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Computing Multi-Homogeneous Bezout Numbers is 

Hard 

Thinh Nguyen 

Abstract 
The multi-homogeneous B´ezout number is a bound for the number of solutions of 

a system of multi-homogeneous polynomial equations, in a suitable product of 

projective spaces. 
Given an arbitrary, not necessarily multi-homogeneous system, one can ask for the 

optimal multi-homogenization that would minimