frac{363.854.083.793}{38.860} = 9.363.203$$

Sostituiamo adesso nella (31) il soprastante valore di T:

$$\omega = \frac{2\pi}{9.363.203} = 0,000000671 \quad (34)$$

Sostituiamo ora nella (23) il valore di ω appena ricavato, eleviamolo al quadrato e moltiplichiamolo per il semiasse maggiore a e otterremo:

$$g = 0,02607 \text{ m/sec}^2 \quad (35)$$

Calcoliamo adesso l’accelerazione di gravità dovuta all’attrazione che il Sole esercita su Mercurio in afelio usando la nota formula:
\[g = \frac{GM}{(afello)^2} \]

(36)

Dove \(G \) è la costante di gravitazione universale \(6,67433 \times 10^{-11} \)
M è la massa del Sole: \(1,9891 \times 10^{30} \) kg
E l’afelio di Mercurio è \(69.817.079.000 \) metri
Sostituiamo nella (36) i valori di \(G \), \(M \) e afelio sopra riportati:

\[g = 0,02723 \]
(37)

Mettiamo adesso in rapporto i due valori di \(g \) ottenuti nella (37) e nella (35):

\[\frac{0,02723}{0,02607} = 1,04 \]

Come si nota i valori di \(g \) trovati con la formula dell’oscillatore armonico (23) e con la formula specifica dell’accelerazione di gravità (36) sono praticamente identici, essendovi tra essi un margine di errore dello 0,4%.

Anche qui è molto probabile che la lieve discrepanza si giustifichi alla luce del fatto che il calcolo del raggio del cerchio osculatore è un criterio di approssimazione che, in quanto tale, può risultare meno preciso quando i numeri coinvolti sono molto grandi, come quelli astronomici.

Si precisa che la applicazione della (23) ha consentito di ottenere identici risultati anche per gli altri pianeti, che qui però non è il caso di riportare per esigenze di snellezza espositiva.

Considerazione conclusiva

Avendo noi calcolato con precisione mediante la (23) l’accelerazione di gravità in due punti dell’orbita di Mercurio dove tale accelerazione assume valori molto diversi tra loro, per la notevole diversità delle due distanze dal Sole, possiamo dedurre che la (23) è la formula che esprime l’accelerazione non di un singolo punto dell’orbita dei pianeti, ma di tutti i punti di tale orbita, sia pur con la precisazione di dover volta per volta calcolare la velocità angolare esistente nello specifico punto col sistema del cerchio osculatore, perché nell’oscillatore armonico planetario la velocità angolare non è costante, variando punto per punto sia \(g \) che la curvatura dell’orbita.

Va precisato che è stato possibile usare nella (23) il semiasse maggiore \(a \) per calcolare \(g \) sia in perielio che in afelio, perché, come è noto, in questi due punti l’ampiezza dell’oscillazione armonica è massima, per cui tale ampiezza coincide col
raggio che, nel nostro caso, a sua volta coincide col semiasse maggiore a, avendo noi approssimato le orbite dei pianeti a delle circonferenze.

Ne consegue che, quando si vuole calcolare mediante la (23) l’accelerazione di gravità in un punto dell’orbita diverso dal perielio e dall’afelio, occorrerà non solo calcolare il raggio del cerchio osculatore in quel punto, ma anche la posizione x del corpo, ossia la sua proiezione sul semiasse delle ascisse.

Ne discende che nella (23) possiamo sostituire a con la posizione x e scrivere:

$$g = \omega^2 x$$

Che è la legge oraria del pendolo oscillatore armonico vista nella (20).

Come volevasi dimostrare il sistema solare concreta un caso di oscillatore armonico, ovviamente molto più simile, se non proprio uguale, al pendolo, anziché alla molla.

La conseguenza più importante di ciò è la dimostrazione dell’esistenza, a partire da una certa distanza dal Sole (e da tutti i corpi massivi), di una forza gravitazionale repulsiva, generata dal Sole medesimo al pari di quella attrattiva, che faccia le veci della forza di gravità terrestre esistente nel pendolo galileiano, spingendo quindi i pianeti lontano dal Sole sia pur con direzione non opposta a quella attrattiva, garantendo il moto perpetuo dei pianeti attorno al Sole, in base allo stesso principio del pendolo.

Ciò vale a maggior ragione considerando che gli oscillatori armonici sono tutti caratterizzati dal fatto che il corpo moventesi di moto non uniformemente accelerato e decelerato è continuamente sottoposto a due forze contrastanti che, sia pur in modi diversi, garantiscono il movimento potenzialmente perpetuo del grave appeso al pendolo o alla molla.

Diversamente dal moto armonico, il moto circolare uniforme, che mai si verifica in meccanica celeste, è caratterizzato dalla presenza di un’unica forza centrale.

- **L’espansione accelerata dell’universo spiegata alla luce dell’effetto esclusivamente repulsivo della forza di gravità**

Ma a questo punto si chiede: cosa accade se si va oltre la fascia spaziale ove vige il contrasto tra forza attrattiva e repulsiva?
E’ davvero inverosimile, difatti, ritenere che l’equilibrio dinamico tra i corpi, dovuto allo scontro tra forze contrapposte (una attrattiva e l’altra repulsiva), e che consente il perenne movimento dell’uno attorno all’altro secondo la legge del pendolo, possa valere sempre, indipendentemente dalla distanza tra i corpi stessi.

Pertanto ho ipotizzato al riguardo che, come al di sotto di una certa di distanza dal corpo attrattore la forza repulsiva cessi di esistere, lasciando spazio alla sola forza attrattiva, analogamente può ritenersi che, quando si supera una certa distanza dall’attrattore, la forza attrattiva cessi di esistere, lasciando spazio alla sola forza repulsiva, e che, in tal caso, sia anche coerente ritenere che, come nella fascia attrattiva il corpo in caduta libera si muove di moto accelerato uniforme, analogamente il corpo si muova di moto accelerato uniforme anche quando si trova nella fascia di esclusiva repulsione, spinto unicamente dalla forza repellente.

Questa mia deduzione parrebbe essere confermata dall’espansione accelerata dell’universo, che sta ricevendo sempre più conferme sperimentali e conseguenti adesioni da parte della comunità scientifica, benché non ci sia univocità di vedute sulle relative cause.

In particolare si ritiene, sulla base di osservazioni astronomiche molto accurate, che le galassie si respingano tra loro, allontanandosi le une dalle altre con velocità sempre crescente.

In quest’ottica appare evidente come il moto repulsivo accelerato, da me ipotizzato come osservabile nella fascia di spazio più lontana dal corpo, sia perfettamente speculare al moto contrattile accelerato a cui si assiste nella fascia più prossima al corpo medesimo.
Capitolo III
La natura legamentosa della forza di gravità

Si è visto che l’effetto espansivo accelerato dell’universo può essere spiegato alla luce dell’effetto esclusivamente repulsivo della forza gravitazionale, che si manifesta oltre la zona attrattivo-repulsiva.

Ma come è possibile ritenere che la repulsione operi all’infinito?

Se accettiamo l’idea della forza repulsiva, giungiamo alla inevitabile conclusione che il corpo dovrebbe progressivamente aumentare la propria velocità fino a raggiungere una velocità infinita.

Ora, tralasciando per adesso se sia possibile per un corpo accelerare all’infinito, la domanda principale è come sia possibile che l’effetto repulsivo operi all’infinito.

Logica vorrebbe, ad una prima e superficiale analisi, che, prima o poi, la distanza diventi talmente elevata che l’effetto repulsivo si esaurisca, e quindi il corpo continui a muoversi di moto rettilineo uniforme.

Come è possibile, dunque, che l’effetto repulsivo operi all’infinito?

L’unica spiegazione possibile è quella di ritenere che la forza di gravità non si trasmetta come un’informazione, come un’onda, come un fascio d’onde, o altri fenomeni simili, ma operi mediante un legamento invisibile che connette l’un corpo all’altro, tale da farli diventare un tutt’uno.

La natura legamentosa della forza di gravità è l’unica che possa spiegare, a mio avviso, il fenomeno dell’espansione accelerata e potenzialmente infinita dell’universo.

Il legamento gravitazionale è anche l’unica spiegazione possibile del fatto che la forza di gravità operi in via immediata, cioè sia più veloce della luce.

Se noi aumentassimo la massa del Sole, l’attrazione (o meglio l’attrazione-repulsione) che esso esercita sui pianeti subirebbe un’intensificazione immediata, quindi maggiore della velocità della luce, in disaccordo col principio di località sancito dalla teoria della relatività.

Questo può avere una sola spiegazione: la natura legamentosa della forza di gravità, che consente di eliminare i tempi di trasmissione dell’informazione.

In altri termini, ipotizzando che esista un invisibile legamento ideale che
unisca due corpi, come una barra allungabile e contraibile unisce due sfere di metallo, e che l’allungamento o la contrazione siano immediati (appunto perché trattasi di legamento ideale), è logica conseguenza che, se la barra si allunga, l’allontanamento del corpo respinto sia immediato, ed altrettanto immediato sarà l’avvicinamento del corpo quando il legamento si contrae.

Per questo motivo è inesatto dire che la forza di gravità si trasmetta tra i corpi ad una certa velocità, perché si può parlare di velocità di trasmissione dell’informazione solo quando i corpi tra i quali viaggia l’informazione sono due, ma il legamento gravitazionale fa in modo di unire i due corpi in uno solo, per cui ogni accostamento al concetto di velocità è improprio.

In tal modo si superano anche le critiche di quanti, compreso Einstein, ritengono che la forza di gravità non possa esistere quale forza istantaneamente operante, perché, se esistesse, sarebbe più veloce della luce, il che è impossibile.

Accettare che la gravità abbia natura legamentosa rende ogni accostamento al concetto di velocità fuori luogo, stante l’astratta unicità dei corpi coinvolti nel fenomeno gravitazionale, uniti per il tramite del legamento gravitazionale.

- **Reticolato spazio-temporale o reticolato di legamenti gravitazionali?**

 I legamenti gravitazionali sono potenzialmente infiniti, sia in numero che in estensione.

 Ogni corpo emana tanti legamenti quanti sono i corpi che compongono l’intero universo.

 Tramite detti legamenti, ogni corpo dell’universo è connesso a tutti gli altri e gli altri connessi tra loro mediante un intricatissimo reticolato di legamenti gravitazionali, indipendentemente dalla rispettiva massa e dalla distanza che li separa.

 Nessun corpo è sconnesso da alcuno.

 Lo spazio è dunque pervaso da una sorta di reticolato invisibile ed imponderabile, ma questo non si sostanzia nella cosiddetta quarta dimensione ipotizzata da Einstein (lo spazio-tempo), concretandosi invece in un intreccio di legami ideali che non si incurvano in prossimità dei corpi, ma restano assolutamente rettilinei, unendo gli uni agli altri.
Le onde gravitazionali e la loro compatibilità con la natura legamentosa della forza di gravità

Di recente è stato scoperto che la fusione di due buchi neri avvenuta più di un miliardo di anni fa ha generato delle onde gravitazionali giunte fino a noi dopo appunto un miliardo di anni.

Questo confermerebbe, a dire dei relativisti, l’esistenza della quarta dimensione ipotizzata da Einstein, cioè del reticolato spazio-tempo grazie al quale si trasmetterebbe l’informazione della scomparsa dei buchi neri fusisi in uno solo.

Più precisamente si afferma che la rilevazione delle onde gravitazionali da parte di un sofisticatissimo strumento criogenico costituirebbe la prova indiscutibile dell’esistenza della dimensione spazio-temporale, poiché solo se si ammette l’esistenza un reticolato spazio-temporale si può arrivare a spiegare come sia possibile che le onde gravitazionali si propaghino nello spazio in maniera non immediata, cosa che invece non potrebbe accadere, si sostiene, se si concepisse la gravità come una misteriosa forza “istantanea” che agisce a distanza tra i corpi (teoria di Newton), la quale, se esistesse, dovrebbe sparire immediatamente con la scomparsa dei buchi neri partecipanti alla fusione, e non potrebbe propagarsi nello spazio a distanza di tempo, a differenza di quanto invece è stato rilevato dallo strumento criogenico.

Questa affermazione sarebbe pienamente condivisibile se si ritenesse, in accordo con la teoria newtoniana, che l’unica possibile forma di estrinsecazione della forza gravitazionale sia quella di un’entità attrattiva istantanea che opera a distanza tra i corpi, ma cade se si aderisce alla teoria, da me proposta, secondo la quale la forza di gravità “lega” i corpi unendoli in un tutt’uno, eliminando così la distanza tra essi.

In altri termini, concependo la forza di gravità come un legamento ideale, si arriva alla logica conseguenza che, quando due buchi neri si fondono, i legamenti gravitazionali ad essi facenti capo, potenzialmente infiniti in quantità e lunghezza, subiscano un cambiamento di titolarità, trasferendosi dai due buchi originari a quello derivante dalla fusione.

Poiché in natura nulla si distrugge e nulla si crea, ma tutto si trasforma o si cede, i legamenti gravitazionali di cui è portatore ogni singolo buco nero partecipante alla fusione si trasferisce, a mio avviso, al buco nero risultante dalla fusione, e molto probabilmente è proprio questo trasferimento di “titolarità” del nodo legamentoso
gravitazionale che genera le onde gravitazionali, che questa volta operano non in via immediata, ma in via mediata, ovvero sia quale mezzo attraverso cui si propaga l’informazione del cambio di titolarità del nodo di legamenti.

In quest’ottica è più esatto dire che, con la fusione, i buchi neri non spariscano, ma confluiscono in quello maggiore, con la conseguenza, di non poco rilievo, che i legamenti gravitazionali di cui essi erano portatori, analogamente, non scompaiono, ma confluiscono nel buco nero risultante dalla fusione.

Il fenomeno al vaglio può essere assimilato a quello di una fune contesa tra due uomini che tirano con forza dai due lati opposti: se uno dei due uomini dà improvvisamente una scossa alla corda, l’altro percepirà l’onda generata dallo scuotimento non immediatamente, ma dopo qualche secondo, a differenza dell’ipotesi in cui uno dei due uomini intensifichi improvvisamente la forza: in quest’ultimo caso, ipotizzando che la fune sia fatta di materiale perfettamente inestensibile, l’aumento di forza verrebbe percepito dall’altro uomo immediatamente, perché la corda, essendo tenuta in uno stato di tensione dalle forze contrapposte esercitate in modo continuativo dai due uomini, funge da elemento unificante dei due corpi umani: è come se la corda fondesse i due corpi in uno solo.

Ecco, dunque, il motivo per cui le onde gravitazionali generate dalla fusione dei due buchi neri avvenuta più di un miliardo di anni fa sono state percepite dallo strumento criogenico dopo così tanto tempo: non perché esiste il reticolato spazio-tempo tramite il quale esse si propagano, ma perché esiste il reticolato di legamenti gravitazionali che funge da strumento di propagazione di dette onde.

In altri termini, in occasione della fusione di due buchi neri si verifica un cambiamento di titolarità del nodo di legamenti facenti capo ai singoli buchi neri partecipanti alla fusione, e tale cambiamento genera una sorta di scuotimento dei legamenti stessi che, in quanto tale, non si trasmette se non in via differita ai corpi (potenzialmente infiniti) che si trovano dal lato opposto dei legamenti medesimi.

Se si accetta, dunque, l’idea del legamento gravitazionale, è possibile spiegare perfettamente non solo come sia possibile che la forza di gravità operi in via istantanea anche a distanze infinite, quale forza che “lega” i corpi tra loro, ma anche come sia possibile che essa operi in via mediata, quale trasmettitore di un’informazione (cambio di titolarità del legamento).
E’ ovvio che il legamento gravitazionale non è qualcosa di cui si può provare l’esistenza, non è fatto cioè di particelle di materia, ed ogni tentativo di dimostrarne l’esistenza darebbe esito negativo.

E’ probabile che sia fatto di “gravitoni”, come li definisce la meccanica quantistica, ma io diffido dell’esistenza di particelle invisibili.

Per la verità i fisici quantistici ritengono che tali particelle siano invisibili perché coperte dal principio di indeterminazione di Heisenberg, in virtù del quale non è possibile osservare particelle infinitamente piccole (come gli elettroni) perché il fascio di luce che occorrerebbe per osservarle le farebbe continuamente cambiare posizione.

Tuttavia io ritengo che la forza di gravità non si estrinsechi mediante uno scambio di particelle invisibili da un corpo all’altro, ma tramite la contrazione o dilatazione di un legamento ideale invisibile, per cui, al limite, se queste particelle invisibili esistono, si dilaterebbero e si contrarrebbero, ma di certo non si muoverebbero, il che rende inapplicabile il principio di indeterminazione di Heisenberg, che si basa proprio sul movimento imprevedibile delle particelle infinitesimali.

Non è possibile dare una spiegazione logica, scientifica, razionale al meccanismo che sta alla base del fenomeno dell’attrazione-repulsione gravitazionale, e chi ha tentato di farlo, ripudiando l’idea della forza misteriosa, è dovuto necessariamente giungere a ipotizzare concetti come la curvatura dello spazio vuoto, la contrattilità e dilatabilità del tempo che, a dire il vero, non sono meno alchemici e metafisici della forza misteriosa.

Capire da cosa derivi questo misterioso ed invisibile legamento non è possibile: ci basti sapere che esso deriva dal corpo, che ne è l’unico artefice, il che è già una grande conquista.
Capitolo IV
Forza gravitazionale attrattiva e repulsiva, forza centripeta e forza centrifuga: differenze

La forza centripeta, giova ricordarlo, sussiste ogni qual volta un corpo compie una traiettoria curvilinea a causa di una forza centrale.

Un’auto che gira attorno ad una rotonda, i panni che girano nella lavatrice, una pallina legata ad una corda fatta girare da un bambino sono tutte ipotesi in cui il corpo ruotante è soggetto a forza centripeta.

Per la verità, quando usiamo la lavatrice, siamo soliti dire “Hai attivato la centrifuga?” per assicurarcì che al termine del programma i panni ricevano una prima asciugatura a causa dell’elevata velocità di rotazione finale del cestello della lavatrice, ma sarebbe più corretto dire “Hai attivato la centripeta?” perché, appunto, la forza reale che agisce sui panni è centripeta, non centrifuga, ma la nostra mente percepisce in modo più immediato l’esistenza di una forza centrifuga sui panni, anziché centripeta, perché immaginiamo che l’espulsione dell’acqua dai panni consegua proprio alla forza centrifuga, non a quella centripeta. E invece non è così.

La forza a cui è sottoposti è centripeta, non centrifuga, perché, se ci fosse un foro nel cestello grosso a sufficienza, i panni che ne uscirebbero si dirigerebbero lungo una traiettoria tangenziale al cestello, non radiale.

Questo avviene perché il cestello si oppone al movimento rettilineo dei panni, impedendogli di proseguire dritto, in direzione tangenziale alla traiettoria circolare.

La curva infatti non è altro che un insieme di segmenti infinitamente piccoli che variano direzione continuamente e, quando i panni girano attaccati al cestello della lavatrice senza cadere, accade che essi, a causa del cestello, non riescono ad andar dritto. Ma l’acqua riesce ad infiltrarsi nei buchetti appositamente realizzati nel cestello, e prosegue dritto la sua corsa, in direzione tangenziale al cestello.

La forza centrifuga è solo una forza fittizia che percepiamo in automobile quando eseguiamo una curva, che ci fa sembrare che ci sia qualcosa che ci spinga
verso destra se curviamo a sinistra, o verso sinistra se curviamo a destra.

Tuttavia non c’è nulla che ci spinge nel verso opposto a quello della curva, ma è solo la nostra tendenza a conservare il moto rettilineo che ci fa percepire la presenza di questa forza fittizia centrifuga; l’unica forza reale a cui siamo sottoposti è centripeta, cioè diretta verso il centro del cerchio che stiamo descrivendo mentre eseguiamo la curva, e che ci impedisce di andar dritto.

Ebbene, come si è anticipato innanzi, l’intensità della forza centripeta si misura con la seguente formula:

\[F_c = m \frac{v_t^2}{R} \]

Dove \(V_t \) è la velocità tangenziale del corpo, cioè la velocità a cui si muove l’auto rispetto alla strada, con direzione tangente alla traiettoria; \(R \) è il raggio del cerchio descritto dall’auto mentre curva; ed \(m \) è la massa dell’auto.

E l’accelerazione centripeta?

Dal secondo principio della dinamica sappiamo che:

\[F_c = m a \]

Quindi:

\[a_c = \frac{v_t^2}{R} \]

Ma cos’è l’accelerazione centripeta, o meglio cosa descrive?

In generale sappiamo che l’accelerazione è una variazione di velocità in un determinato intervallo di tempo.

L’accelerazione centripeta, tuttavia, non esprime la variazione di velocità del corpo, ossia dell’intensità del vettore velocità, ma esprime la velocità con cui cambia la direzione di tale vettore.

Sappiamo che la velocità è una grandezza vettoriale, e che i componenti di un vettore sono modulo (intensità), direzione e verso.

Bene, l’accelerazione centripeta determina il cambiamento solo della direzione del vettore velocità, senza alterare il modulo (ossia l’intensità) della velocità, né il verso.

E’ abbastanza intuitivo capire, indipendentemente dalla formula dell’accelerazione centripeta vista sopra, che, riducendo il raggio della
circonferenza descritta da un corpo in movimento circolare, e mantenendo costante
l’intensità della velocità, l’accelerazione centripeta aumenta, perché aumenta la
rapidità con cui cambia la direzione della velocità tangenziale del corpo.

Diversamente, aumentando il raggio, la forza centripeta diminuisce, fino ad
azzerarsi quasi del tutto qualora la velocità sia molto piccola, come nel caso
dell’ossillatore armonico con filo molto lungo, nel qual caso la ridottissima
ampiezza dell’ossillazione, unitamente alla lunghezza del filo, determina l’estrema
lentezza del movimento del pendolo.

Nell’ossillatore armonico con filo molto lungo, pertanto, la forza centripeta
è assente o, se c’è, è talmente piccola da diventare trascurabile.

Ma perché tutto questo sproloquio sulla forza centripeta nel pendolo?

Perché anche nel pendolo cosmico, cioè nel sistema solare, la forza
centripeta non va ad incidere sulla intensità della forza gravitazionale attrattiva
esercitata dal Sole sui pianeti, per i motivi che dirò tra breve, sicché resta anche qui
valida l’uguaglianza, come nell’ossillatore armonico galileiano, tra forza centrale
(attrattiva) e forza che spinge verso l’esterno (repulsiva), che ho supposto esistere
nel sistema solare.

A questo punto occorre ribadire che più sopra ho ipotizzato che il sistema
solare costituisse un pendolo oscillatore armonico, dove il pianeta sarebbe il grave
appeso al filo; la forza di gravità che il Sole esercita sui pianeti assumerebbe la
stessa funzione che la tensione del filo svolge nel pendolo galileiano; e la forza
repulsiva, che ho immaginato essere prodotta dal Sole a partire da una certa
distanza da esso in aggiunta a quella attrattiva, rivestirebbe la stessa funzione della
forza di gravità terrestre a cui è sottoposto il grave del pendolo galileiano, che
appunto spinge il grave in una direzione opposta al punto fisso.

Le uniche differenze col pendolo galileiano sarebbero, in primo luogo, il
fatto che, in quello cosmico, la forza centrale è agente, con conseguente ellitticità
dell’orbita, a differenza dal pendolo classico, dove la forza centrale è una reazione
vincolare, con conseguente circolarità della traiettoria; una seconda differenza è
che nel pendolo cosmico la forza di gravità esterna cambia continuamente
direzione seguendo sempre il verso del moto del pianeta, e tale cambiamento di
direzione avviene con una velocità pari proprio alla accelerazione di gravità
repulsiva (a sua volta pari a quella attrattiva), cioè alla rapidità iniziale con cui il pianeta si allontanerebbe dal Sole se fosse fermo e se la forza repulsiva fosse l’unica forza operante, il che non accade nel pendolo galileiano, dove la forza di gravità agente sul grave punta sempre verso il centro della Terra, con la conseguenza che quest’ultimo oscilla da un lato all’altro, mentre quello cosmico compie un giro completo attorno al centro.

Una volta fatta questa doverosa premessa su quello che per me è il sistema solare, ossia un pendolo oscillatore armonico con filo molto lungo, con forza centrale attrattiva, e con forza gravitazionale esterna avente direzione mutevole e intensità sempre pari a quest’ultima, diventa più agevole comprendere il motivo per cui nel pendolo cosmico la forza centripeta non influisce, analogamente all’oscillatore armonico galileiano con filo molto lungo, sull’intensità della forza gravitazionale attrattiva.

Nel pendolo cosmico la forza centrale, si ripete, è attrattiva, e si misura con la seguente celeberrima formula:

\[F = G \frac{M \cdot m}{R^2} \]

(41)

dove G è un valore costante (detta costante gravitazionale), M è la massa del Sole, m è la massa del pianeta, ed R è la distanza pianeta-Sole.

La forza gravitazionale centrale, in quanto attrattiva, implica, come effetto indiretto, anche l’impedimento all’allontanamento.

In altri termini, il Sole attrae i pianeti verso di esso ma, nel far questo, ne impedisce anche l’allontanamento da esso: in questo senso la forza gravitazionale è “anche” un vincolo, ma non è solo tale, poiché essa contiene un requisito supplementare rispetto alla reazione vincolare pura e semplice, ovverosia l’attitudine di far avvicinare i corpi tra loro, concretantesi in quel potere attrattivo che manca al perno nell’esempio della pallina lanciata sul tavolo che si vede a pagina seguente.
Se si immagina che la mano sia il perno, la pallina non può certo dirsi attratta dalla mano, tant’è vero che, se fermiamo la pallina, essa resta dov’è, non si avvicina certo alla mano.

Tralasciando la forza percepita dalla mano, ciò che qui rileva è che la mano, tramite il filo, esercita solo una reazione vincolare che impedisce l’allontanamento in linea retta della pallina dalla mano stessa, che a sua volta genera accelerazione centripeta, ossia il cambiamento della direzione della velocità della pallina, ma non certo l’avvicinamento della pallina alla mano, che conserverà una distanza costante da essa, descrivendo una traiettoria circolare.

Detto questo si comprende perché l’accelerazione centripeta che la forza gravitazionale attrattiva produce in via indiretta sul movimento dei pianeti, generalmente non si somma all’accelerazione gravitazionale medesima, eccetto, come vedremo, nel perielio.

Se si conviene sul fatto che la forza centripeta impedisce l’allontanamento in linea retta dal centro, e che l’accelerazione centripeta da essa scaturente, quando la forza centrale è attrattiva, è un effetto indiretto di quest’ultima forza (perché chi attrae un corpo ne impedisce anche l’allontanamento), allora è ovvio che l’accelerazione centripeta non può cumularsi all’effetto diretto della forza attrattiva, ossia all’accelerazione di gravità attrattiva, trattandosi di effetti distinti di un’unica forza: la differenza tra i due effetti si sostanzia nel fatto che la accelerazione di gravità attrattiva è diretta verso il Sole, mentre quella centripeta è diretta verso il centro di curvatura, vale a dire il centro del cerchio osculatore in quel punto, come si vede nel disegno sottostante (nel quale si è omesso di
rappresentare la forza repulsiva per rendere più chiaro ciò che accade internamente all’orbita), dove a_n è l’accelerazione centripeta, ortogonale alla direzione del moto.

A conferma del fatto che i pianeti sono soggetti all’effetto combinato attrattivo-centripeto, depone la circostanza che essi non conservano sempre la stessa distanza dal Sole, come dovrebbero fare se la forza di gravità si comportasse come una fune (che origina solo accelerazione centripeta), ma, mentre girano, si avvicinano e si allontanano rispetto all’astro (a seconda se, rispettivamente, si stanno dirigendo verso il perielio o verso l’afelio), e tale duplice movimento contemporaneo (di rivoluzione e di avvicinamento/allontanamento) è causato, appunto, dall’effetto combinato di accelerazione di gravità attrattiva e centripeta, da un lato, e di accelerazione di gravità repulsiva e centrifuga, dall’altro.

Diversamente dalla accelerazione centripeta, l’accelerazione centrifuga ha direzione radiale – analogamente al vettore che nel disegno a pag. 114 rappresenta
la componente \(F_{ry} \) della forza repulsiva – cioè giace sulla retta che unisce il pianeta col Sole (anche se è improprio parlare di raggio, essendo l’orbita un’ellisse, non una circonferenza, ma si è usato questo termine solo per praticità).

Se, infatti, ammettiamo che esista la forza di gravità repulsiva, e che questa cambi ogni istante la propria direzione seguendo proprio la traiettoria del pianeta, abbiamo come conseguenza l’insorgere della accelerazione centrifuga, questa volta reale, non fittizia, perché esiste una vera e propria forza (la gravità repulsiva), derivante dal Sole che, spingendo il pianeta verso l’esterno, si oppone alla forza attrattiva, e che cambia direzione di continuo, con la stessa accelerazione con cui il pianeta è respinto dal Sole medesimo.

Nel pendolo cosmicco, quindi, la traiettoria del pianeta varia non solo in conseguenza della accelerazione centripeta (che impedisce l’allontanamento in linea retta dal Sole), ma anche in conseguenza della accelerazione centrifuga (che impedisce l’avvicinamento in linea retta al Sole), le quali danno luogo al medesimo effetto, ossia alla variazione della direzione della traiettoria del pianeta in un determinato intervallo di tempo.

La direzione della forza repulsiva varia con la stessa accelerazione con cui il Sole respinge il pianeta, perché il vettore velocità tangenziale ed il vettore forza repulsiva hanno origine nello stesso punto, ossia il pianeta.

In sostanza, per creare un’immagine più simile al pendolo che conosciamo, è come se la Terra non restasse ferma sotto il pendolo ma, nel mentre lo attrae, cambiasse posizione muovendosi assieme al grave, nello stesso suo verso e con la stessa accelerazione con cui lo attrae.

Abbiamo tutti gli elementi, dunque, per definire l’accelerazione centrifuga \textit{reale}: essa è l’effetto, indirettamente causato dalla forza repulsiva centrale, o da quella attrattiva esterna, che, opponendosi alla accelerazione attrattiva centrale, impedisce l’avvicinamento in linea retta del corpo al centro, facendolo curvare attorno ad esso (chi infatti respinge un corpo lontano dal centro o lo attrae dalla parte opposta al centro, indirettamente ne impedisce l’avvicinamento al centro stesso).

L’accelerazione centrifuga, dunque, va intesa in un senso esattamente specular rispetto a quella centripeta – che abbiamo visto potersi definire come
l’effetto indirettamente scaturente dalla forza di gravità attrattiva, che impedisce l’allontanamento del pianeta dal Sole – pur generando lo stesso effetto, vale a dire il cambiamento continuo della direzione della velocità tangenziale del corpo, facendolo curvare attorno al centro.

Il primo presupposto perché sorga l’accelerazione centrifuga reale è, in primo luogo, che il corpo sia soggetto ad una forza attrattiva verso il centro, in mancanza del quale, ovviamente, non può proprio configurarsi un impedimento all’avvicinamento ed, in secondo luogo, che sia soggetto contemporaneamente ad una forza repulsiva centrale o, in alternativa, ad una attrattiva esterna, non avente direzione radiale, che in tal modo si opponga alla forza attrattiva senza annullarsi.

La mancanza del primo presupposto è la ragione per la quale nel pendolo galileiano, diversamente da quello cosmico, la accelerazione centrifuga è assente, essendo il grave spinto non verso il centro, ma lontano da esso (per effetto della gravità terrestre): mancando l’attrazione verso il centro, non può che mancare anche l’impedimento all’avvicinamento al centro, che è l’effetto tipico della forza centrifuga, ed esisterà solo l’accelerazione centripeta, il cui effetto è quello di evitare l’allontanamento dal centro facendo curvare il grave attorno al punto fisso.

Quello che è importante precisare, per sgombrare il campo da possibili equivoci, è che non bisogna commettere l’errore di pensare che, quando il pianeta è in fase di avvicinamento al Sole, prevalga la forza attrattiva, mentre, quando è in fase di allontanamento, prevalga quella repulsiva.

Tra le due forze, infatti, c’è sempre assoluto equilibrio: ciò che cambia è solo l’orientamento della forza \(F_{rx} \), la quale punta più verso l’interno dell’orbita quando il pianeta è in fase di avvicinamento, e più verso l’esterno quando è in fase di allontanamento.

Questo è importante per capire che l’accelerazione centripeta esiste sempre, anche quando il pianeta è in fase di allontanamento, analogamente a quella centrifuga, che esiste anche quando esso è in fase di avvicinamento.

Ma l’accelerazione centripeta e l’accelerazione di gravità attrattiva sono disallineate in tutti i punti dell’orbita, eccetto che nel perielio: qui le due accelerazioni sono allineate, come pure sono allineate, dal lato esterno dell’orbita, l’accelerazione centrifuga e l’accelerazione di gravità repulsiva.
Oltre ad essere allineate le predette 4 accelerazioni sono anche uguali in modulo, perché le accelerazioni di gravità, sia attrattiva che repulsiva, sono ortogonali al moto, per cui l’accelerazione di gravità attrattiva diventa uguale all’accelerazione centripeta, e l’accelerazione di gravità repulsiva diventa uguale all’accelerazione centrifuga, sicché possiamo scrivere la seguente relazione, valevole si ripete solo per il perielio:

\[a_{ga} = a_{cp} = a_{gr} = a_{cf} \]

Le accelerazioni sono state rappresentate senza il soprastante simbolo del vettore, perché, essendo tutte allineate, è possibile operare algebricamente sommando o sottraendo i relativi moduli.

Capitolo V

Precessione del perielio, raggio del buco nero, raggio del nucleo atomico e velocità orbitale delle stelle

Il riconoscimento nel perielio dell’esistenza di quattro accelerazioni uguali operanti sui pianeti e cumulabili algebricamente, avendo uguale direzione e verso (la centripeta cumulabile con la gravità attrattiva, e la centrifuga con la gravità repulsiva), si riverbera, come vedremo, sul fenomeno della precessione del perielio orbitale, data la particolarità di tale punto.

Come si è anticipato poc’anzi, nel perielio l’accelerazione centripeta si cumula con quella attrattiva perché quest’ultima è ortogonale al moto, per cui non si scompone in componente tangenziale e componente normale al moto, ma entrambe le componenti hanno direzione rivolta verso il Sole; analogamente, l’accelerazione centrifuga si cumula con quella repulsiva, perché quest’ultima non si scompone in componente radiale e componente tangenziale, ma entrambe le componenti hanno eguale direzione: radiale (ossia entrambe giacciono sul prolungamento dell’asse Sole-pianeta).

A questo punto, ponendoci in netta rottura rispetto alla teoria newtoniana, dove la gravità è concepita nulla più che una forza centripeta, generante quindi solo accelerazione centripeta, non anche accelerazione di gravità
attrattiva, va chiarito, se non è stato fatto a sufficienza finora, che in questa sede si è operata una netta scissione concettuale tra le due accelerazioni (di gravità attrattiva e centripeta), avendo esse due effetti diversi, come si è ampiamente detto sopra, e le ragioni di tale scissione sono identiche a quelle poste a base della distinzione tra accelerazione di gravità repulsiva e accelerazione centrifuga: solo grazie a tale separazione concettuale tra le due accelerazioni è stato possibile cumularle nel perielio.

La cosa bizzarra, però, è che, nel perielio del pendolo cosmico, non solo l’accelerazione centripeta si cumula all’accelerazione di gravità attrattiva, da un lato, e la accelerazione centrifuga si cumula a quella repulsiva, dall’altro, come si è detto sopra, ma accade anche che le due accelerazioni gravitazionali opposte, così potenziate in virtù dell’incremento dovuto alle altre due accelerazioni (centripeta e centrifuga), si cumulino tra loro agli effetti della precessione del perielio orbitale.

Infatti, come si dimotrerà tra breve, la precessione del perielio dei pianeti dipende dalla somma delle quattro menzionate accelerazioni (gravità attrattiva, gravità repulsiva, centripeta e centrifuga).

Vediamo, dunque, se è vera l’assunzione da cui muove la teoria qui proposta, secondo la quale, nel perielio, e soltanto in esso, avvenga il cumulo algebrico delle quattro accelerazioni (centripeta, centrifuga, gravità attrattiva e gravità repulsiva) e se è vero che tale cumulo valga esclusivamente agli effetti del moto di precessione del perielio.

A tal proposito giova ricordare che, avendo io dimostrato più sopra che ogni punto dell’orbita è caratterizzato dalla legge oraria del pendolo oscillatore armonico $g = \omega^2 x$ (dove ω è la velocità angolare dello specifico punto, da calcolarsi nel modo illustrato in precedenza), ho supposto che la citata legge oraria, solo agli effetti del moto di precessione del perielio, fosse pari a:

$$4g_{(perielio)} = \omega^2 x$$

(43)

dove:
- $g_{(perielio)}$ è l’accelerazione di gravità dovuta all’attrazione solare nel perielio;
- $\dot{\omega} = \omega$ = la velocità angolare di precessione;
• x è la posizione del pianeta, ossia la sua proiezione sull’asse delle ascisse dell’oscillatore armonico, che nel perielio coincide con l’oscillazione massima, ossia col raggio, quindi col semiasse maggiore a (avendo noi approssimato le orbite planetarie a delle circonferenze di raggio uguale a detto semiasse).

Il 4 davanti a $g_{(perielio)}$ ovviamente compare perché abbiamo supposto che, nel perielio, le quattro accelerazioni (di gravità attrattiva, di gravità repulsiva, centripeta, e centrifuga) siano uguali e si sommino algebricamente tra loro.

Dalla (43) possiamo ricavare la velocità angolare di precessione:

$$4g_{(perielio)} = \omega^2 a \rightarrow \omega = \sqrt{ \frac{4g_{(perielio)}}{a} }$$

$$\dot{\omega} = 2 \sqrt{ \frac{g_{(perielio)}}{a} }$$ (44)

○ Calcolo della velocità di precessione del perielio di Mercurio

Calcoliamo adesso, mediante la (44), la velocità angolare di precessione del perielio di Mercurio che, al netto delle perturbazioni gravitazionali dovute agli altri pianeti e al netto di altre cause incidenti comunque sulla precessione in parola, è pari, come è noto, a 43,1 ± 0,55 arcosecondi/secolo

Occorre calcolare in primo luogo l’accelerazione di gravità che il Sole genera su Mercurio nel perielio.

$$g_{(perielio)} = \frac{GM}{(perielio)^2}$$ (45)

dove:

$G = 6,67433 \times 10^{-11}$

$M = $ massa del Sole $(1,9891 \times 10^{30} \text{ kg})$

Perielio Mercurio = 46.001.046.044 metri

Sostituendo nella (45) i suindicati valori, si ha:

$$g_{(perielio)} = 0,6273 \text{ m/sec}^2$$

Sostituendo nella (44) il sopraistante valore di g nonché il valore del semiasse maggiore a dell’orbita di Mercurio, abbiamo:

$$\dot{\omega} = 2 \sqrt{ \frac{0,6273}{57,909,175,678} }$$
\[\dot{\omega} = 0,000002081584 \text{ rad/anno} \]

Convertendo i radianti in \textit{arcosecondi/anno}, abbiamo:

\[\dot{\omega} = 0,4294 \text{ arcosec./anno} \quad \text{— C.V.D.} \]

Moltiplicando per 100: \[\dot{\omega} = 42,94 \text{ arcosec./secolo} \]

A questo punto occorre fare una precisazione.

Come si è dimostrato più sopra, le 4 accelerazioni (centrifuga, centripeta, di gravità attrattiva e di gravità repulsiva) si cumulano algebricamente tra loro solo nell’istante in cui il pianeta occupa il perielio.

Trattasi, dunque, di una condizione istantanea che, ciononostante, influenza tutta l’orbita planetaria con il fenomeno della precessione del perielio, o meglio della rotazione della linea degli apsidi.

Essendo una situazione istantanea, che dura cioè per un tempo indefinitamente piccolo, si pone il problema di come rapportare la velocità di precessione col tempo, essendo un istante indefinitamente inferiore a un secondo.

Orbene, avendo noi operato nella (44) la misura della velocità angolare in radianti al secondo (poiché \(g_{\text{perielio}} \) è misurata in \textit{m/sec}^2), ed essendo il “secondo” una frazione di un “anno” terrestre, occorre indagare se è possibile rapportare l’unità di tempo “istante” all’unità di tempo “secondo”.

A tal fine si osserva che l’istante non è quantificabile, avendo una valenza meramente concettuale, come il punto per le grandezze spaziali.

Un intervallo temporale, infatti, è composto da infiniti istanti, come un segmento è composto da infiniti punti.

Non è possibile, quindi, stimare quante volte l’istante è più piccolo del secondo, come non è possibile dire quante volte il punto è più piccolo del centimetro.

Se si vuole adeguare, dunque, una velocità misurata in secondi di anno terrestre ad un movimento che avviene in un solo punto per un solo istante, come il moto di precessione del perielio, occorre adeguare la scala temporale usata per misurare la velocità in questione al concetto di “istante”, e siccome nella scala di misura usata in partenza l’unità di misura fondamentale è l’anno (essendo il “secondo” una frazione dell’anno), la velocità del corpo non potrà che essere rapportata all’anno terrestre.
Possiamo dire, dunque, che nell’istante in cui Mercurio occupa il perielio, il moto di precessione del pianeta avviene con una velocità di 0,4294 arcosecondi/anno.

Moltiplicando per 100 avremo:

\[\dot{\omega} = 42,94 \text{ arcosecondi/secolo} \]

che è proprio la velocità di precessione del perielio di Mercurio.

Riportiamo qui di seguito la tabella dei valori delle velocità di precessione dei periel di tutti i pianeti ottenute dall’applicazione della (44), e confrontiamoli con i valori ottenuti mediante la teoria della relatività.

<table>
<thead>
<tr>
<th>Pianeta</th>
<th>Precessione osservata da Newcomb*</th>
<th>Precessione prevista dalla teoria di R. Napolitano*</th>
<th>Precessione prevista dalla relatività generale di Einstein*</th>
<th>Precessione osservata dopo Newcomb*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercurio</td>
<td>43,4 ± 2,1</td>
<td>42,94</td>
<td>42,98</td>
<td>43,1 ± 0,55</td>
</tr>
<tr>
<td>Venere</td>
<td>10,6 ± 36,5</td>
<td>13,44</td>
<td>8,61</td>
<td>8,4 ± 4,8</td>
</tr>
<tr>
<td>Terra</td>
<td>6,9 ± 7,8</td>
<td>8,35</td>
<td>3,84</td>
<td>5 ± 1,2</td>
</tr>
<tr>
<td>Marte</td>
<td>9 ± 3,8</td>
<td>4,81</td>
<td>1,35</td>
<td>8</td>
</tr>
<tr>
<td>Giove</td>
<td>------</td>
<td>0,7</td>
<td>0,0623</td>
<td>------</td>
</tr>
<tr>
<td>Saturno</td>
<td>------</td>
<td>0,293</td>
<td>0,0137</td>
<td>------</td>
</tr>
<tr>
<td>Urano</td>
<td>------</td>
<td>0,1023</td>
<td>0,0024</td>
<td>------</td>
</tr>
<tr>
<td>Nettuno</td>
<td>------</td>
<td>0,05024</td>
<td>0,0008</td>
<td>------</td>
</tr>
<tr>
<td>Plutone</td>
<td>------</td>
<td>0,00412</td>
<td>0,00000005</td>
<td>------</td>
</tr>
</tbody>
</table>

* I valori sono in arcosecondi/secolo

Come si evince dalla sopraelevata tabella, le due teorie sono sostanzialmente equivalenti per i cosiddetti inner planets, ossia per i pianeti più interni, eccetto Marte, per il quale la relatività mostra un errore molto marcato: quasi 7 arcosecondi di scarto [1], a fronte dei 3,23 di errore generati della mia teoria.

Quanto agli outer planets, cioè i pianeti più esterni del sistema solare (Giove, Saturno, Urano, Nettuno e Plutone) le due teorie divergono nettamente: quindi una delle due teorie è errata.
Spetti agli astronomi il giudizio finale su quale delle due sia quella corretta, giudizio non facile, atteso lo scarsissimo quantitativo di studi osservativi sulla precessione del perielio degli *outer plantes*.

- **La forza di gravità: eccezione al primo principio della dinamica**

 Ma come è possibile che, quando il pianeta è in perielio, dove la forza attrattiva è allineata con quella repulsiva, tali due forze non si annullino a vicenda, ma diano vita al moto di precessione del perielio?

 E’ un mistero che, a mio avviso, può spiegarsi solo in un modo, ossia ritenendo che lo scontro tra forza gravitazionale attrattiva e repulsiva dia luogo ad un particolare tipo di energia scaturente dalla non insorgenza forzata, nel perielio, della forza di richiamo F_{rx}, che impedisce al pianeta di occupare il perielio che aveva occupato in precedenza, obbligandolo a “tagliare” l’angolo più verso l’interno, in tal modo impedendo all’orbita ellittica di chiudersi, e dando vita a quella particolare orbita “*a rosetta*”, che si vede nell’immagine a pagina seguente:
Il moto di precessione del perielio, in sostanza, deriva dal fatto che, nel predetto punto, l’energia scaturente dalla coartata non insorgenza della forza \(F_{rx} \) non riesce a trovare altro sfogo se non nel predetto moto, per cui detta energia viene canalizzata nell’unico modo possibile, ovverosia causando un impedimento per il pianeta a rioccupare il perielio precedente, che in ultima analisi produce il movimento di rotazione della linea degli apsidi.

Questo conferma l’assoluta singolarità della forza gravitazionale, la quale, alla luce dei riscontri matematici qui ottenuti, dimostra di non soggiacere al primo principio della dinamica, secondo cui due forze opposte si annullano, ma di dar luogo, ogni volta che esse derivano da un unico corpo (quello centrale), a due movimenti attorno ad esso: quello di rivoluzione del corpo attorno all’attrattore-repulsore, e
quello di precessione del periapside, ossia del punto orbitale più vicino al corpo centrale.

In meccanica celeste, pertanto, sembrano sussistere due eccezioni al primo principio della dinamica di Newton, perché anche nei punti diversi dal perielio le due forze gravitazionali opposte non si annullano, ma generano il movimento di rivoluzione dei corpi attorno all’attrattore-repulsore centrale o attorno al reciproco centro di massa, grazie alla nascita della forza di richiamo \(F_{r-x} \), nascente dai differenti valori di pressione (o energia) esistenti nella zona di *attractio-repulsio*.

La traiettoria descritta dal moto di precessione del perielio è circolare perché l’energia che si genera nel predetto punto in virtù dell’allineamento della forza di gravità attrattiva e repulsiva è di tipo *contenitivo-impeditivo*, ossia generante un mero vincolo che impedisce al pianeta di occupare quello specifico punto.

In altri termini la traiettoria descritta dal moto di precessione del perielio è circolare, perché tale è la traiettoria descritta da un corpo lanciato ad una certa velocità con direzione tangenziale e soggetto solo ad un vincolo che genera accelerazione centripeta (come l’esempio della pallina legata ad una fune visto sopra).

Abbiamo parlato di “energia contenitiva” per differenziarla dalla “energia di rivoluzione” che, diversamente dalla prima, non è impeditiva (non generando un mero vincolo), ma è la fonte del movimento dei corpi attorno all’attrattore-repulsore.

Questa energia contenitiva nascente soltanto nel perielio avrebbe il seguente valore matematico:

\[
U = m \times 4g \times R
\]

Come si nota, tale energia si differenzia dall’energia potenziale del campo esclusivamente attrattivo unicamente per la presenza del 4 prima della \(g \).

- **La deflessione della luce delle stelle retrostanti al Sole**

Come è noto, una delle prove della relatività è considerato il fatto che dalla Terra è possibile vedere la luce emessa da stelle posizionate dietro al Sole, che quindi noi non dovremmo vedere.

La prova consiste in primo luogo nel fatto che la luce si ritiene non avere una massa, per cui la circostanza che venga deviata in prossimità del Sole non può dipendere, si sostiene, dalla forza di gravità esercitata dall’astro, ma dal fatto che lo
spazio attorno al Sole è incurvato dalla sua massa e, conseguentemente, la luce della stella retrostante al Sole non può far altro che essere deviata e risultare visibile a noi sulla Terra.

Altra presunta prova della fondatezza della relatività è, in secondo luogo, la misura dell’angolo di deflessione, che è pari al doppio di quello previsto dalla teoria newtoniana, in accordo con la relatività.

Ebbene, alla luce del risultato a cui siamo giunti nella (44), è agevole spiegare il motivo per cui l’evidenza mostra che l’angolo di deflessione della luce è il doppio di quello previsto dalla teoria di Newton.

In proposito si evidenzia che l’orbita iperbolica descritta dal raggio di luce emesso dalla stella retrostante al Sole è soggetta, nel punto in cui avviene la deflessione (che è quello più vicino al Sole), alle stesse caratteristiche del perielio delle orbite ellittiche, ossia l’uguaglianza tra le 4 accelerazioni (gravità attrattiva, centripeta, gravità repulsiva e centrifuga), nonché il fatto di essere tutte allineate tra loro (sia pur con le prime due opposte alle seconde due), da cui discende la loro cumulabilità agli effetti della precessione che, come si è dimostrato sopra, giustifica il 4 davanti alla g nella legge oraria dell’oscillatore armonico $g = \omega^2 x$, che quindi diventa, con riguardo al moto di precessione del perielio:

$$4g_{perielio} = \dot{\omega}^2 a \rightarrow \dot{\omega} = 2 \sqrt{\frac{g_{perielio}}{a}}$$

Conseguentemente, nel punto in cui avviene la deflessione della luce, questa, analogamente al perielio delle orbite planetarie, è soggetta al moto di precessione, il quale avviene con una velocità angolare pari proprio al doppio della velocità angolare del moto di rivoluzione dei pianeti attorno al Sole.

Infatti, in precedenza si è dimostrato che la legge oraria a cui sono soggetti i pianeti coincide perfettamente con quella dell’oscillatore armonico, ossia $g = \omega^2 x$, che nel perielio diventa $\omega = \sqrt{\frac{g_{perielio}}{a}}$, che appunto è la metà del valore della velocità angolare di precessione a cui siamo giunti nella (44), e questo è il motivo per cui l’angolo di deflessione che la luce subisce nel punto più vicino al Sole è il doppio di quello che si ottiene dalla teoria di Newton.

In sostanza anche la luce è soggetta alla forza di gravità, come qualsiasi
corpo macroscopico, e addirittura soggiace anche al moto di precessione, come i pianeti e come tutti i corpi dotati di massa, precessione che non veniva tenuta in considerazione nel calcolo dell’angolo di deflessione mediante la teoria di Newton.

In altri termini la traiettoria descritta dalla luce non è quella che dovrebbe essere secondo la teoria newtoniana, ma il punto più vicino al Sole "precede" rispetto a quello che sarebbe dovuto essere in base alla menzionata teoria, poiché, a causa dell’energia contenitiva che si genera nel punto in cui avviene la deflessione, la luce è costretta a seguire una traiettoria più interna in modo tale da tagliare l’angolo, analogamente a quanto accade per la precessione del perielio delle orbite planetarie, dimostrando la sua velocità angolare aumenterà in misura doppia rispetto a quella prevista dalla teoria newtoniana, sicché l’angolo di deflessione della luce non può che risultare il doppio rispetto a quello previsto.

Del resto questo è in linea con la cosiddetta natura “duale” del fotone, che si ritiene essere a metà strada tra un corpuscolo e un’onda.

Se, dunque, il fotone è “anche” un corpuscolo (oltre che un’onda), nessuna stranezza vi è nel fatto che risenta dell’attrazione gravitazionale alla stessa stregua di qualsiasi altro corpo massivo, quindi subendo anche il moto di precessione quando passa nel punto più vicino all’attrattore-repulsore.

- **Il raggio del buco nero**

Un’ulteriore conferma della suscettibilità della luce di subire, come ogni corpo dotato di massa, il movimento di precessione è dato dall’applicabilità della formula della precessione del perielio a cui siamo giunti nella (44) anche ai buchi neri, come si dimostrerà in appresso.

Il buco nero, come è noto, presenta la particolarità di essere in grado di intrappolare nel suo campo gravitazionale qualsiasi oggetto finisca nel suo raggio d’azione, incluso la luce.

Vediamo se è possibile calcolare mediante la (44) il raggio del buco nero, ovverosia il limite oltre il quale nulla, una volta entrato, può sfuggirgli.

Ipotizzando che la causa dell’impossibilità per la luce di uscire dal buco nero sia la stessa che impedisce ai pianeti di occupare il perielio precedente, causandone la precessione — ossia un particolare tipo di energia contenitiva
scaturente dall’allineamento tra la forza di gravità attrattiva e forza di gravità repulsiva (stante la non insorgenza della forza F_{rx}) che obbliga il corpo a “tagliare” l’angolo più verso l’interno — e che tale allineamento di forze si verifichi non in un singolo punto, come invece avviene per le orbite planetarie (ossia il perielio), ma lungo tutta la circonferenza che delimita il buco nero, avremo che la velocità angolare della luce attorno al buco nero dovuta alla precessione “continua” a cui essa soggiace per effetto della predetta energia, sarà uguale a:

$$\dot{\omega} = 2 \sqrt{\frac{g}{R}}$$ \hspace{1cm} (46)

dove R è il raggio del buco nero, il quale, avendo una struttura circolare, ci dispensa dal parlare di periapside e di semiasse maggiore, e ciò consente di considerare il raggio sia al numeratore (per il calcolo di g), che al denominatore, per cui g sarà pari a:

$$g = \frac{GM}{R^2}$$

e la (46) diventa:

$$\dot{\omega} = 2 \sqrt{\frac{GM}{R^2}} \Rightarrow \dot{\omega} = 2 \sqrt{\frac{GM}{R^3}}$$ \hspace{1cm} (47)

Ma, siccome abbiamo ipotizzato che la precessione è “continua”, vale a dire che operi non in un solo punto della traiettoria seguita dalla luce attorno al buco nero, ma ininterrottamente lungo tutta la circonferenza del buco nero, possiamo uguagliare la (47) alla velocità angolare propria del moto circolare, che è pari a:

$$\omega = \frac{2 \pi}{T}$$ \hspace{1cm} (48)

Quindi, dal confronto tra la (47) e la (48) possiamo scrivere:

$$2 \sqrt{\frac{GM}{R^3}} = \frac{2 \pi}{T}$$

Da cui:

$$\frac{1}{2} \sqrt{\frac{R^3}{GM}} = \frac{T}{2 \pi}$$

Moltiplicando entrambi i membri per 2π, si ha:
Elevando al quadrato entrambi i membri:

\[\pi^2 \frac{R^3}{GM} = T^2 \]

\[\Rightarrow R^3 = \frac{T^2 GM}{\pi^2} \] (49)

Ma sappiamo anche che, nel moto circolare, \(T \) è uguale a

\[T = \frac{2\pi R}{V} \]

e che nel nostro caso \(V \) può essere sostituita con la velocità della luce \(c \), perché stiamo verificando l’applicabilità della (44) ad un buco nero che, come è noto, è capace di imbrigliare anche la luce, quindi avremo:

\[T = \frac{2\pi R}{c} \]

sostituendo il suindicato valore di \(T \) nella (49), avremo:

\[R^3 = \left(\frac{2\pi R}{c} \right)^2 \frac{GM}{\pi^2} \]

\[\Rightarrow R^3 = \frac{4\pi^2 R^2 GM}{c^2} \]

\[\Rightarrow R^3 = \frac{4R^2 GM}{c^2} \]

Dividendo entrambi i membri per \(R^2 \), avremo:

\[R = \frac{4GM}{c^2} \] (50)

Questa relazione esprime il valore della distanza dal centro del buco nero entro la quale tutto, ivi incluso la luce, una volta entrato, non esce più.

Proviamo adesso a verificare in concreto l’efficacia della (50) utilizzandola per calcolare il raggio del buco nero ubicato al centro della via Lattea (\(Sagittarius A^* \)), prendendo come valore della sua massa quello medio risultante dalle diverse stime fatte dagli astronomi, ovverosia 4 milioni di volte la massa del Sole.

\[M_{Sagittarius A} = 4.000.000 \ast Massa \ del \ Sole = 7.9564 \ast 10^{36} \ kg \]

\[G = 0.0000000000667433 \]

\[c^2 = 89.875.517.873.681.764 \]

Sostituendo nella (50) i suindicati valori, abbiamo:

\[R = \frac{4 \ast \frac{0.0000000000667433 \ast (7.9564 \ast 10^{36})}{89.875.517.873.681.764}} \]
$R = 23,634,306 \text{ km}$

Come si nota il risultato a cui conduce la (50), pari a circa 23 milioni di Km, è in ottimo accordo con le stime osservative, che quantificano il raggio di $\textit{Sagittarius A*}$ in circa 22 milioni di km.

Possiamo concludere dunque che, con buona probabilità, il buco nero genera, almeno ad una distanza pari al valore ottenibile dalla (50), un’energia gravitazionale contenitiva che impedisce ai corpi, una volta entrati all’interno di quel limite, di uscirvi, analogamente a quanto accade ai pianeti nel perielio orbitale, dove abbiamo visto che la particolare energia derivante dall’allineamento delle due forze gravitazionali opposte impedisce al pianeta di rioccupare il perielio precedente, costringendolo ad assumere una traiettoria più interna che impedisce all’orbita ellittica di chiudersi, conferendole la tipica forma “a rosetta”.

Ciò, da un lato, conferma la suscettibilità della luce di soggiacere al moto di precessione, come qualsiasi altro corpo dotato di massa e, dall’altro, apre nuovi scenari per lo studio e la comprensione dei buchi neri, i quali non sarebbero a mio avviso ciò che resta del collasso gravitazionale della massa di una stella, compattatasi fino ad assumere un raggio molto più piccolo di quello avuto in origine, come teorizzato da Schwarzschild, ma sarebbero, come si chiarirà meglio in seguito, delle concentrazioni di protoni, i quali sarebbero vincolati a stare all’interno del raggio espresso dalla (50) dall’energia gravitazionale $\textit{contenitiva}$ scaturente dal campo attrattivo-repulsivo generato dai protoni, come si illustrerà meglio in seguito.

Il raggio di Schwarzschild, infatti, è notoriamente pari a $R = \frac{2GM}{c^2}$, cioè alla metà del raggio a cui siamo giunti nella (50), per cui non solo non corrisponde alla misura del raggio di $\textit{Sagittarius A*}$ risultante delle osservazioni, ma, ciò che più rileva, è che al centro della via Lattea non è osservabile alcun oggetto con massa pari al predetto raggio di Schwarzschild, che invece dovrebbe essere osservato se, come ipotizza il predetto scienziato, il buco nero fosse realmente il residuo del collasso gravitazionale di una grande stella.

Infatti una massa super compatta come quella che, secondo la teoria di Schwarzschild, dovrebbe avere il buco nero al centro della via Lattea, non sarebbe un puntino microscopico – come ad esempio quello in cui potrebbe compattarsi, sempre ad avviso della teoria al vaglio, un pianeta grande come la Terra (appena 8 mm) – ma
dovrebbe avere un raggio di ben 11 milioni di km, dovendo quindi essere senza dubbio osservabile dalla Terra anche ad una distanza di 27.000 anni luce come quella che ci separa dal centro della nostra galassia, non solo perché a quella distanza riusciamo ad osservare corpi aventi un raggio di gran lunga inferiore a 11 milioni di km, ma anche perché si tratterebbe di una massa super compatta (molto densa), che in quanto tale dovrebbe essere in grado di riflettere molto bene la luce che la investe.

Invece, assumendo che il buco nero consista solo di protoni, possiamo anche spiegare la sua invisibilità, perché una concentrazione di protoni disgiunti tra loro, sebbene alta, non è adatta a riflettere la luce, come qualsiasi altra particella microscopica, sicché, quando un raggio di luce varca il limite sancito dalla (50), attraversa indisturbato tutta la parte interna al buco nero, stante l’assenza di corpi massivi interni capaci di rifletterla, fino ad arrivare alla parte opposta del cerchio, oltre la quale non riesce a spingersi a causa dell’energia contenitiva che si forma proprio sul limitare del predetto cerchio in virtù del campo attrattivo-repulsivo creato, come si vedrà in appresso, dai protoni che compongono il buco nero.

Tale energia, essendo presente su tutta la circonferenza del buco nero, costringe il raggio a girare in perpetuo attorno al centro del buco medesimo, similmente a quanto accade nel fenomeno della precessione del perielio delle orbite planetarie, nel qual caso il pianeta non riesce a rioccupare il perielio che aveva occupato in precedenza, ma è costretto a curvare più verso l’interno a causa di un’energia contenitiva che si crea per effetto dell’allineamento, nel perielio, tra la forza gravitazionale attrattiva e quella repulsiva (a sua volta conseguente alla non insorgenza, in quel punto, della “forza di richiamo” F_{rx}) con la differenza, rispetto al buco nero, secondo la quale, nascendo tale energia solo nel perielio, essa non impedisce al pianeta, una volta superato il predetto punto, di allontanarsi dal Sole, sia pur nella misura minore possibile e non indefinitamente (fino al raggiungimento dell’afelio).

Questo modo di interpretare il buco nero, del resto, accomunando sotto un’unica categoria tutti i tipi di buchi neri conosciuti (supermassivi e stellari), che si diversificherebbero tra loro solo per le dimensioni, evita di costruire discutibili differenze tra i due tipi di buchi neri basate su presunte, ma poco plausibili, origini diverse.
- **Il raggio del nucleo atomico e la forza gravito-elettrica**

Vediamo adesso se è possibile, mediante la teoria qui esposta, ricavare il raggio del nucleo dell’atomo.

Sappiamo da Einstein che l’energia contenuta nel nucleo dell’atomo per il fatto stesso di avere una massa, che appunto definiremo “Energia di massa”, è pari a $E_m = M c^2$, dove M è la massa del nucleo.

Orbene, supponiamo che tale energia sia imbrigliata da un’energia contenitiva E_c simile, per non dire identica, all’energia che sussiste nel periapside orbitale, nonché al limitare del buco nero, si avrebbe come logica conseguenza l’uguaglianza tra le due energie (l’energia di massa E_m e l’energia contenitiva E_c), altrimenti il nucleo esploderebbe, per cui avremo:

\[E_c = E_m \]
\[\Rightarrow E_c = M c^2 \]

Occorre adesso tradurre in linguaggio matematico il concetto di “energia contenitiva” (E_c), che esiste solo nella zona di *attractio-repulsio* dei campi gravitazionali.

Si tratta senza dubbio di energia “potenziale” gravitazionale, ma si distingue dall’energia potenziale di rivoluzione, come si è detto sopra.

Prima dell’energia contenitiva, quindi, occorre definire concettualmente, per poi tradurre in linguaggio matematico, l’energia potenziale gravitazionale *di rivoluzione*.

Come è noto l’energia potenziale gravitazionale posseduta da un corpo soggetto a forza gravitazionale attrattiva, è pari a:

\[U = F_g * R \]

dove F_g è la forza di gravità che, in virtù del secondo principio della dinamica, può essere scritta anche così:

\[F_g = m * g \]

Quindi la (52-bis) diventa:

\[U = m * g * R \]

Dove m è la massa del corpo attratto, g è l’accelerazione di gravità e R è la distanza del corpo attratto dal centro del corpo attrattore (ad esempio la Terra).
La relazione di proporzionalità diretta tra l’energia e la distanza, anziché di proporzionalità inversa (come invece si ha nell’equazione della forza di gravità), si spiega perché qui si osserva il fenomeno dell’attrazione gravitazionale sotto il profilo delle potenzialità del corpo connesse alla forza di gravità, ossia osservando le potenzialità che avrebbe un corpo soggetto ad una determinata forza gravitazionale, posto ad una certa altezza e libero di cadere, di incidere sulla realtà circostante (in particolare impattando al suolo).

E’ ovvio che, più in alto poniamo il corpo, maggiore sarà il suo potenziale gravitazionale, perché i danni che esso arrecherà al suolo terrestre sono tanto maggiori quanto maggiore è l’altezza da cui comincia a cadere (in tal caso, infatti, un corpo avverrebbe al suolo terrestre con una velocità tanto maggiore quanto maggiore è la distanza dalla Terra).

Tuttavia nella zona di attrattio-repulsio le cose vanno diversamente.

Se si ammette, infatti, che l’effetto del campo attrattivo-repulsivo non sia quello di far cadere i corpi verso l’attrattore-repulsore centrale, ma quello di farli girare attorno ad esso a velocità decrescente all’aumentare della distanza dal corpo centrale, ne conseguirebbe che la formula dell’energia potenziale gravitazionale di rivoluzione (E_r) sarebbe la seguente:

$$E_r = \frac{F_g}{R \pi}$$

Quindi:

$$E_r = \frac{m \cdot g}{R \pi}$$

Questa volta la distanza R è al denominatore, perché, maggiore è la distanza, minore è la velocità di rivoluzione prodotta dal campo attrattivo-repulsivo, quindi, in ultima analisi, minore è l’energia del corpo di massa m.

Il termine π compare perché, sopra abbiamo ipotizzato che un corpo inserito in un campo attrattivo-repulsivo raggiunga la massima velocità dopo mezzo giro (per l’appunto π).

La (53-bis) però va opportunamente modificata per l’energia potenziale gravitazionale contenitiva.

Più sopra abbiamo visto, infatti, che la legge oraria del moto di precessione del perielio, reso possibile dalla energia contenitiva che si crea nel predetto punto, si
differenzia dalla legge oraria dell’oscillatore armonico (alla quale ultima soggiace il moto di rivoluzione), per la presenza del 4 innanzi a \(g \), quindi, per ottenere una relazione matematica che esprima l’energia potenziale gravitazionale contenitiva \(E_c \), occorre modificare la (53-bis) nel seguente modo:

\[
E_c = \frac{m \cdot 4g}{R \pi}
\]

(54)

Ma questa equazione deve essere ancora modificata ove si voglia applicare al nucleo dell’atomo.

Qui, infatti, ammettendo che agisca la gravità, essa non sarebbe l’unica forza operante, non potendosi tralasciare quella elettrica.

Pertanto ho ipotizzato che nell’atomo forza gravitazionale e forza elettrica si fondassero dando luogo a forza gravito-elettrica \(F_{ge} \) (o, se si preferisce, elettro-gravitazionale), che avrebbe il seguente modulo:

\[
F_{ge} = \frac{GMm}{R^2}
\]

(54-bis)

dove \(K \) è la costante di Coulomb, e che inoltre occorresse sostituire nella (54) \(m \) con \(M \), cioè con la massa del nucleo stesso, perché stiamo analizzando l’energia potenziale gravito-elettrica contenitiva posseduta dal nucleo stesso (capace cioè di arginare l’energia di massa \(E = Mc^2 \)), non l’energia potenziale gravito-elettrica di rivoluzione (53), che invece è presente nello spazio circostante il nucleo ed è in grado di far ruotare gli elettroni attorno al nucleo stesso, sicché la (54) diventa:

\[
E_c = \frac{M \cdot 4g_e}{R \pi}
\]

(55)

dove \(g_e \) è l’accelerazione gravito-elettrica.

Ora sostituiamo nella (52) il valore di \(E_c \) appena trovato, e avremo:

\[
\frac{M \cdot 4g_e}{R \pi} = Mc^2
\]

(56)

Ma dalla (54-bis) possiamo ricavare l’accelerazione gravito-elettrica \(g_e \) che il nucleo esercita sua stessa superficie:

\[
g_e = \frac{GKM}{R^2}
\]

(56-bis)

Dove \(R \) è il raggio del nucleo.

Pertanto la (56) diventa:
\[\frac{M}{R \pi} \times \frac{4GM}{R^2} = M c^2 \]

\[\Rightarrow \frac{4kGM^2}{R^3 \pi} = M c^2 \quad (56-ter) \]

Dividiamo entrambi i membri per \(M \):

\[\Rightarrow \frac{kGM}{R^3 \pi} = c^2 \]

\[\Rightarrow 4kGM = R^3 \pi c^2 \]

\[\Rightarrow R^3 = \frac{4kGM}{\pi c^2} \]

\[\Rightarrow R = \sqrt[3]{\frac{4kGM}{\pi c^2}} \quad (57) \]

E’ importante precisare che la (57) non esprime il raggio di carica del nucleo, bensì il raggio d’azione dell’energia potenziale del nucleo.

Passiamo adesso a verificare l’operatività concreta della (57), provando a calcolare il raggio del nucleo di molteplici atomi (presi a caso dalla tabella periodica degli elementi), e confrontarlo col raggio osservato dai fisici nucleari.

Si cominci con l’atomo di oro.

E’ opportuno premettere che la formula che i fisici hanno dedotto in via sperimentale per il calcolo del raggio nucleare è la seguente:

\[R = r_0 \times \sqrt[3]{A} \times 10^{-15} \text{ metri} \quad (58) \]

Dove \(r_0 \) è pari a 1.2, ed \(A \) è il numero di massa, ossia la somma di protoni e neutroni (esso è indicato in basso a sinistra accanto al simbolo dell’elemento nella tabella periodica degli elementi).

Si precisa che la (58) esprime il raggio di carica (charge radius). Gli esperimenti di scattering [1] dimostrano che il raggio di carica coincide con la distanza alla quale la densità nucleare si riduce del 50% rispetto al suo valore massimo (non a caso ed è definito half-density radius, o anche raggio medio, rappresentando la media quadratica dei diversi valori sperimentali del raggio).

Ebbene, qui di seguito vedremo che se dividiamo per 2 il membro di destra della (57) avremo proprio il raggio di carica (58), quindi possiamo dire che il “range” dell’energia potenziale nucleare, dato dalla (57), è proprio pari al doppio del raggio di carica del nucleo:
\[R = \frac{1}{2} \sqrt[3]{\frac{4KGM}{\pi c^2}} \] (59)

Orbene, il numero di massa dell’atomo di oro è:

\[A = 197 \]

per cui il raggio “sperimentale” scaturente dalla (58) è:

\[R = 1,2 \times 10^{-15} \times 5,8 \text{ metri} \]
\[R = 6,9823 \times 10^{-15} \text{ metri} \] (60)

Calcoliamo adesso il raggio nucleare del predetto atomo mediante la (59), nella quale:

- \(M \) è la massa del nucleo, che è pari ad \((A \times 1,66054 \times 10^{-27}) \) kg
- \(K \) è la costante di Coulomb = 8,99 \(\times 10^9 \)
- \(G \) è la costante di gravitazione universale = 6,67433 \(\times 10^{-11} \)
- \(\Pi = 3,14 \)
- \(c^2 \) = velocità della luce al quadrato (89875517873681764)

Per comodità riportiamo qui sotto la (59) e sostituiamo in essa i valori, testé scritti, di \(M, G, K, \Pi, \) e \(c^2 \).

\[R = \frac{1}{2} \sqrt[3]{\frac{4KGM}{\pi c^2}} \]

\[R = \frac{1}{2} \sqrt[3]{\frac{4 \times (8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (197 \times 1,66054 \times 10^{-27})}{3,1415 \times 89875517873681764}} \]
\[R = 7,031 \times 10^{-15} \text{ metri} \] (61)

Rapportiamo adesso il valore teorico del raggio nucleare a cui siamo giunti nella (61) ed il valore del raggio ricavato dalla formula sperimentale (60):

\[\frac{7,031 \times 10^{-15}}{6,9823 \times 10^{-15}} = 1,0069 \]

Come si nota il margine di errore è praticamente inesistente.

La lieve discrepanza peraltro si riduce ad un rapporto di 1,002 se diamo a \(r_0 \) il valore di 1,2049 \(fm \) come risulta dalla citazione [3] pagina 203 e dalla citazione [4], pag. 626.

Applichiamo adesso la (59) a diversi atomi scelti a caso dalla tabella periodica degli elementi (se ne scelgono solo alcuni per praticità).
La soprastante tabella conferma pienamente la correttezza della formula (59) e, di riflesso, della (57).

E’ importante specificare che la (57) non esprime il raggio di carica del nucleo, bensì il raggio d’azione dell’energia potenziale contenita gravitoo-elettrica del nucleo.

Dopo tutto, la formula (57) è in perfetto accordo con il metodo di misurazione della grandezza del nucleo ricavato dall’energia di legame nucleare [2].

Infatti, lo scattering di particelle cariche non è l’unico modo per determinare empiricamente il raggio nucleare, ma esiste anche un altro metodo basato sulla differenza riguardante l’energia di legame nucleare tra due “mirror nuclei” (per esempio di 3He and of 3H).

Nella citazione [2], paragrafo 3.2.7.2, pag. 44-45, infatti, è stato evidenziato che, misurando la differenza di energia di legame tra i due nuclei citati, e ipotizzando che questa differenza sia ascrivibile solo alla differenza nei potenziali di Coulomb, è possibile calcolare il raggio dei nuclei di 3He e di 3H— entrambi dotati di un numero di massa A uguale a 3 — e il risultato è $3,4\, fm$ in entrambi i casi, che è in ottimo accordo con il risultato della nostra formula (57), cioè $3,48\, fm$ (la lieve discrepanza molto probabilmente è dovuta al fatto che altri fattori, come la differenza
tra le masse del protone e del neutrone, non sono prese in considerazione, essendo stato ipotizzato che la differenza nell'energia di legame sia ascrivibile solo alle differenze nei potenziali di Coulomb tra due nuclei).

Siamo così giunti a dimostrare che la gravità, qualunque ne sia la causa prima, influenza non solo il mondo macroscopico, ma anche quello microscopico, sia pur con la particolarità di fondersi con la forza elettrica.

Del resto la congiunta operatività delle due forze è del tutto coerente con la cosiddetta natura “duale” delle particelle fondamentali: l’aspetto corpuscolare dei nucleoni (protoni e neutroni) crea forza gravitazionale, quello ondulatorio origina forza elettrica.

Sarebbe la formula (57) la prova della famosa “gravità quantistica”?

Al di là delle questioni terminologiche, si riduca quanto si vuole la persuasività del ragionamento che ci ha condotti alla (57), non si potrà comunque negare l’operatività della forza di gravità anche a livello quantistico, almeno a livello nucleare. La citata formula, infatti, parla chiaro: a livello del nucleo atomico la forza di gravità e quella elettrica agiscono congiuntamente dando vita a un’energia, espressa dalla (55), che consente di arginare l’energia insita nella massa stessa ($E = mc^2$).

La funzione “contenitiva” dell’energia espressa dalla (55) è confermata dal carattere derivativo di tale formula rispetto a quella della precessione del periapside orbitale (44) e a quella del raggio del buco nero (50), dove abbiamo riscontrato lo stesso carattere energetico impeditivo.

Ma l’eguaglianza tra energia di massa E_m ed energia contenitiva E_c posta nella (51) testimonia, in ultima analisi, l’esistenza di un campo gravito-elettrico attrattivo-repulsivo anche all’interno dell’atomo, avendo noi utilizzato, come formula della第二, quella dell’energia potenziale gravitazionale contenitiva, che è una prerogativa esclusiva del campo attrattivo-repulsivo, dove il rapporto tra energia e distanza è di proporzionalità inversa, anziché diretta (come invece accade nell’energia potenziale gravitazionale esistente nel campo gravitazionale esclusivamente attrattivo).

L’esistenza di tale campo attrattivo-repulsivo sarebbe quindi l’elemento che accomuna la meccanica del mondo macroscopico con quella del mondo microscopico, nonché le dinamiche che da tale campo scaturiscono.
La velocità non decrescente delle stelle delle galassie: crisi della materia oscura

Come è noto, le stelle orbitano attorno al buco nero a velocità orbitale pressoché costante, discostandosi così dal sistema kepleriano (come il nostro sistema solare), nel quale la velocità con cui i corpi celesti orbitano attorno alla stella centrale decresce con l’aumentare della distanza dall’astro.

In verità, le stelle delle galassie si comportano in accordo col sistema kepleriano (e quindi con la meccanica newtoniana), solo nella fascia di prossimità, quella più vicina al buco nero, dove le stelle rispettano il modello gravitazionale newtoniano, nel quale la forza di gravità è inverseamente proporzionale alla distanza dall’attrattore.

Superata detta fascia di prossimità, la velocità orbitale delle stelle resta sostanzialmente costante, fino ad arrivare alla fine del disco galattico, dove torna ad aumentare.

La scienza spiega la stabilità delle orbite delle stelle della fascia intermedia (che si ripete di muovono a velocità costante) ipotizzando l’esistenza di materia oscura (non visibile) all’interno delle galassie, che “aiuterebbe” la forza di gravità esercitata dal buco nero a trattenerle nel raggio d’azione del buco, impedendo quindi alle stelle di allontanarsi definitivamente da esso nonostante la loro elevata velocità rispetto alla gravità generata dalla massa del buco nero medesimo.

Tale materia oscura avrebbe la caratteristica di non essere osservabile, pur esercitando forza gravitazionale e pur rappresentando circa il 75%, o forse anche più, della materia complessiva che compone l’universo.

Tuttavia, nonostante i notevoli sforzi compiuti dai ricercatori sia in ambito nucleare che in quello astronomico, dell’esistenza della materia oscura non si è ancora riusciti a trovare una prova diretta.

Qui di seguito si proporrà una possibile spiegazione dello strano fenomeno della costanza della velocità orbitale delle stelle, ipotizzando l’esistenza di un campo gravito-elettrico attrattivo-repulsivo che nascerebbe a partire da una certa distanza dal buco nero, cioè oltre quella zona di prossimità dove invece opererebbe il campo attrattivo-repulsivo esclusivamente gravitazionale (non gravito-elettrico).
Dalla strana non osservabilità del buco nero, si è ipotizzato che esso fosse composto unicamente da protoni (senza quindi neutroni ed elettroni), non uniti tra loro a formare un unico corpo, a causa della forza repulsiva tra essi operante che a ciò osterebbe.

Si è ipotizzato, inoltre, che il sistema galattico fosse assimilabile al sistema atomo, dove il buco nero svolgerebbe le stesse funzioni del nucleo dell’atomo, e le stelle orbitanti attorno al buco nero sarebbero gli elettroni che orbitano attorno al nucleo.

Se questo fosse vero, la relazione $E = Mc^2$, che esprime l’energia posseduta dal nucleo per il fatto stesso di avere una massa, dovrebbe subire una modifica con riguardo al nucleo della galassia (il buco nero).

Se il nucleo del buco nero è composto da soli protoni, ne deriva che l’energia che esso contiene sarà direttamente proporzionale non alla sua massa, ma alla sua carica Q, essendo i protoni particelle dotate di carica elettrica, per cui è ragionevole ipotizzare che la formula einsteiniana vista sopra diventi:

$$E = Qc^2$$ \hfill (62)

Vediamo se la (62) è vera.

Ipotizzando che il buco nero eserciti un campo gravito-elettrico attrattivo-repulsivo a partire da una certa distanza da esso, responsabile della rivoluzione delle stelle attorno ad esso, ne discende che l’energia potenziale gravito-elettrica di rivoluzione posseduta dalle predette stelle sarà pari al secondo membro della (53), quindi la (53) diventa:

$$E_r = \frac{m \ast g_e}{R \pi}$$ \hfill (63)

Dove m è la massa complessiva delle stelle visibili della via Lattea, quindi senza considerare l’ipotetica materia oscura, e g_e è l’accelerazione gravito-elettrica vista nella (56-bis).

Orbene, se è vero che l’energia espressa dalla (62) è responsabile della rivoluzione delle stelle attorno al buco nero, essa dovrà essere uguale all’energia potenziale gravito-elettrica di rivoluzione vista nella (63), quindi, dal confronto tra la (63) e la (62) possiamo scrivere:

$$\frac{m \ast g_e}{R \pi} = Qc^2$$ \hfill (64)
dove \(g_e = \frac{GKM}{R^2} \) è l’accelerazione gravito-elettrica che il buco nero esercita sulle stelle della galassia.

quindi la (64) diventa:

\[
\frac{GM}{R} \cdot \frac{Km}{R^2 \pi} = Qc^2
\]

(65)

Ma dalla meccanica newtoniana, a cui si ispira la meccanica qui proposta, sappiamo anche che:

\[
v = \sqrt{\frac{GM}{R}} \quad \Rightarrow \quad v^2 = \frac{GM}{R}.
\]

Sostituendo nella (65) \(v^2 \) a \(\frac{GM}{R} \), avremo:

\[
v^2 \cdot \frac{mK}{R^2 \pi} = Qc^2
\]

\[
\Rightarrow \quad v^2 = \frac{Qc^2R^2\pi}{mK}
\]

\[
\Rightarrow \quad v = cR \sqrt{\frac{Q\pi}{mK}}
\]

(66)

Visto che la velocità delle stelle non decresce con l’aumentare della distanza, possiamo ipotizzare che il campo gravito-elettrico attrattivo-repulsivo generato dai protoni non dipenda dalla distanza, per cui possiamo imporre come condizione che il raggio sia \(R = 1 \), quindi la (66) diventa:

\[
\Rightarrow \quad v = c \sqrt{\frac{Q\pi}{mK}}
\]

(67)

Proviamo adesso a calcolare, mediante la (67), la velocità delle stelle della via Lattea (la nostra galassia), le quali (escluse quelle più vicine al buco nero, alle quali si applica la formula newtoniana \(v = \sqrt{\frac{GM}{R}} \) orbitano attorno al buco nero centrale Sagittarius A* ad una velocità orbitale media, pressoché costante, stimata tra i 220 e 240 km/sec.

Occorre in primo luogo determinare la carica elettrica \(Q \) di Sagittarius A*.

A tal fine è necessario determinare il numero di protoni che compongono Sagittarius A*, per poi moltiplicarlo per la carica elettrica del singolo protone.

Per quantificare il numero di protoni ubicati all’interno di Sagittarius A* basta dividere la massa di quest’ultimo per la massa del singolo protone.
Massa di *Sagittarius A* = 3,75 * 1.000.000 * M_{Sole}

= 3,75 * 1.000.000 * 1,9891 * 10^{30}

Massa singolo protone = 1,66054 * 10^{-27}

Numero protoni *Sag. A* = \(\frac{3,75*1.000.000*1,9891*10^{30}}{1,66054*10^{-27}} \)

= 4,4919875462199043684584532742361 * 10^{63} \quad (68)

Per ottenere la carica elettrica Q di *Sagittarius A* moltiplichiamo il numero di protoni ricavato nella (68) per la carica del singolo protone, che è pari a 1,621 * 10^{-19} Coulomb, per cui avremo:

$Q = (4,4919875462199043684584532742361 * 10^{63}) * (1,621 * 10^{-19})$

$Q = 7,2815118124224649812711527575367 * 10^{44}$ Coulomb \quad (69)

Determiniamo adesso il valore m della massa complessiva delle stelle della via Lattea.

Secondo le stime degli astronomi, esso va da un minimo da 200 ad un massimo di 350 miliardi di masse solari (1,9891 * 10^{30} kg).

Applicando la stima minima (200 miliardi di masse solari), m sarà pari a:

$m = (200 * 10^9) * (1,9891 * 10^{30}) = 3,9782 * 10^{41} kg \quad (70)$

Sostituiamo adesso nella (67) i valori di Q e di m trovati rispettivamente nella (69) e nella (70), oltre a quelli, già noti, di c, π e K:

$$v = 299,792,458 * \sqrt{\frac{(7,2815118124224649812711527575367*10^{44}) + 3,14}{(3,9782*10^{41}) + (8,99 * 10^{39})}}$$

$$v = 239,702 \text{ m/sec}$$

$$v = 239,7 \text{ Km/sec} \quad (70\text{-bis})$$

Come si nota il valore della velocità orbitale delle stelle della via Lattea previsto dalla (67) è perfettamente in linea con l’osservazione, le cui stime vanno, si ripete, da 220 a 240 km/sec.

Siamo così giunti a dimostrare che la velocità orbitale delle stelle è direttamente proporzionale alla carica elettrica del buco nero, e inversamente proporzionale alla massa complessiva delle stelle visibili che compongono la galassia, senza quindi considerare affatto il contributo della materia oscura, la cui reale esistenza pare non essere più prospettabile con assoluta certezza.
Natura dei buchi neri: stelle di protoni

Alla luce dei riscontri matematici qui ottenuti, è estremamente probabile che il buco nero non sia ciò che residua del collasso gravitazionale di una stella, come ritiene l’opinione corrente, ma sia una concentrazione di protoni, il che può indurci a coniare, nei loro riguardi, la definizione di “stelle di protoni”.

Tali protoni non sarebbero uniti tra loro a formare un unico corpo massivo (il che potrebbe giustificare la loro non osservabilità), rimanendo delle particelle affatto autonome tra cui opererebbe repulsione elettrica, sia pur osteggiata dall’energia gravitazionale contenitiva generata dall’aspetto corpuscolare dei protoni, che impone a questi ultimi di restare confinati all’interno del raggio dato dalla (50).

In sintesi, l’aspetto corpuscolare di tali particelle protoniche darebbe luogo a due tipi di energia gravitazionale:

1) energia gravitazionale contenitiva (nascente dallo scontro tra le forze, generate dai medesimi protoni, gravitazionale attrattiva e gravitazionale repulsiva, stante la non insorgenza della forza di richiamo \(F_{rx} \)), che si oppone al movimento dei protoni (come si vedrà meglio in seguito), confinandoli, si ripete, all’interno di un circonferenza di raggio pari al valore espresso dalla (50);

2) energia gravitazionale di rivoluzione, che sussisterrebbe nella zona di prossimità (quella più vicina al buco nero), che causerebbe la rivoluzione delle stelle attorno al buco nero secondo il modello kepleriano-newtoniano, ossia con velocità decrescente all’aumentare della distanza dal centro (pari a \(v = \sqrt{\frac{GM}{R}} \)).

A partire da una certa distanza dal buco nero, il campo gravitazionale attrattivo-repulsivo cederebbe il posto al campo gravito-elettrico attrattivo-repulsivo, ascrivibile all’aspetto ondulatorio dei protoni del buco nero, generante energia gravito-elettrica di rivoluzione, responsabile della rivoluzione a velocità pressoché costante delle stelle attorno al nucleo nero centrale.

Del resto il cambiamento del modus-operandi della forza gravitazionale a seconda della fascia di spazio osservata, non sarebbe una novità, avendo già riscontrato tale peculiarità nell’esame del sistema solare, nel quale similmente esiste
una zona di prossimità dove la gravità è unicamente attrattiva, e una zona meno vicina, dove la gravità muta il suo effetto per diventare attrattiva e repulsiva al tempo stesso.

Questo è tutto ciò che posso dire sui buchi neri a questo punto della trattazione, ma sarò più chiaro nei successivi paragrafi.

- **La velocità e il raggio orbitale degli elettroni attorno al nucleo**

Se è vero che l’atomo è assimilabile ad una galassia — ma già ne abbiamo avuto una conferma dimostrando la piena correttezza dell’equazione $E = Qc^2$ vista nella (62), la quale, riferendosi ai protoni del buco nero, dimostra che essi si comportano, con riguardo alla galassia, allo stesso modo di come si comporta il nucleo dell’atomo con riguardo all’atomo stesso, dove vige la simile relazione $E = Mc^2$ — proviamo a determinare la velocità orbitale degli elettroni attorno al nucleo, utilizzando lo stesso iter logico-matematico visto sopra per la velocità orbitale delle stelle, pur non avendo comunque un parametro certo come riferimento, mai essendo stata misurata sperimentalmente la velocità degli elettroni.

Supponendo, analogamente a quanto si è fatto per le stelle, che l’energia nucleare sia la responsabile della rivoluzione degli elettroni attorno al nucleo, e che perciò questo eserciti un campo gravito-elettrico attrattivo-repulsivo a partire da una certa distanza da esso, ne conseguirebbe, come logica conseguenza, l’equiparazione dell’energia nucleare $E = Mc^2$ all’energia potenziale gravito-elettrica di rivoluzione che abbiamo visto nella (63), per cui si avrebbe che:

$$\frac{m* g_e}{R \pi} = Mc^2 \quad (71)$$

Dove m è la massa complessiva degli elettroni, M è la massa del nucleo e g_e è l’accelerazione gravito-elettrica generata dal nucleo sugli elettroni.

Sapendo che $g_e = \frac{G M}{R^2}$, la (71) diventa:

$$\frac{G M}{R} \cdot \frac{mK}{R^2 \pi} = Mc^2 \quad (72)$$

Ma dalla meccanica newtoniana sappiamo che $v = \sqrt{\frac{G M}{R}}$, quindi $v^2 = \frac{G M}{R}$.

Sostituendo nella (72) $v^2 \cdot \frac{G M}{R}$, avremo:
\[
\frac{v^2 \cdot mK}{R^2 \pi} = Mc^2 \quad (73)
\]

\[
\Rightarrow v^2 = \frac{Mc^2R^2\pi}{mK}
\]

\[
\Rightarrow v = cR \sqrt{\frac{M\pi}{mK}} \quad (74)
\]

Supponendo che la velocità degli elettroni non decresca con l’aumentare della distanza dal nucleo, analogamente a quanto accade per le stelle delle galassie, possiamo ipotizzare che il campo gravito-elettrico attrattivo-repulsivo generato dal nucleo atomico non dipenda dalla distanza, per cui possiamo imporre come condizione che il raggio sia \(R = 1 \), quindi la (74) diventa:

\[
\Rightarrow v = cR \sqrt{\frac{M\pi}{mK}} \quad (75)
\]

Proviamo adesso a calcolare la velocità degli elettroni dell’atomo di idrogeno, i quali, secondo la teoria qui proposta, dovrebbero orbitare attorno al nucleo alla velocità espressa dalla (75), dove, si ripete, \(m \) è la massa complessiva degli elettroni e \(M \) è la massa del nucleo del predetto atomo.

\[m_{(elettroni \, H)} = \text{numero di elettroni dell’idrogeno} \times (9,11 \times 10^{-31}) = 1 \times (9,11 \times 10^{-31}) = 9,11 \times 10^{-31};\]

\[M_{(nucleo \, H)} = \text{numero di massa} \times 1,66054 \times 10^{-27} = 1 \times 1,66054 \times 10^{-27}\]

Sostituiamo adesso nella (75) i sopraindici valori di \(m \) e \(M \), nonché i già noti valori di \(c, \pi \) e \(K \):

\[v = 299,792,458 \sqrt{\frac{1 \times (1,66054 \times 10^{-27}) \times 3,14}{(9,11 \times 10^{-31}) \times (8,99 \times 10^9)}}\]

\[v = 239,262 \, m/sec\]

\[v = 239,262 \, Km/sec \quad (75\text{-bis})\]

Questa è la velocità teorica con cui gli elettroni dovrebbero girare attorno al nucleo dell’atomo di idrogeno: come si nota, la velocità degli elettroni ricavata nella (75-bis) è praticamente identica alla velocità orbitale delle stelle della via Lattea a cui siamo giunti nella (70-bis): questo conferma ulteriormente la nostra assunzione secondo cui il sistema galassia è molto simile al sistema atomo.

E’ pur vero che, per atomi con numero di massa più alto, la velocità degli
elettroni cambia (ad esempio, per l'atomo di oro, la velocità degli elettroni prevista dalla (75) è attorno ai 375 km/sec), ma si tratta di un valore non eccessivamente lontano dalla velocità orbitale delle stelle solitamente riscontrabile nelle galassie.

Si badi che quello qui proposto differisce dal modello proposto da Rutherford, il quale ipotizzò che il sistema atomo fosse simile al sistema solare, dove l’elettrone era ritenuto essere soggetto, in accordo al modello newtoniano, solo a forza attrattiva elettrica.

Questo modello fu scartato perché fu fatto notare che l’elettrone, nel mentre ruota attorno al nucleo, dovrebbe perdere energia, e quindi cadere sul nucleo.

Ma nel nostro modello, nel quale l’eletrone è soggetto ad un campo attrattivo-repulsivo, questo rischio è scongiurato proprio dalla forza repulsiva.

Vediamo se (75) può trovare una conferma nei dati sperimentali.

Dagli esperimenti [3] sappiamo che negli atomi pesanti il raggio delle orbite degli elettroni più interne è circa 100 volte più grande del raggio di carica nucleare (in particolare si veda a pagina 121 della citazione [3]): vediamo se possiamo dimostrarlo attraverso la nostra teoria.

Consideriamo l'atomo di piombo, notoriamente pesante (il numero di massa A è 208).

Calcoliamo tramite la (75) la velocità degli elettroni dell’atomo di piombo.

Sappiamo che nell'atomo di piombo il numero atomico è 82, quindi per calcolare la massa totale di elettrone (m) dobbiamo moltiplicare la massa atomica 82 per la massa di elettroni $9,11 \times 10^{-31}$.

$$m = 7,4702 \times 10^{-29} kg$$

Ora sostituiamo nella (75) il valore di m testè trovato e il valore della massa del nucleo dell’atomo di piombo ($208 \times 1,66054 \times 10^{-27}$):

$$v = 299,792,458 \sqrt{\frac{208 \times (1,66054 \times 10^{-27}) + 3,1415}{(7,4702 \times 10^{-29}) \times (8,99 \times 10^9)}}$$

$$v = 381.065 \text{ m/sec} \quad (75\text{-ter})$$

Ora calcoliamo il raggio dell’orbita elettronica più interna dell’atomo di piombo.

A tale scopo possiamo considerare un modello nucleare in cui il nucleo è orbitato non dai nucleoni ombra, ma dagli elettroni, quindi possiamo usare la formula
(53) e confrontarla con il doppio dell'energia cinetica degli elettroni (perché questa volta si assume che le particelle orbitanti nel nucleo siano queste ultime):

\[\frac{F_{ge}}{R \pi} = m v^2 \]

\[\frac{m * g e}{R \pi} = m v^2 \]

(75-quater)

dove \(m \) è la massa totale degli elettroni dell’atomo di piombo, e \(v \) è la velocità dei suoi elettroni espressa nella (75-ter).

Questa volta dobbiamo usare l’energia potenziale gravito-elettrica di rivoluzione (senza il 4) perché abbiamo assunto che gli elettroni non sono dotati della velocità della luce (come vedremo meglio alla fine del paragrafo intitolato “Le caratteristiche delle particelle ombra connesse ai protoni e ai neutroni”), dove \(v \) è il valore della velocità degli elettroni ricavato dalla (75), cioè 381.065 m/sec.

Dalla (75-quater) abbiamo che:

\[\frac{GKM}{R^2} \cdot \frac{m}{R \pi} = m v^2 \]

\[\Rightarrow \frac{GKMm}{R^3 \pi} = m v^2 \]

\[\Rightarrow GKM = R^3 \pi v^2 \]

\[\Rightarrow R^3 = \frac{GKM}{\pi v^2} \]

\[\Rightarrow R = \sqrt[3]{\frac{GKM}{\pi v^2}} \]

(75-quinquies)

\[R = \sqrt[3]{\frac{(6,67433 \times 10^{-11}) \times (8,99 \times 10^9) \times (208 \times 1,66054 \times 10^{-27})}{3,1415 \times (381.065)^2}} \]

\[R = 7,6874 \times 10^{-13} \text{metri} \]

(75-sexies)

Questo è il valore teorico del raggio dell’orbita elettronica più interna dell’atomo di piombo.

Confrontiamo ora il raggio teorico ottenuto nella (75-sexies) col raggio di carica del nucleo dell’atomo di piombo dato dalla (59), perché nella citazione [3] il confronto è effettuato col raggio di carica del nucleo (1.2 \(\times \ A^{1/3} \) fm):

\[\frac{7,6874 \times 10^{-13}}{7,1596 \times 10^{-15}} = 107,37 \]

Abbiamo così dimostrato che le formule (75) e (75-quinquies) sono corrette,
essendo il valore teorico del raggio orbitale dell’elettrone evincibile dalle predette formule pari a circa 100 volte il raggio di carica del nucleo dell’atomo di piombo (atomo pesante).

Occorre precisare che la (75-quinquies) esprime il raggio dell’orbita dell’elettrone più interna perché questo è ancora una volta il "raggio ideale" dell’elettrone, dove la stabilità orbitale è massima non solo perché a questa distanza dal nucleo l’energia potenziale gravito-elettrica degli elettroni equivale al doppio della loro energia cinetica, ma anche perché questa formula include la velocità data dalla (75), che, alla distanza espressa da (75-quinquies), è la velocità data dalla maggiore ampiezza delle due forze gravito-elettriche (attrattiva e repulsiva), ma con il minor disallineamento tra loro (cioè quando l’elettrone è il più vicino possibile al nucleo), come vedremo meglio alla fine del prossimo paragrafo e nel paragrafo 5.14.

Dal momento che gli esperimenti di cui si parla nella citazione [3] ci dicono che il rapporto di 100/1 tra il raggio orbitale più interno dell’elettrone e il raggio di carica del nucleo riguarda solo nuclei pesanti, proviamo ora a calcolare l’orbita dell’elettrone di idrogeno, il nucleo più leggero, per dimostrare che la (75) è di nuovo corretta (infatti vedremo che il rapporto risultante sarà maggiore di 100).

Usiamo la velocità degli elettroni dell’atomo di idrogeno ottenuta nella (75-bis): 239.262 m/sec.

Ora calcoliamo il raggio dell’orbita dell’elettrone dell’atomo di idrogeno usando la formula (75-quinquies)

\[
R = \sqrt[3]{\frac{KGM}{\pi v^2}}
\]

\[
R = \sqrt[3]{\frac{(8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1,66054 \times 10^{-27})}{3,1415 \times (239.262)^2}} = 1,7694 \times 10^{-13} \text{ metri} \quad (75-septies)
\]

Confrontiamo ora il raggio teorico dell’orbita dell’elettrone ottenuto sopra con il raggio di carica nucleare dell’atomo di idrogeno dato dalla (59) e vedremo che il primo è più grande del secondo di ben oltre 100 volte (circa 150 volte):

\[
\frac{1,7694 \times 10^{-13}}{1,20835 \times 10^{-13}} = 146,43
\]

Abbiamo così dimostrato che le formule (75) e (75-quinquies) sono corrette,
perché da esse si evince che il valore teorico del raggio orbitale più interno degli elettroni è pari a circa 100 volte il raggio di carica nucleare solo negli atomi pesanti, in perfetto accordo con gli esperimenti.

Possiamo quindi scrivere in modo più preciso la formula (75-quinquies) dove, ripetiamo, v è uguale al membro di destra della (75), quindi sostituiamo nella (75-quinquies) v con il menzionato membro di destra:

$$R = \sqrt{\frac{GK}{\pi v^2}}$$

$$\Rightarrow R = \sqrt{\frac{GKM}{\pi \left(\frac{M\pi}{mK}\right)^2}}$$

$$\Rightarrow R = \sqrt{3 \frac{GKM}{\pi^2 c^2 M}}$$

$$\Rightarrow R = \sqrt{3 \frac{GK^2 m}{\pi^2 c^2}}$$

(75-octies)

Questo è il raggio dell’orbita elettronica più interna: come possiamo notare, non dipende dalla massa del nucleo, ma solo dalla massa totale degli elettroni (m).

In ogni caso occorre precisare che la (75-octies) non è applicabile al sistema galattico, perché in esso l'energia potenziale del sistema centrale (la stella di protoni) è diversa dall'energia potenziale concernente lo spazio circostante, essendo la prima gravitazionale e la seconda gravito-elettrica (eccetto la parte più interna dello spazio circostante, dove è gravitazionale).

Verifichiamo, ora, se la nostra teoria consente di determinare anche la lunghezza massima del raggio atomico, cioè l'orbita più esterna degli elettroni.

Prendiamo l'atomo di idrogeno.

Abbiamo già visto che per ottenere la massima velocità di elettrone generata dal nucleo mediante il legame di entanglement esistente tra nucleoni ed elettroni, si deve imporre nella formula (74) la condizione $R = 1$.

Pertanto, analogamente, per determinare la massima estensione del raggio orbitale di elettroni a cui è possibile mantenere costante la velocità orbitale degli elettroni, si deve imporre nella formula del raggio orbitale degli elettroni (75-
quinquies) la condizione \(v = 1 \):

\[
R = \frac{3 \sqrt{KGM}}{\pi (1)^2}
\]

\[
\Rightarrow R = \frac{3 \sqrt{KGM}}{\pi}
\]

(75-novies)

Sostituiamo nella (75-novies) \(M \) con la massa del nucleo di idrogeno:

\[
R = \sqrt{\frac{(8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1,66054 \times 10^{-27})}{3,1415}}
\]

\[
R = 6,81 \times 10^{-10} \text{ metri}
\]

Questa è la massima distanza a cui l'energia nucleare riesce a far muovere l'elettrone a velocità costante, quindi è la massima estensione dell’atomo (come spiegheremo nel paragrafo “Le caratteristiche delle particelle ombra connesse ai protoni e ai neutroni”).

Come notiamo, l'orbita più esterna degli elettroni prevista dalla (75-novies) è in buon accordo con le dimensioni dell’atomo attualmente accettate, cioè 5 ordini di grandezza più grandi del raggio nucleare (vedi pag. 11 della citazione [6]).

In sintesi, il range del raggio orbitale degli elettroni attorno al nucleo è dal valore minimo dato dalla (75-octies) al valore massimo dato dalla (75-novies).

- **Principio di asimmetria specifica tra energia potenziale gravitazionale e energia cinetica quale condizione di stabilità ideale dell’orbita**

In questa sede dimostreremo che nel nostro universo esiste un principio fondamentale secondo cui, l’equilibrio dinamico tra due (o più) corpi — inteso quale orbitare potenzialmente perpetuo di un corpo attorno ad un altro corpo o attorno al reciproco centro di massa — è tanto più stabile quanto più l’energia potenziale gravitazionale a cui è soggetto un corpo tenda al doppio della sua energia cinetica, o al doppio dell’energia cinetica del corpo che lo fa muovere tramite un rapporto di entanglement.

In altri termini, un corpo orbita nella maniera più stabile possibile (quindi potenzialmente in eterno) attorno all’attrattore-repulsore o al reciproco centro di massa, se sussiste la seguente condizione:
\[E_p = 2 E_k \] (76)

dove \(E_p \) è l’energia potenziale gravitazionale a cui è soggetto il corpo orbitante e \(E_k \) è la sua energia cinetica o quella del corpo entangled responsabile del suo movimento.

L’equilibrio tra le due energie è “asimmetrico” perché tra esse non deve esservi mai parità; ed è “specifico” perché non è sufficiente una generica sproporzione tra le due energie, ma occorre raggiungere un livello ben preciso di disuguaglianza, ossia la potenziale deve essere pari al doppio della cinetica; inoltre è “ideale” perché se non si raggiunge la condizione indicata nella (76), l’orbita non sarà necessariamente instabile, ma di certo sarà meno stabile.

Questo principio può essere dimostrato comparando i valori dell’energia potenziale e cinetica sia nel macrocosmo che nel microcosmo.

Partiamo dal macrocosmo, in particolare dal sistema solare.

Sappiamo che nel sistema solare l’energia potenziale gravitazionale è espressa dalla (52-bis), che abbiamo visto diventare, in virtù del secondo principio della dinamica:

\[U = m \cdot g \cdot R \] (77)

Questa formula è quella a cui dobbiamo necessariamente ricorrere nel nostro caso, in quanto nel sistema solare, pur sussistendo un campo attrattivo-repulsivo generato dall’astro centrale, non è possibile ricorrere alla formula (53), tipica del campo attrattivo-repulsivo, per i motivi che diremo nel prossimo paragrafo.

Ebbene, vediamo se è vera la nostra assunzione, secondo la quale esiste un principio fondamentale nel nostro universo secondo cui, affinché si instauri un equilibrio dinamico stabile tra due corpi legati da forza gravitazionale, occorre che l’energia potenziale gravitazionale a cui è soggetto un corpo sia pari al doppio della sua energia cinetica.

Se questo è vero, allora nel nostro sistema solare avremo che, per ogni pianeta, varrà la seguente relazione:

\[U = 2 E_k \] (78)

dove \(E_k \) è l’energia cinetica del pianeta, che è uguale a:
\[E_k = \frac{1}{2} m v^2 \] \hspace{1cm} (79)

Sostituendo il primo membro della (78) col secondo membro della (77), e sostituendo \(E_k \) col suo valore scritto nella (79), abbiamo che:

\[m \ast g \ast R = 2 \left(\frac{1}{2} m v^2 \right) \]
\[\Rightarrow m \ast g \ast R = 2 \left(\frac{1}{2} m v^2 \right) \]
\[\Rightarrow g \ast R = v^2 \]
\[\Rightarrow \frac{GM}{R^2} \ast R = v^2 \]
\[\Rightarrow \frac{GM}{R} = v^2 \]
\[v = \sqrt{\frac{GM}{R}} \] \hspace{1cm} (79-bis)

che è proprio il valore della velocità orbitale dei pianeti, il che dimostra l’esistenza del principio in discorso a livello macroscopico.

Tale principio trova a sua volta un fondamento nel principio del minor allontanamento possibile e del minor allontanamento possibile, che sopra abbiamo visto essere soddisfatto in misura tanto maggiore quanto minore è la distanza tra i fuochi, ossia quanto minore è l’eccentricità, ed infatti la (79-bis) esprime notoriamente la velocità necessaria per ottenere un’orbita (quasi) perfettamente circolare.

Occorre ribadire che, se il principio non è rispettato, l’orbita non sarà instabile, ma sarà solo meno stabile, cioè avrà un grado di eccentricità via via maggiore fino a diventare iperbolica nel caso in cui l’energia potenziale eguagli la cinetica.

Vediamo se tale principio esiste anche nell’atomo.

Partiamo dal nucleo.

Ipotizziamo che i nucleoni (protoni e neutroni) non stiamo fermi all’interno del nucleo, ma si muovano alla velocità della luce.

Questo è reso in teoria possibile dal fatto che, come vedremo in seguito, il la somma dei volumi dei singoli nucleoni è sempre inferiore al volume del nucleo (più o meno in un rapporto di 1 : 3), per cui è ragionevole ipotizzare che tale spazio serva ai nucleoni per muoversi.
Orbene, se il principio espresso dalla (76) opera anche all’interno del nucleo, allora avremo che l’energia potenziale dei nucleoni, espressa dal primo membro della (56-ter), e generata dal campo attrattivo-repulsivo prodotto dai nucleoni stessi, sarà uguale al doppio della loro energia cinetica, quindi possiamo scrivere:

\[
\frac{4kGM^2}{R^3\pi} = 2 \left(\frac{1}{2} Mc^2\right)
\]

\[
\rightarrow \frac{4kGM^2}{R^3\pi} = Mc^2
\]

\[
\rightarrow \frac{4kGM^2}{R^3\pi} = M^2c^2
\]

\[
\rightarrow \frac{4kGM}{R^3\pi} = c^2
\]

\[
\rightarrow c = \sqrt{\frac{4kGM}{R^3\pi}} \quad (80)
\]

E infatti, calcoli alla mano, si ha che il secondo membro della (80) è proprio pari alla velocità della luce, purché si attribuisca ad R il valore ottenuto dalla (57).

E’ molto probabile, quindi, che i nucleoni si muovano all’interno del nucleo alla velocità della luce, come sembrerebbe confermato dal fatto, si ripete, che il volume del nucleo è sempre maggiore della somma dei volumi dei singoli nucleoni.

Ma i nucleoni si muovono di moto rettilineo o circolare?

La presenza del 4 innanzi a g nella formula (55) dell’energia potenziale contenitiva posseduta dal nucleo fa deporre per la seconda ipotesi, in quanto tale numero può giustificarsi solo ipotizzando il movimento circolare dei nucleoni al suo interno, poiché solo da tale tipo di moto nascono l’accelerazione centripeta e quella centrifuga, da sommarsi all’accelerazione gravito-elettrica attrattiva e gravito-elettrica repulsiva (in tutto fanno per l’appunto 4 accelerazioni uguali), come abbiamo visto ampiamente sopra.

Ma come fanno i nucleoni a muoversi attorno al centro del nucleo se in questo punto non c’è nulla?

In altri termini, un corpo può orbitare attorno ad un altro corpo, o attorno al reciproco centro di massa, ma non può di certo ruotare attorno ad un punto nel quale non c’è alcun altro corpo massivo.

Come risolvere l’impasse?
La soluzione sta nella (56-ter).

Riportiamola qui di seguito:

\[
\frac{4kGM^2}{R^3\pi} = Mc^2
\]

Il primo membro della sopraistante equazione esprime, come detto più volte, l’energia potenziale gravito-elettrica del nucleo.

Come è possibile che essa dipenda dal quadrato della massa dei nucleoni?

Solitamente l’energia potenziale a cui è soggetto un corpo che ruota attorno ad un corpo attrattore dipende non solo dalla massa dell’attrattore, ma anche da quella del corpo attratto:

\[
U = m \cdot g \cdot R
\]

\[
\Rightarrow U = m \cdot \frac{GM}{R^2} \cdot R
\]

dove \(m\) è, appunto, la massa del corpo attratto (orbitante) ed \(M\) la massa del corpo attrattore (orbitato).

Come è possibile, allora, che l’energia potenziale dei nucleoni, corpo attrattore, dipende solo dal quadrato della loro massa, e non anche dalla massa del corpo orbitante?

L’unica spiegazione possibile, a mio avviso, è ritenere che il nucleone si comporti contemporaneamente sia da corpo orbitato che da corpo orbitante, cioè che stia al contempo sia al centro del nucleo che anche in orbita attorno ad esso alla distanza indicata dalla (57).

In altri termini è come se il nucleone posto al centro del nucleo proiettasse sul “guscio” del nucleo la sua ombra che si muove alla velocità della luce attorno al nucleone o ai nucleoni centrali.

Il fatto che la particella orbitante sia assimilabile ad un’ombra del nucleone centrale consente anche di spiegare come sia possibile che il nucleone centrale resti immobile mentre il suo alter-ego si muova alla velocità della luce attorno ad esso, che invece sarebbe difficilmente risolvibile col ricorso al puro dualismo onda-particella, il che non spiegherebbe l’immobilità del nucleone centrale, da una parte, e la mobilità del suo alter-ego orbitante, dall’altra; inoltre il ricorso al concetto di “nucleone ombra orbitante”, inteso quale alter-ego di quello centrale, consente anche di spiegare perché, come risulta dagli esperimenti, la densità del
nucleo è concentrata nel suo centro.

In questa prospettiva sembrerebbe essere confermata, sia pur con la precisazione che faremo qui di seguito, la cosiddetta interpretazione di Copenaghen dell’esperimento della doppia fenditura, secondo la quale il medesimo fotone, lanciato su una sottile lamina d’oro, attraversa contemporaneamente due fenditure realizzate su tale lamina, in contrapposizione alla interpretazione di De Broglie, il quale invece propose che il fotone non ha doppia natura, sia di onda che di particella, ma che l’onda è qualcosa diverso dalla particella, per cui l’esperimento della doppia fenditura, a suo avviso, andrebbe interpretato nel senso che una fenditura è attraversata dal fotone e l’altra è attraversata dall’onda, su cui si muoverebbe il fotone.

In altri termini è probabile che i due fenomeni siano da ascriversi entrambi alla particolare natura “duale” delle particelle fondamentali, alle quali a questo punto devono ritenersi appartenere anche i nucleoni (protoni e neutroni), sicché deve opinarsi che il nucleone sia allo stesso tempo una particella e un’onda, sia pur con la particolarità di muoversi non all’unisono con l’onda, ma proiettando la sua ombra tramite l’onda, e trovarsi conseguentemente in due luoghi diversi contemporaneamente (sia al centro del nucleo che in orbita su l’altra), anche se mi rendo conto che qualsiasi tentativo di descrivere questo straordinario fenomeno del dualismo onda-particella può apparire maldestro.

Questo confermerebbe la teoria della natura “duale” delle particelle fondamentali proposta dalla meccanica quantistica.

Del resto gli esperimenti [2] dimostrano che:

- i nucleoni non sono delle particelle puntiformi, non mostrando di avere una superficie ben definita, il che ben si concilia con la loro natura duale emersa nel presente lavoro;
- hanno un momento angolare, a riprova del loro movimento circolare, in accordo con i risultati a cui siamo giunti nel presente lavoro.

Ma i nucleoni, ubicati al centro del nucleo, sono aggregati o disgiunti?
Non riesco a formulare ipotesi a tal proposito, salvo si ammetta l’esistenza della forza nucleare forte tra i nucleoni, nel qual caso dovrebbe propendersi per la prima ipotesi (aggregazione tra nucleoni), ma a questa domanda daremo una
risposta più precisa nel paragrafo intitolato “La forza gravito-elettrica: differenze con la forza elettrica e con la forza gravitazionale”.

Analizziamo adesso a titolo di esempio l’atomo di idrogeno, il cui nucleo possiede al suo interno un solo protone.

E’ noto che, dopo gli esperimenti di Antognini del 2010, confermati da successivi esperimenti, il raggio del protone è pari a circa 0,84 femtometri (1 femtometro è pari a 10^{-15} metri), ma il raggio del nucleo, espresso dalla (57), è pari a 2,4167 femtometri, quindi il volume del nucleo è pressoché il triplo del volume del protone (e questo vale anche se si dà al protone il valore di 0,88 femtometri, come si credeva precedentemente all’esperimento di Antognini).

Il raggio d’azione dell’energia potenziale contenitiva del nucleo indicato dalla (57) può essere definito come il raggio “ideale” del nucleo – pari al doppio del raggio di carica espresso invece dalla (59) – essendo questa la dimensione del raggio alla quale il nucleo raggiunge la massima stabilità, perché solo con questo valore del raggio l’energia potenziale contenitiva espressa dal membro di sinistra della (56-ter) eguaglia perfettamente il doppio dell’energia cinetica dei nucleoni ($E = Mc^2$), soddisfacendo appieno il principio di asimmetria specifica tra le due energie sancito dalla (76).

Il raggio dato dalla (57) non può essere uguale al raggio di carica espresso dalla (59), perché altrimenti l’energia potenziale contenitiva supererebbe il doppio dell’energia cinetica dei nucleoni, col rischio di implosione del nucleo stesso.

Non riesco a stabilire quale sia il limite oltre il quale il superamento dell’energia potenziale contenitiva rispetto al doppio di quella cinetica comporti l’implosione del nucleo, pur essendo ragionevole ipotizzare che questo limite coincida con la distanza alla quale il nucleone (o i nucleoni) non riescono più a muoversi.

E’ però possibile stabilire con maggior grado di certezza teorica il limite oltre il quale si dovrebbe verificare l’esplosione del nucleo, la qual cosa, a rigor di logica, dovrebbe concretizzarsi, utilizzando un processo logico analogo a quello usato per la determinazione della velocità di fuga dei pianeti, quando l’energia potenziale contenitiva del nucleo si riduca fino ad eguagliare l’energia cinetica dei
nucleoni che lo compongono:

\[E_c = E_k \]

\[\Rightarrow \frac{4kGM^2}{R^3\pi} = \frac{1}{2} Mc^2 \]

\[\Rightarrow \frac{8kGM^2}{R^3\pi} = M^2c^2 \]

\[\Rightarrow R^2\pi c^2 = 8kGM \]

\[\Rightarrow R = \frac{3}{\sqrt{\frac{8GM}{\pi c^2}}} \quad (81) \]

Il valore espresso dalla (81), maggiore di quello espresso dalla (57) è, dunque, la lunghezza del raggio del nucleo alla quale l’energia potenziale contenitiva del nucleo eguaglia l’energia cinetica dei nucleoni, implicando l’esplosione del nucleo e la conseguente liberazione di energia.

Come si è detto, il ragionamento appena fatto è analogo a quello che normalmente si fa per determinare teoricamente la velocità di fuga di pianeti, dove a tal fine è posta l’uguaglianza tra l’energia potenziale gravitazionale del pianeta e l’energia cinetica dello stesso:

\[F_g * R = \frac{1}{2} mv^2 \]

\[\Rightarrow m * g * R = \frac{1}{2} mv^2 \]

\[\Rightarrow m * \frac{GM}{R^2} * R = \frac{1}{2} mv^2 \]

\[\Rightarrow m * \frac{GM}{R^2} * R = \frac{1}{2} mv^2 \]

\[\Rightarrow \frac{2GM}{R} = v^2 \]

\[\Rightarrow V = \sqrt{\frac{2GM}{R}} \]

Utilizziamo ora il medesimo ragionamento per determinare le conseguenze dell’uguaglianza tra l’energia potenziale di rivoluzione degli elettroni e l’energia cinetica.

Per il principio di asimmetria specifica qui ipotizzato, l’energia potenziale a cui sono soggetti gli elettroni deve eguagliare il doppio dell’energia cinetica del corpo entangled responsabile del suo movimento: in tal caso, infatti, è applicabile
la seconda parte del principio anzidetto (… “o al doppio dell’energia cinetica del corpo che lo fa muovere tramite un rapporto di entanglement”), avendo noi ipotizzato che l’elettrone è mosso dall’energia cinetica dei nucleoni, la quale si “trasmette” (anche se questo termine è improprio) agli elettroni evidentemente tramite il rapporto di entanglement di cui è ragionevole supporre l’esistenza, quindi senza dispersione di energia e senza alcun tempo di trasmissione dell’informazione.

Conseguentemente dobbiamo eguagliare l’energia potenziale di rivoluzione degli elettroni, espressa dal primo membro della (73), all’energia cinetica E_k dei nucleoni:

$$v^2 \times \frac{mk}{R^2 \pi} = \frac{1}{2} Mc^2$$

dove M è la massa dei nucleoni ed m è la massa degli elettroni;

$$\Rightarrow v^2 = \frac{Mc^2R^2 \pi}{2mK}$$

$$\Rightarrow v = cR \sqrt{\frac{M \pi}{2mK}}$$

Ponendo nuovamente $R = 1$ per i motivi indicati nel paragrafo sulla velocità degli elettroni, abbiamo:

$$v = c \sqrt{\frac{M \pi}{2mK}}$$

$$v = 169,143 \text{ Km/sec}$$

Questa è la velocità teorica a cui dovrebbe essere costretto a viaggiare l’elettrone dell’atomo di idrogeno per emettere radiazione elettromagnetica sotto forma di emissione di un fotone.

E’ opportuno evidenziare che questa non è la distanza alla quale l’eletrone si dovrebbe muovere se la sua velocità fosse di 169,143 m/s, ma la distanza alla quale l’elettrone si muoverebbe alla predetta velocità se la forza gravito-elettrica repulsiva formasse con la gravito-elettrica attrattiva un angolo uguale a quello formato tra esse alla distanza prevista dalla (75-septies): la ragione di questo verrà spiegata nel paragrafo “La ragione della velocità non decrescente delle stelle e degli elettroni”.

Si badi che questa non è la velocità di fuga dell’elettrone, ma la velocità alla quale l’elettrone emette radiazioni elettromagnetiche.
Questa assunzione è confermata dal dato sperimentale, ormai noto, che, riducendo l’energia di un elettrone, esso emette radiazione elettromagnetica tramite l’emissione di un fotone.

In particolare si ponga mente al fatto che la velocità data dalla (82) è inferiore a quella imposta dal campo attrattivo-repulsivo generato dal nucleo (che nella 75-bis abbiamo visto essere, per il predetto atomo di idrogeno, di circa 240 km/sec), per cui il sur-plus di energia che si verrebbe a creare istantaneamente per effetto del legame di entanglement esistente presumibilmente tra nucleoni ed elettroni determinerebbe il rilascio, da parte dell’elettrone la cui velocità è forzatamente ridotta, di energia sotto forma di radiazioni elettromagnetiche (ma forse è più appropriato definirle radiazioni gravito-elettriche).

Ma la riduzione della velocità dell’elettrone, conseguente alla diminuzione della sua energia, è solo una delle possibilità astrattamente verificabili.

In effetti può accadere anche che l’elettrone la cui energia è ridotta, pur mantenendo costante la sua velocità di rivoluzione attorno al nucleo, passi ad un livello energetico inferiore, andando cioè ad orbitare più lontano dal nucleo.

Più avanti infatti vedremo che, assumendo l’analogia tra atomo e galassia — almeno sotto il profilo del campo gravito-elettrico di rivoluzione che si verrebbe a formare nello spazio circostante il nucleo centrale — non è azzardato ritenere che la velocità degli elettroni, come quella delle stelle, resti costante, pur muovendosi non tutti alla stessa distanza dal nucleo, e vedremo che questo è astrattamente realizzabile in un modello basato sul principio del pendolo, ove si ponga mente alla possibilità che la forza repulsiva, pur diminuendo di intensità al pari di quella attrattiva, formi con quest’ultima un angolo sempre maggiore in rapporto all’aumentare della distanza dal nucleo, in modo tale da mantenere la forza F_{rx} costante, e quindi la velocità orbitale costante.

In questa seconda ipotesi, l’emissione del fotone sarebbe conseguente allo spostamento dell’elettrone su un orbita con raggio maggiore, dove c’è un’energia di rivoluzione minore, pur caratterizzata da un’eguale velocità di rivoluzione, come vedremo meglio in seguito nel paragrafo intitolato “La ragione della velocità non decrescente delle stelle e degli elettroni”.

In particolare, la distanza dal nucleo dell’atomo di idrogeno alla quale
l'elettrone emetterebbe un fotone sarebbe data dalla formula (75-quinquies), con \(v \) uguale al valore espresso dalla (82):

\[
R = 3 \sqrt{\frac{KGM}{\pi v^2}}
\]

\[
R = 3 \sqrt{\frac{(8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1 \times 1,66054 \times 10^{-27})}{3,1415 \times (169.143)^2}}
\]

\[
R = 2,2297 \times 10^{-13} \text{ metri}
\]

Lo stesso risultato si ottiene anche imponendo l'uguaglianza tra l'energia potenziale e l'energia cinetica degli elettroni, prendendo come \(v \) il valore dato dalla (75-bis), ossia 239.262 m/sec.

\[
\frac{GKmM}{R^3\pi} = \frac{1}{2}m v^2
\]

\[
R = 3 \sqrt{\frac{2GKM}{\pi v^2}}
\]

Quindi, nella (82-bis), possiamo sostituire \(v \) col membro di destra della (75):

\[
R = 3 \sqrt{\frac{2GKM}{\pi \left(c \sqrt{\frac{M \pi}{mk}}\right)^2}}
\]

\[
R = 3 \sqrt{\frac{2GK^2m}{\pi^2c^2}}
\]

\[
R = 3 \sqrt{\frac{2 \times (6,67433 \times 10^{-11}) \times (8,99 \times 10^9)^2 \times (1 \times 9.11 \times 10^{-31})}{(3,1415)^2 \times (299,792,458)^2}}
\]

\[
R = 2,2297 \times 10^{-13} \text{ metri}
\]

L'equazione (82-ter) esprime quindi il raggio orbitale dell'elettrone a partire dal quale esso inizia a emettere radiazioni gravito-elettriche nella forma di rilascio di fotonii.

Ma a questo punto sorge una domanda: se la velocità degli elettroni è costante, come è possibile che il sistema elettrone-nucleo sia stabile?

In altre parole, l'orbita è stabile se l'energia potenziale è pari a due volte l'energia cinetica del corpo orbitante, ma, se la velocità non diminuisce con la distanza, ad un certo punto (cioè il raggio previsto dalla 82-ter) l'energia cinetica
sarà uguale a quella potenziale, e l’equilibrio dinamico tra loro si dovrebbe rompere.

Perché questo non accade nell’atomo?

L’unica spiegazione possibile a questa risposta è credere che il legame di entanglement esistente tra nucleoni ed elettroni garantisce la stabilità dell’atomo. Infatti, imponendo nella (71) l’uguaglianza tra l’energia potenziale complessiva degli elettroni ed il doppio dell’energia cinetica dei nucleoni, abbiamo ricavato la velocità di tutti gli elettroni, data dal rapporto tra la massa totale dei nucleoni e la massa totale degli elettroni, quindi, quando questa velocità viene rispettata e l’elettrone si muove entro il raggio massimo dato dalla (75-novies), il sistema elettrone-nucleo è ancora in equilibrio, anche se è meno stabile.

Questo legame di entanglement si manifesta anche con l’emissione di fotoni quando la distanza data dalla (82-ter) viene superata: in questo modo l’elettrone perde energia e ritorna al livello più interno, il più stabile, perché qui l’energia potenziale degli elettroni è maggiore della loro energia cinetica.

In altri termini, quando l’elettrone si trova nella fascia di instabilità, cioè oltre la distanza data dalla (82-ter), il nucleo istantaneamente “dice” all’elettrone di rilasciare fotoni in modo tale da perdere energia e ritornare nella zona di stabilità (il livello più interno), e una possibile dimostrazione di questa comunicazione istantanea è proprio il fatto che la massa (teorica) del fotone è molto simile alla massa del protone.

Dopo tutto, la massa teorica [7] del fotone è di circa 2×10^{-54} kg, e questo valore è molto vicino alla massa del protone elevata al quadrato, cioè $2,75 \times 10^{-54}$ kg, quindi è ragionevole ipotizzare che il fotone venga emesso dall’elettrone attraverso il legame di entanglement esistente tra quest’ultimo e il nucleo, nel quale abbiamo visto che l’energia potenziale contenitiva dipende proprio dal quadrato della massa del protone.

Abbiamo dunque dimostrato, o provato a dimostrare, l’esistenza del principio universale di asimmetria specifica tra energia potenziale gravitazionale e cinetica quale condizione di stabilità ideale dell’orbita di un corpo attorno all’attrattore-repulsore o attorno al reciproco centro di massa, il quale, se da un lato consente di capire da cosa deriva la formula dell’energia nucleare $E = mc^2$,
dall’altro mette in luce tutti i limiti del principio di conservazione dell’energia, perché resta aperta ancora una questione a cui difficilmente si potrà dare una risposta:

1) Avendo noi dimostrato che all’interno del nucleo opera l’energia potenziale contenitiva, non l’energia di rivoluzione, una domanda sorge inevitabilmente: cosa determina il movimento dei nucleoni all’interno del nucleo alla velocità della luce?

- L’energia potenziale del campo gravitazionale e l’energia potenziale del campo gravito-elettrico: differenze

A questo punto va affrontata la delicata questione, emersa a pag. 187, della strana differenza tra l’energia potenziale del campo attrattivo-repulsivo gravitazionale, e l’energia potenziale del campo attrattivo-repulsivo gravito-elettrico, essendo la prima direttamente proporzionale alla distanza, e la seconda (sia contenitiva che di rivoluzione) inversamente proporzionale alla stessa.

Se si tratta in entrambi i casi di campi attrattivo-repulsivi, per quale motivo non hanno la stessa energia potenziale?

La non facile risposta può ravisarsi nella seguente statuizione contenuta a pag. 119:

“Quello che è importante capire è che la nascita della forza \(\overline{F}_{rx} \), e quindi la composizione delle due forze \(\overline{F}_{rx} \) ed \(\overline{F}_{ry} \) in \(\overline{F}_{r} \), avviene solo quando il pianeta occupa un nuovo punto dell’orbita.

Prima di quel momento le due forze presenti in ciascuno dei punti del campo attrattivo-repulsivo si annullano a vicenda, sotto il profilo dinamico, perché esse hanno uguale intensità e verso opposto, ma il loro scontro genera energia (o pressione, non mi è molto chiaro), e questa energia assume valori diversi a seconda del punto considerato: più vicino al Sole l’energia sarebbe maggiore di quella esistente nei punti più lontani dall’astro.

Nel momento in cui il pianeta si sposta nel successivo punto dell’orbita, la forza \(\overline{F}_{r} \), a causa della nascita della forza \(\overline{F}_{rx} \), risulterà dalla composizione di \(\overline{F}_{rx} \) ed \(\overline{F}_{ry} \), ed in questo modo essa non avrà più la stessa direzione della forza attrattiva \(\overline{F}_{a} \), e
questo crea il medesimo tipo di campo di forze che sussiste nel pendolo oscillatore armonico, in particolare due forze uguali ma non opposte (non giacenti, cioè, sulla medesima retta), il che a sua volta determina il movimento del pianeta attorno al Sole secondo il principio illustrato a pagina 128 e seguenti."

Queste affermazioni contengono un errore: come si può parlare di energia potenziale di rivoluzione del campo attrattivo-repulsivo gravitazionale se poi le due forze nascono opposte, e successivamente diventano, solo grazie alla nascita della forza \vec{F}_{rx}, disallineate?

In altre parole, la forza \vec{F}_{rx} non è la conseguenza del disallineamento originario tra la forza \vec{F}_r e la forza \vec{F}_a, ma ne è la causa, giacché forza attrattiva e forza repulsiva nascono allineate, per poi cessare di esserlo una volta che il pianeta occupa uno specifico punto del campo, a seguito dell’insorgenza della forza \vec{F}_{rx} che, andandosi a comporre con la forza \vec{F}_{ry}, darà luogo al cambiamento di direzione della forza \vec{F}_r.

Quindi nel campo attrattivo-repulsivo gravitazionale non esiste una vera e propria energia potenziale di rivoluzione, perché in ogni punto del campo le due forze nascono allineate, ed il fenomeno della rivoluzione del pianeta attorno al Sole è dovuto molto probabilmente ai diversi livelli di pressione (non di energia) che si creano nella zona di attractio-repulsio a seconda dalla distanza dal corpo centrale.

A pag. 119 avevo anticipato, infatti, che non mi era ben chiaro se lo scontro tra la forza gravitazionale attrattiva e quella repulsiva desse luogo ad energia o a pressione, ma ora credo si possa propendere per la seconda opzione.

E questo vale anche nel perielio, dove non si tratta di vera e propria energia originariamente contenitiva, ma di energia che diventa tale solo “accidentalmente”, a causa della non insorgenza della forza \vec{F}_{rx}, quantunque quest’ultima sia astrattamente idonea a sorgere.

In altri termini, la mancata nascita della forza \vec{F}_{rx} nel perielio non è dovuta a ragioni ontologiche, ovverosia connesse alla particolare natura del campo gravitazionale attrattivo-repulsivo, ma si verifica solo come conseguenza del principio di conservazione dell’energia, che preclude al pianeta, una volta giunto nel perielio, di continuare ad avvicinarsi al Sole (in tal caso, infatti, si avvicinerebbe contemporaneamente ad entrambi i fuochi, e la forza gravitazionale attrattiva
Ecco il motivo per cui l’allineamento nel perielio delle forze attrattiva e repulsiva non incide sul potenziale gravitazionale, che resta quello del campo esclusivamente attrattivo, cioè direttamente proporzionale alla distanza \(R \), ma con l’unica differenza della presenza del 4 prima della \(g \), come abbiamo visto nella (45-bis).

\[
U = m * 4g * R
\]

Se usiamo questa formula per compararla con il doppio dell’energia cinetica del pianeta, avremo:

\[
m * 4g * R = mv^2 \\
\Rightarrow \frac{4GM}{R^2} * R = v^2 \\
\Rightarrow v^2 = \frac{4GM}{R^2} * R \\
\Rightarrow v = 2\sqrt{\frac{GM}{R}}
\]

Questa è la velocità orbitale alla quale il pianeta dovrebbe viaggiare se l’orbita ellittica si chiudesse perfettamente, cioè se non ci fosse alcun fenomeno di precessione del perielio (che impedisce questa chiusura), al fine di coprire l’angolo nello stesso tempo di quello impiegato dal pianeta grazie al percorso abbreviato (più interno) garantito dal movimento di precessione.

Le cose vanno diversamente nel campo gravito-elettrico attrattivo-repulsivo.

Dalla piena efficacia della formula (53-bis) dell’energia gravito-elettrica di rivoluzione sia nell’atomo che nelle galassie, dobbiamo, infatti, desumere che in questo tipo di campo attrattivo-repulsivo le cose non vadano come nel campo gravitazionale attrattivo-repulsivo, e questo può a mio avviso spiegarsi solo ipotizzando che la forza gravito-elettrica repulsiva nasca già disallineata rispetto a quella attrattiva, e quindi si scomponga nelle due forze \(\vec{F}_{rx} \) e \(\vec{F}_{ry} \).

Solo così può affermarsi che ogni punto del campo gravito-elettrico attrattivo-repulsivo ha l’astrotta ed ontologica attitudine di far ruotare i corpi in esso inserito attorno al corpo centrale — o attorno al reciproco centro di massa nel caso di massa non trascurabile del corpo orbitante rispetto a quello orbitato — perché in tal caso la forza \(\vec{F}_{rx} \) nasce in ogni punto del campo già prima che il pianeta ne occupi uno, cioè
non è la causa del sopravvenuto disallineamento tra forza repulsiva ed attrattiva, ma è la conseguenza di tale non allineamento originario.

Un discorso simile vale per l'energia nucleare gravito-elettrica contenitiva (formula 55), che deriva dal forzato allineamento delle due forze gravito-elettriche (attrattiva e repulsiva), il quale si verifica non tanto per salvaguardare il principio di conservazione dell'energia, diversamente da quanto abbiamo visto per il perielio delle orbite planetarie, ma per diverse ragioni di carattere accidentale descritte alla fine del paragrafo “Le caratteristiche delle particelle ombra connesse ai protoni e ai neutroni”, che causano, nel mentre il nucleone si muove sulla sua orbita attorno al nucleo ed in ogni singolo punto di essa, il sopravvenuto allineamento forzato delle due forze, e questo allineamento indotto implica il sorgere dell'energia contenitiva, che inevitabilmente influenza la formula dell'energia potenziale dei corpi sottoposti a questo campo (che non sarà solo inversamente proporzionale alla distanza, ma dipenderà anche dal quadruplo dell'accelerazione gravito-elettrica).

Certo non è facile capire, quanto all'energia di rivoluzione, come sia possibile che la forza repulsiva gravito-elettrica nasca già non allineata con quella attrattiva, e per giunta con un’angolazione tale da far muovere il corpo attorno all’attrattore-repulsore secondo il principio del minor avvicinamento e del minor allontanamento possibili, ma ormai è un dato assodato che la meccanica quantistica sia feconda di bizzarrie.

- **Il raggio delle stelle di neutroni: differenze rispetto alle stelle di protoni**

Le stelle di neutroni (a cui appartengono anche le pulsar) sono, come il nome lascia intuire, corpi celesti costituiti unicamente da neutroni.

La caratteristica delle stelle di neutroni è quella di avere una densità elevatissima: infatti una stella di neutroni tipica ha una massa pari a circa 1,4 masse solari, ma con un raggio di appena 10 - 15 km, piccolissimo se comparato al raggio del nostro Sole, pari a circa 696 mila km.

Una densità così elevata è riscontrabile solo all’interno del nucleo dell’atomo, quindi le stelle neutroni costituiscono un banco di prova importante per verificare la fondatezza della teoria qui esposta.

Proviamo quindi a calcolare, tramite la (59), il raggio di una stella di neutroni
tipica, vale a dire con massa pari a circa 1,4 masse solari.

Per comodità riportiamo qui di seguito la (59):

$$R = \frac{1}{2} \times \sqrt[3]{\frac{A K G M}{\pi c^2}}$$

dove M è la massa della stella di neutroni, pari, come abbiamo detto, a $1,4 \times 1,9891 \times 10^{30}$ kg.

$$R = \frac{1}{2} \times \sqrt[3]{\frac{4 \times (8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1,4 \times 1,9891 \times 10^{30})}{3,1415 \times 89,875,517,873,681,764}}$$

$R = 14,356 \text{ metri}$

$R = 14,3 \text{ Km}$

Come si nota la (59) è perfettamente applicabile anche alle stelle di neutroni, essendo in pieno accordo con le stime astronomiche, confermando così non solo il carattere universale della teoria qui esposta, ma anche l’effettiva similitudine tra stella di neutroni e nucleo dell’atomo, già rilevata dagli astronomi.

In verità quello risultante dalla (59) dovrebbe essere la distanza dal centro della stella dove la sua densità si riduce del 50% rispetto al suo valore massimo (cioè quello centrale). Oltre tale distanza, infatti, la densità della stella dovrebbe ridursi ulteriormente fino ad annullarsi del tutto al raggiungimento della distanza espressa dalla (57), che sarebbe il raggio d’azione del potenziale contenitivo gravito-elettroico della stella neutroni.

Stante la similitudine con il nucleo dell’atomo è possibile ipotizzare per le stelle di neutroni, come si è fatto per il primo, che i neutroni si muovano all’interno della stella alla velocità della luce.

In particolare i neutroni centrali, aggregati tra loro grazie alla forza gravitazionale, avrebbero natura “duale”, cioè sia corpuscolare che ondulatoria, che replicherebbe le stesse condizioni viste per i nucleoni, per cui attorno ai neutroni centrali ruoterebbero alla velocità della luce le loro “ombre” (ossia i loro alter-ego mobili) alla distanza data dalla (57).

Possiamo quindi ipotizzare che anche qui si applichi il principio di asimmetria specifica tra l’energia potenziale dei neutroni e la loro energia cinetica sancito dalla (76), per cui il raggio dato dalla (57) sarebbe il raggio “ideale” della stella di neutroni, vale a dire il raggio che garantisce la massima stabilità alla stella, poiché rende
l’energia potenziale contenitiva dei neutroni eguale al doppio della loro energia cinetica.

Qualora il raggio aumenti rispetto al valore dato dalla (57), la stella diventerebbe sempre meno stabile, fino ad esplodere se l’energia potenziale dei neutroni si riduca fino ad eguagliare la loro energia cinetica, cioè quando il raggio assume il valore espresso dalla (81).

E’ molto probabile, quindi, che i neutroni delle pulsar generino un campo contenitivo gravito-elettrico attrattivo-repulsivo capace di arginare l’energia cinetica dei neutroni ombra medesimi, facendoli ruotare in perpetuo attorno al centro delle stelle, occupato dai nucleoni centrali visibili.

La natura gravito-elettrica del campo contenitivo attrattivo-repulsivo generato dai neutroni delle pulsar ci dimostra che queste si differenziano dalle stelle di protoni (i c.d. buchi neri), giacché i protoni restano confinati all’interno del “buco nero” a causa del campo contenitivo attrattivo-repulsivo di natura gravitazionale (non gravito-elettrica) generato dai protoni medesimi, i quali tra l’altro restano, diversamente dai neutroni delle pulsar, disaggregati per via della forza repulsiva elettrica tra essi operante.

Un’altra differenza potrebbe essere il fatto che, nelle stelle di neutroni, le particelle ombra orbitano attorno ai corrispondenti alter ego “reali”, invece, nelle stelle di protoni, le particelle reali orbitano intorno alle particelle ombra, che questa volta si trovano al centro della stella.

Questo può spiegare il motivo per cui il buco nero è stabile, presumibilmente perché tra le particelle ombra centrali non vi è alcuna forza repulsiva, ma solo attrattiva.

Questo grumo centrale di particelle ombra genererebbe il campo gravitazionale contenitivo attrattivo-repulsivo che sarebbe in grado di contenere i protoni “reali” orbitanti entro il raggio espresso dalla (50).

Questi protoni orbitanti reali, che si muovono alla velocità della luce attorno alle loro particelle ombra centrali, avrebbero — a differenza delle particelle ombra che orbitano attorno al centro del nucleo atomico e attorno al centro della stella di neutroni — tutte le proprietà dei protoni, cioè una massa e una carica, quindi è ragionevole sostenere che producano energia cinetica di massa $E = \frac{1}{2} Me^{2}$, nonché energia
cinetica di carica \(E = \frac{1}{2} Qc^2 \).

Il secondo tipo di energia sarebbe un nuovo tipo di energia, mai sperimentato prima, quindi questa affermazione può avere solo un carattere speculativo, anche se, confrontando l’energia potenziale di rivoluzione gravito-elettrica delle stelle col doppio della "energia cinetica di carica" dei protoni che orbitano all’interno del buco nero, come abbiamo fatto nella (64), siamo in grado di spiegare la velocità orbitale delle stelle attorno al buco nero centrale della galassia, come abbiamo visto nella (70-bis).

Quindi possiamo concludere che, se esiste "l'energia cinetica di carica", i protoni “reali” che orbitano alla velocità della luce attorno alle loro corrispondenti particelle ombra situate al centro del buco nero, producono un campo gravitazionale attrattivo-repulsivo di rivoluzione, che fa muovere le stelle attorno al buco nero ad una velocità costante e attraverso una relazione di entanglement.

Un’altra differenza tra le due stelle sembra essere il fatto che le stelle di neutroni determinano la rotazione dei pianeti attorno ad esse in virtù di un campo attrattivo-repulsivo di natura gravitazionale, quindi con velocità decrescente in rapporto all’aumentare della distanza dalla stella centrale, mentre le stelle di protoni determinano la rotazione delle stelle attorno ad esse in virtù di un campo attrattivo-repulsivo di natura gravitazionale solo nella zona di prossimità, per poi trasformarsi, giunti ad una certa distanza dal centro, in un campo gravito-elettrico di rivoluzione (con conseguente velocità pressoché costante delle stelle delle galassie).

Un eventuale elemento in comune tra le due stelle potrebbe essere il fatto che l’energia cinetica di massa \(E = \frac{1}{2} Mc^2 \) posseduta sia dai protoni orbitanti reali — a causa del fatto di avere anche una massa oltre che una carica — sia dai neutroni ombra orbitanti, dovrebbe teoricamente produrre un campo gravito-elettrico attrattivo-repulsivo di rivoluzione che consentirebbe alle particelle microscopiche di orbitare nella parte più interna dello spazio che circonda il buco nero e la stella di neutroni (presumibilmente gli elettroni, come abbiamo visto accadere nell’atomo, dove gli elettroni sono mossi dall'energia cinetica di massa prodotta dai nucleoni ombra orbitanti), ancora una volta attraverso una relazione di entanglement.

Quindi entrambe le stelle hanno qualche aspetto in comune con l’atomo nel
suo complesso, ma non sono ad esso perfettamente sovrapponibili: le stelle di neutroni sono assimilabili al nucleo dell’atomo soltanto sotto il profilo della densità, ma non anche sotto quello della natura del campo di forze da esse generato nello spazio ad esse circostante, che è gravitazionale, non gravito-elettrico come quello generato dal nucleo dell’atomo; le stelle di protoni, al contrario, sono assimilabili agli atomi solo per la natura del campo di forze generato nello spazio ad esse circostante (gravito-elettrico), ma non anche sul versante della densità, che resta di gran lunga inferiore a quella del nucleo dell’atomo, essendo i protoni confinati all’interno dei buchi neri dal campo contenitivo attrattivo-repulsivo di natura gravitazionale, meno forte di quello del campo attrattivo-repulsivo gravito-elettrico, che invece opera nel nucleo atomico.

- **Le caratteristiche delle particelle ombra connesse ai protoni e ai neutroni**
 Se si conviene su tutto quanto detto finora, è possibile ricostruire le caratteristiche delle particelle ombra connesse ai protoni e ai neutroni:
 1) Esse hanno eguale massa rispetto alle corrispondenti particelle reali;
 2) nonostante ciò esse non determinano il cambiamento del centro di massa attorno al quale ha luogo il movimento di rivoluzione, che resta collocato al centro del nucleo, non alla distanza intermedia tra le particelle ombra e quelle reali, altrimenti non si tratterebbe di fenomeno di auto-orbitazione;
 3) esse possono assumere il ruolo di particelle orbitanti (come avviene nel nucleo dell’atomo e nelle stelle dei neutroni) oppure quello di particelle orbitate (come avviene per i protoni dei buchi neri);
 4) in entrambi i casi non sono idonee a riflettere la luce che le investe;
 5) sono indirettamente rilevabili negli esperimenti di scattering di particelle alfa e di neutroni. Questi esperimenti, infatti, dimostrano che il fascio di particelle alfa e di neutroni sono solo parzialmente deviati dal nucleo bersaglio, ma una parte di queste particelle viene assorbita nella collisione, "scomparendo" (la parola è usata nella citazione [3], pag. 514). Per questo motivo il modello nucleare ottico propone di risolvere il problema, dal punto di vista matematico, assumendo che il potenziale nucleare sia in parte reale e in parte "immaginario", e questa seconda parte di potenziale
sarebbe responsabile dell'assorbimento parziale del fascio di particelle.
Orbene, possiamo ragionevolmente supporre che la parte immaginaria del potenziale ottico, che consente di adattare meglio i dati teorici a quelli sperimentali, possa trovare una spiegazione fisica nelle particelle ombra proposte in questa sede, essendo noi già arrivati alla conclusione, nel corso di questa nostra trattazione, che queste particelle sono prive di carica e inadatte a riflettere i fotoni e, a questo punto, ogni tipo di particella.
Del resto è stato dimostrato [5] che la parte immaginaria del potenziale ottico è proporzionale alla parte reale, il che ben si concilia con il nostro raggio nucleare dato dalla (57), che è pari proprio al doppio del raggio di carica nucleare dedotto in via sperimentale (il rapporto di proporzionalità è quindi di 1 a 1).
6) quando sono in veste di particelle orbitanti (cioè nel nucleo atomico), si muovono alla velocità della luce producendo solo energia cinetica di massa

\[E = \frac{1}{2} M c^2 \] (non anche energia cinetica di carica \(E = \frac{1}{2} Q c^2 \)), che dà vita al campo gravito-elettrico attrattivo-repulsivo di rivoluzione che consente la rotazione degli elettroni attorno al nucleo e forse attorno alla zona più interna dello spazio circostante il buco nero e circostante la stella di neutroni;
7) quando svolgono il ruolo di particelle centrali orbitate, esse producono — coerentemente all’assenza di carica risultante dal punto precedente — un campo contenitivo attrattivo-repulsivo di natura esclusivamente gravitazionale che vincola le corrispondenti particelle reali, moventesi per loro natura alla velocità della luce, a ruotare attorno alle particelle ombra centrali. Se, infatti, poniamo l’eguaglianza tra l’energia potenziale gravitazionale contenitiva espressa nella (45-bis) col doppio dell’energia cinetica di massa dei protoni, avremo proprio il raggio del buco nero a cui siano giunti nella (50):

\[m \ast 4g \ast R = M c^2 \]
ora sostituiamo \(m \) con \(M \) perché abbiamo ipotizzato che i protoni del buco nero siano particelle auto-orbitanti:

\[\rightarrow M \ast 4g \ast R = M c^2 \]
\[
\frac{M^4GM}{R^2} \ast R = Mc^2
\]
\[
\frac{4GM^2}{R} = Mc^2
\]
\[
\frac{4GM}{R} = c^2
\]
\[
4GM = Re^2
\]
\[
R = \frac{4GM}{c^2}
\]

8) in quest’ultimo caso, una volta superata la distanza massima alla quale orbitano le particelle reali (cioè oltre il raggio del buco nero), le particelle ombra centrali generano un campo gravitazionale non contenitivo attrattivo-repulsivo che comporta — mercé la diversità di pressione derivante dallo scontro tra forza di gravità attrattiva e forza di gravità repulsiva in relazione all’aumentare della distanza dal centro — la rivoluzione dei corpi macroscopici (non dotati di carica) ivi inseriti a velocità decrescente in rapporto all’aumentare della distanza dal centro (campo che poi, giunti ad una certa distanza dal predetto centro, si tramuta in campo attrattivo-repulsivo gravito-elettrico di rivoluzione, implicante velocità orbitale costante dei corpi macroscopici ivi inseriti, e generato dall’energia cinetica di carica \(E = \frac{1}{2} Qc^2 \) prodotta dalle particelle reali orbitanti all’interno della stella di protoni attorno a quelle ombra centrali, energia che si “trasmette” ai corpi macroscopici che orbitano attorno al sistema centrale (cioè la stella di protoni) per effetto del legame di entanglement intercorrente tra tali corpi orbitanti e le particelle reali che orbitano all’interno del predetto sistema centrale.

A questo punto sorge un interrogativo: nel precedente punto 7) abbiamo visto che l’energia potenziale gravitazionale contenitiva che opera nel buco nero è la stessa di quella operante nel fenomeno della precessione del perielio orbitale, ma come è possibile che ciò avvenga?

In altri termini, nella precessione del perielio abbiamo visto che la causa della mancata insorgenza della forza \(F_{rx} \) è il principio di conservazione dell’energia, il quale impedisce al pianeta, una volta giunto nel perielio, di avvicinarsi ulteriormente al Sole, imponendogli di allontanarsi da esso il meno possibile, il che è conseguito
proprio mediante l’allineamento delle due forze opposte (attrattiva e repulsiva), e quindi, in ultima analisi, mediante la mancata nascita della forza F_{rx}.

Ma tutto ciò non può accadere anche nel buco nero, perché qui sussiste energia contenitiva durante tutto il percorso dei protoni reali orbitanti, la cui preventiva velocità non è determinata dal campo attrattivo-repulsivo, ma è solo arginata dal medesimo, sicché non ha proprio ragion d’essere l’intervento del principio di conservazione dell’energia, il quale si atteggiava quale limite afferente il principio del minor avvicinamento possibile all’attrattore-repulsore, ma tale ultimo principio si applica unicamente in presenza di energia di rivoluzione (o, comunque, di movimento di rivoluzione generato da diversi livelli di pressione, come avviene nel campo gravitazionale attrattivo-repulsivo), che invece non sussiste, si ripete, all’interno del buco nero, per cui si chiede quale sia la causa che impedisce il sorgere della forza F_{rx}.

L’unica possibile risposta è quella ritenere che il principio che impedisce l’insorgere della predetta forza sia quello della impossibilità di superare la velocità della luce, che invece verrebbe superata se i protoni, già dotati per loro natura della medesima velocità dei fotoni (circa 300 mila km/sec), ricevessero, in virtù della nascita della forza F_{rx}, un’ulteriore accelerazione.

Un ragionamento simile vale anche per il campo contenitivo gravito-elettrico che si forma nel nucleo dell’atomo e nella stella di neutroni, dove le due forze gravito-elettriche (attrattiva e repulsiva), pur nascendo disallineate, diventano allineate appena la particella orbitante, che viaggia alla velocità della luce per propria natura, occupa un determinato punto dell’orbita, altrimenti essa riceverebbe un’ulteriore accelerazione per effetto della forza F_{rx}: in questa prospettiva è più appropriato dire che, in tal caso, si verifica una soppressione piuttosto che una mancata insorgenza della forza F_{rx}.

- **Il fenomeno dell’auto-orbitazione: prove matematiche**

Occorre adesso dimostrare matematicamente il fenomeno dell’auto-orbitazione, che sopra abbiamo ipotizzato sussistere all’interno del nucleo dell’atomo, all’interno del buco nero e all’interno delle stelle di neutroni.

Partiamo dal nucleo dell’atomo, e precisamente dall’equazione (56-ter):
\[
\frac{4KGM^2}{R^3\pi} = Mc^2
\]

Verifichiamo, calcoli alla mano, se la sopra-stante equazione è vera.

Consideriamo l’atomo di idrogeno, il cui nucleo contiene un solo protone e sostituiamo nella citata equazione i valori di \(K, G, M, R\) e \(c\), dove \(R\) è il raggio ideale del nucleo, ossia quello espresso dalla (57), e \(M\) la massa del protone.

\[
\frac{4 \times (8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1,66054 \times 10^{-27})^2}{(2,4167 \times 10^{-15})^3 \times 3,1415} = (1,66054 \times 10^{-27}) \times (299,792,458)^2 \\
\Rightarrow 1,4924 \times 10^{-10} = 1,4924 \times 10^{-10}
\]

Consideriamo ora il buco nero, e verifichiamo se l’equazione (83) è vera:

\[
\frac{4GM^2}{R} = Mc^2
\]

Sostituimmo nella citata equazione i valori di \(G, M, R\) e \(c\), dove \(R\) è il raggio del buco nero espresso dalla (50) e \(M\) è la massa del buco nero della Via lattea, pari a 3,75 \(\times\) 10^6 masse solari.

\[
\frac{4 \times (6,67433 \times 10^{-11}) \times (3,75 \times 6 \times 1,9891 \times 10^{30})^2}{22,157,162,000} = (3,75 \times 10^6 \times 1,9891 \times 10^{30}) \times (299,792,458)^2 \\
\Rightarrow 6,7039 \times 10^{53} = 6,7039 \times 10^{53}
\]

Esaminiamo infine le stelle di neutroni, in particolare invocando nuovamente l’equazione (56-ter), che sopra abbiamo visto applicarsi anche al tipo di stelle in questione:

\[
\frac{4KGM^2}{R^3\pi} = Mc^2
\]

Sostituimmo nella sopra-stante equazione i valori di \(K, G, M, R\) e \(c\), dove \(R\) è il raggio ideale della stella di neutroni espresso dalla (57) e \(M\) è la massa della stella di neutroni tipica, pari a 1,4 masse solari.

\[
\frac{4 \times (8,99 \times 10^9) \times (6,67433 \times 10^{-11}) \times (1,4 \times 1,9891 \times 10^{30})^2}{(28,712)^3 \times 3,1415} = (1,4 \times 1,9891 \times 10^{30}) \times (299,792,458)^2 \\
\Rightarrow 2,5027 \times 10^{47} = 2,5027 \times 10^{47}
\]

Abbiamo così dimostrato — basandoci sul fatto che l’energia potenziale (membro di sinistra della formula 56-ter e della formula 83) dipende dal quadrato della massa delle particelle centrali, e sul fatto che tale energia è uguale al doppio
dell’energia cinetica della massa delle particelle orbitanti, soddisfacendo così il principio di asimmetria specifica sancito nella (76) — che nel nucleo dell’atomo, nel buco nero (stella di protoni) nonché nella stella di neutroni opera lo strano fenomeno dell’auto-orbitazione, secondo il quale una o più particelle elementari, in particolare protoni e neutroni, ruotano attorno a loro stesse, con la differenza che nell’atomo e nelle stelle di neutroni sono le particelle ombra a ruotare attorno a quelle reali ubicate al centro, mentre nella stella di protoni sono le particelle reali a ruotare molto probabilmente attorno al grumo centrale fatto di particelle ombra.

In entrambi i casi le particelle orbitanti si muovono alla velocità della luce.

- **La ragione della velocità non decrescente delle stelle delle galassie e degli elettroni**

È il momento di risolvere un altro enigma: come è possibile che la velocità delle stelle e degli elettroni (assumendo l’analogia atomo-galassia) rimanga costante anche se la distanza aumenta, nonostante l’energia di rivoluzione diminuisca a seconda della distanza?

In altre parole, se l’energia di rivoluzione gravito-elettrica a cui sono sottoposte le stelle delle galassie e gli elettroni degli atomi diminuisce con l’aumentare della distanza dal nucleo centrale, come è possibile che la velocità orbitale rimanga costante?

Il modello pendolo qui proposto consente ancora una volta di dare una risposta, se pensiamo alla possibilità che la forza \vec{F}_r avesse, con l’aumentare della distanza, un orientamento sempre più inclinato rispetto alla forza \vec{F}_a, cioè se l’angolo tra la forza repulsiva e quella attrattiva aumentasse con la distanza, in una misura sufficiente a mantenere costante la forza \vec{F}_{rx}.

In questo modo, pur diminuendo l’energia di rivoluzione, la velocità di rivoluzione resta costante, e questo non è un paradosso, perché se teoricamente si riuscisse a far assumere alla forza repulsiva, in tutti i punti del campo attrattivo-repulsivo, la stessa angolazione rispetto a quella attrattiva, indipendentemente dalla distanza dal nucleo, gli elettroni più vicini orbiterebbero a velocità maggiore di quelli più lontani.

Ciò che conta, ai fini della quantificazione dell’energia di rivoluzione, è la
potenzialità ontologica di un determinato punto del campo di muovere l’elettrone ad una certa velocità, a nulla rilevando in contrario il fatto che, a causa di un mero inconveniente di fatto (la crescente angolazione della forza repulsiva rispetto a quella attrattiva in rapporto all’aumentare della distanza dal nucleo), la velocità di rivoluzione degli elettroni resti costante: un determinato punto del campo attrattivo-repulsivo più vicino al nucleo avrà comunque l’astratta ed ontologia potenzialità di far muovere l’elettrone ad una velocità orbitale maggiore rispetto ad un punto più lontano.

Tuttavia l’angolazione della forza repulsiva rispetto a quella attrattiva non può crescere indefinitamente, ma troverà un limite nel principio del minor avvicinamento possibile e minor allontanamento possibile, che preclude al corpo orbitante di spostarsi nel punto attiguo caratterizzato da un eguale valore di energia — cioè nel punto equidistante dal centro (descrivendo così un arco di circonferenza) — imponendogli di spostarsi nel punto attiguo caratterizzato dal valore energetico meno forte possibile, o meno debole possibile, descrivendo così un’orbita ellittica.

In altri termini, l’atomo e la galassia si estenderanno fino a quel punto oltre il quale la forza repulsiva, onde consentire alla velocità orbitale (rispettivamente degli elettroni e delle stelle) di rimanere costante, dovrebbe avere una direzione ortogonale a quella della forza gravitazionale attrattiva, il che, come si è detto, è precluso dalla necessaria ellitticità dell’orbita.

Questa è la ragione per la quale, pur operando l’energia potenziale gravito-elettrica fino a distanza infinita, l’atomo e la galassia non hanno un’estensione infinita.

- **La forza gravito-elettrica: differenze con la forza elettrica e con la forza gravitazionale**

Se si concorda con tutto quanto esposto finora, la forza gravito-elettrica è connotata dalle seguenti caratteristiche:

1) Agisce solo tra particelle fondamentali: tra particelle non fondamentali opera la forza elettrica.

2) Agisce tra i nucleoni nel nucleo (supponendo che i neutroni neutralizzino la forza repulsiva tra i protoni), nel qual caso è esclusivamente attrattiva, e anche tra nucleoni ed elettroni, nel qual caso
è attrattiva e repulsiva allo stesso tempo.

Tra particelle, ancorché fondamentali, dotate di carica di eguale segno (ad es. protoni e protoni), invece, opera la forza di repulsione elettrica, come dimostrano gli esperimenti di scattering tra particelle alfa (nuclei di 4H privati degli elettroni, quindi caricati positivamente) e il nucleo bersaglio, anch’esso dotato di carica positiva. Questi esperimenti, infatti, hanno consentito di dedurre il raggio di carica del nucleo dall’ampiezza dell’angolo di deviazione del fascio di particelle alfa risultante dalla collisione col nucleo, tenendo in considerazione proprio il potenziale di Coulomb, quindi vuol dire che tra particelle dello stesso segno non opera la forza gravito-elettrica, ma quella elettrica;

3) Agisce, tramite un legame di entanglement, tra i protoni reali che orbitano nella stella di protoni e le stelle della galassia situate oltre la fascia più interna dello spazio che circonda il buco nero, nel qual caso è attrattivo-repulsivo;

4) Agisce, tramite un legame di entanglement, tra i protoni reali che orbitano nella stella di protoni e gli elettroni che molto probabilmente ruotano nella fascia di spazio più interna che circonda la stella di protoni, nel qual caso è attrattivo-repulsivo;

5) Agisce, tramite un legame di entanglement, tra i neutroni ombra che orbitano nella stella di neutroni e gli elettroni che molto probabilmente ruotano nella fascia di spazio più interna che circonda la stella di neutroni, nel qual caso è attrattivo-repulsivo;

6) Agisce tra i neutroni ombra delle stelle di neutroni, nel qual caso è solo attrattivo;

7) Agisce anche nel fenomeno dell’auto-orbitazione tra le particelle reali e le corrispondenti particelle ombra, a condizione che le particelle orbitanti siano quelle ombra (quindi non anche nelle stelle dei protoni, dove abbiamo visto che le particelle ombra centrali generano un campo attrattivo-repulsivo contenitivo gravitazionale, non gravito-elettrico), nel qual caso è attrattivo-repulsivo.

8) Diversamente dalla forza gravitazionale e da quella elettrica, la forza
gravito-elettrica, quando non agisce nel fenomeno dell’auto-orbitazione, si esplica mediante un rapporto di entanglement, implicante il teletrasporto dello stato di movimento delle particelle auto-orbitanti ai corpi (cioè alle stelle della galassia) o agli elettroni che orbitano attorno ad esse, in modo tale che l’orbita dei corpi o delle particelle sarà il più stabile possibile se l’energia potenziale gravito-elettrica a cui sono soggetti tali corpi o particelle orbitanti sarà pari al doppio della loro energia cinetica o addirittura la supererà, ma, proprio a causa di questo legame di entanglement, se l’energia cinetica equivale l’energia potenziale, l’equilibrio non si rompe purché il corpo orbitante o l’elettrone si muovano alla velocità data dall’equazione della “velocità di entanglement” — cioè dalla (67), per le stelle della galassia, o dalla (75), per gli elettroni dell’atomo — entro la massima distanza prevista, solo per gli elettroni dell’atomo, dalla (75-novies), e in quest’ultimo caso il nucleo "dice" agli elettroni, che ricevono istantaneamente l’input, di emettere fotoni per perdere energia e raggiungere la zona di stabilità più interna — nella fascia di spazio compresa tra il raggio ideale dato dalla (75-octies) e quello dato dalla (82-ter) — dove l’energia potenziale gravito-elettrica è maggiore di quella cinetica, ripristinandosi così l’equilibrio dinamico tra nucleo ed elettroni.

9) Poiché dipende dal prodotto della massa delle particelle, non dalla loro carica, si comporta più in analogia con la forza gravitazionale che con quella elettrica, nel senso che, come quella gravitazionale, può essere esclusivamente attrattiva (tra i nucleoni o tra i neutroni ombra delle stelle di neutroni), oppure attrattiva e repulsiva allo stesso tempo (tra nucleoni ed elettroni), mentre la forza elettrica può essere o solo attrattiva, o solo repulsiva, ma non può essere attrattiva e repulsiva allo stesso tempo.

- **Il principio di indeterminazione di Heisenberg: caratteristica ontologica delle particelle microscopiche, o limite umano?**

Il principio afferma che non è possibile prevedere la posizione e la velocità...
di una particella microscopica.

Inizialmente Heisenberg formulò questo principio in considerazione della misura estremamente piccola delle particelle microscopiche, la cui posizione e velocità sarebbe stata alterata dal fascio di fotoni necessario per osservarle, quindi fu pensato più nel senso di un limite umano che di una legge della natura, ma successivamente fu interpretato dalla meccanica quantistica in senso più rigoroso, ossia come caratteristica ontologica delle particelle microscopiche, per le quali era improprio parlare di posizione e di velocità, avendo esse natura “duale”, vale a dire sia di particelle che di onde, che avrebbe reso i due parametri (velocità e posizione) non applicabili al mondo microscopico.

Tuttavia nel presente studio è emersa la possibilità di prevedere con estrema precisione sia la velocità che l’orbita dei nucleoni, quest’ultima da presumersi quasi perfettamente circolare (o meglio sferica, trattandosi non solo di particella, ma “anche” di onda) qualora l’energia potenziale contenitiva dei nucleoni eguali il doppio della loro energia cinetica, e con forma ellittica sempre più eccentrica (rectius un ellissoide sempre più schiacciato ai poli, similmente ad un pallone da rugby) man mano che la prima energia tenda ad avvicinarsi, riducendosi, al valore della seconda, motivo per cui sembra opportuno intendere il principio di indeterminazione di Heisenberg nel suo senso originario meno rigoroso, ossia quale limite umano afferente l’attività di osservazione, anziché quale principio basilare della natura.

Del resto, se le particelle fondamentali sono “anche” delle particelle, oltre che delle onde, nulla di strano se si comportano come tutti i corpuscoli, avendo cioè in ogni momento una determinata velocità e posizione; diversamente opinando si tratterebbero dette particelle unicamente come delle onde, il che appare decisamente incongruo.

- **L’energia oscura**

 Un’ultima notazione va fatta in proposito all’energia oscura.

 E’ ovvio che in una visione dell’universo come la nostra – in cui non esistono intermediari di sorta che consentano l’esplicazione delle forze fondamentali della natura, ma dove tali forze hanno luogo in via immediata, pur trovandosi i corpi, le particelle o le cariche tra cui esse agiscono a notevole distanza
tra loro – anche l’allontanamento delle galassie le une dalle altre va visto nella medesima ottica.

Come ho chiarito sopra, a mio avviso tale fenomeno va spiegato assumendo che la forza gravitazionale diventi, oltre la zona attrattivo-repulsiva, solo repulsiva, sicché occorrerà trovare le giuste forze e le giuste cause che influenzano siffatta espansione, possibilmente alla luce di parametri non “oscuri”...

In sostanza lo spazio attorno ai corpi andrebbe diviso in tre fasce.

1) La fascia di immediata prossimità al corpo, dove la forza di gravità è solo attrattiva.

2) La fascia intermedia, dove la forza di gravità è al contempo attrattiva e repulsiva.

3) La fascia più lontana, dove la forza di gravità è solo repulsiva.

- La formazione del sistema solare

L’adesione alla teoria qui esposta, secondo la quale i pianeti girano attorno al Sole non perché spinti da qualche evento casuale proprio alla giusta velocità per non cadere sul Sole e per non allontanarsene definitivamente, ma per effetto dello scontro tra forza di gravità attrattiva, da un lato, e forza di gravità repulsiva, dall’altro, si ripercuote inevitabilmente sulla teoria della formazione del sistema solare.

La teoria più accreditata al momento è che il sistema solare era in origine una nube di gas e polveri che già ruotava su sé stessa per qualche motivo.

Le nubi di polvere protoplanetarie si sarebbero localmente addensate a causa della forza di gravità ed avrebbero conservato il movimento rotatorio che la nebulosa aveva originariamente.

Invece io ritengo che le nubi protoplanetarie già giravano attorno al Sole, prima della formazione dei pianeti, non per qualche misteriosa e strana causa, ma proprio per effetto del campo attrattivo-repulsivo generato dal Sole, e che i pianeti, una volta formatisi per addensamento locale di tali polveri, non hanno fatto altro che continuare a girare attorno al Sole sempre in conseguenza del campo gravitazionale attrattivo-repulsivo generato dall’astro, secondo il principio che sta alla base del moto del pendolo, che appunto si muove da solo, in virtù dello scontro
tra la forza di gravità, da un lato, e la tensione del filo, dall’altro.

- **L’entanglement gravitazionale**

I risultati qui raggiunti – che paiono far propendere con elevata probabilità in favore dell’esistenza di un campo attrattivo-repulsivo anche all’interno dell’atomo, sia pur caratterizzato dalla fusione della forza gravitazionale con quella elettrica, tanto da poterlo definire *campo attrattivo-repulsivo gravito-elettrico* – depongono a favore dell’esistenza, nel mondo macroscopico, di un legame gravitazionale tra i corpi dotati di massa molto simile a quello esistente tra due particelle microscopiche, il che ci consente di ricondurre il fenomeno gravitazionale macroscopico nell’alveo dell’entanglement.

La forza di gravità e quella gravito-elettrica, alla luce dei risultati qui raggiunti, paiono non essere la conseguenza di alcuna azione di intermediazione, né ad opera di un campo, come ipotizzava Einstein, né ad opera di particelle esotiche scambiate tra i corpi (i cosiddetti “gravitoni”), come ipotizza la meccanica quantistica.

Mi rendo conto che è difficile immaginare l’interazione gravitazionale senza l’intermediazione di alcunché, eppure è a mio avviso quello che accade, anche se ciò non è del tutto esatto, poiché un intermediario esisterebbe comunque, ovverosia il legamento gravitazionale (o gravito-elettrico), ma, come si è detto ampiamente, esso opererebbe istantaneamente, contraendosi o dilatandosi a seconda se si tratti di forza attrattiva o repulsiva, il che renderebbe inapplicabile il principio di località postulato dalla teoria della relatività in proposito all’interazione gravitazionale.

Trattasi, dunque, di azione a distanza immediatamente operante: quantunque sia controintuitivo, non possiamo far altro che constatare che è così, come avviene del resto anche nel fenomeno dell’entanglement quantistico, dove due particelle (dette appunto “entangled”, o “intrecciate”, o “legate” tra loro) si comportano come se fossero unite tra loro, benché si trovino materialmente a chilometri di distanza, nel senso che, se si agisce su una particella, osservandola, l’altra ne risente immediatamente, assumendo sempre lo *spin* opposto (verso di rotazione) e la stessa polarizzazione rispetto alla particella osservata, e tutto questo
avviene, ripeto, immediatamente, anche se tra le particelle intercorre una distanza infinita.

La forza di gravità, anche nella sua variante gravito-elettrica, può dunque considerarsi un caso di entanglement, nel senso che i corpi, tutti i corpi dell’universo, purché dotati di massa, sono come legati l’uno all’altro, e se d’improvviso la massa dell’uno variasse, tutti gli altri corpi ne risentirebbero immediatamente, anche se posti a distanza infinita tra loro, esattamente come accade nell’entanglement quantistico, ancorché in tale ultimo caso l’effetto esplicantesi tra le particelle entangled non è attrattivo, ma di diverso tipo.

- **Considerazioni conclusive**

Nel presente lavoro, muovendo dal presupposto che il Sole (e tutti i corpi massicci) produca, a partire da una certa distanza da esso, forza gravitazionale attrattiva e repulsiva allo stesso tempo, dando vita al movimento dei pianeti attorno ad esso secondo lo stesso schema del pendolo, sono riuscito a ricavare una formula della velocità angolare di precessione del perielio, una formula del raggio del buco nero e, soprattutto, una formula del raggio nucleare atomico, che fino ad allora mancava, il tutto in ottimo accordo con l’osservazione e in modo completamente indipendente della teoria della relatività di Einstein.

Ho dimostrato inoltre che la formula del raggio nucleare è in grado di prevedere con successo anche il raggio delle stelle di neutroni.

Sono riuscito altresì a ricavare — sempre attraverso l’applicazione degli stessi principi che mi hanno consentito di raggiungere i menzionati risultati, in particolare attraverso la modifica del potenziale gravitazionale newtoniano, a sua volta dovuta al diverso modus-operandi della forza di gravità — una formula della velocità orbitale non decrescente delle stelle delle galassie, senza ricorrere al contributo dell’ipotetica materia oscura.

Dai risultati matematici qui ottenuti ho dimostrato inoltre l’esistenza di un’energia gravitazionale contenitiva sia nel fenomeno della precessione del perielio sia nel buco nero, la quale, in quest’ultimo caso, impedisce ai corpi che entrano nel buco nero, inclusa la luce, di uscirne, come dimostra il fatto che la formula del raggio del buco nero è stata ottenuta da quella della velocità angolare
della precessione del perielio.

Ho dimostrato ancora che il buco nero è composto solo da protoni e che è simile al nucleo dell'atomo e che, analogamente, la galassia è simile all'atomo: le stelle si muovono attorno al nucleo centrale nello stesso modo in cui si muovono gli elettroni attorno al nucleo atomico.

Ho dimostrato ancora la sussistenza di un’ulteriore similitudine tra nucleo atomico, buco nero e stelle di neutroni, ossia il fenomeno dell’auto-orbitazione che li accomuna tutti.

Dalle scoperte matematiche ottenute nel presente lavoro è emersa anche l’esistenza, sia a livello microscopico che macroscopico, della forza gravitoelettrica (o, se si preferisce, forza elettro-gravitazionale) risultante dalla fusione della forza gravitazionale con quella elettrica, che impedisce al nucleo dell’atomo di esplodere e fa rimanere i nucleoni confinati in un cerchio di raggio uguale al valore dato dall’equazione (59), e che funziona esattamente in accordo con la meccanica newtoniana, sia pur modificata mediante l’introduzione di una forza repulsiva in aggiunta e in contrapposizione a quella attrattiva.

È emersa inoltre l’esistenza del principio universale (operante sia nel macrocosmo che nel microcosmo) di asimmetria specifica tra energia potenziale gravitazionale e energia cinetica, quale causa dell’energia nucleare \(E = Mc^2 \).

In questa prospettiva, il presente lavoro può rappresentare una potenziale via unificatrice tra la meccanica del macrocosmo e quella del microcosmo.

References

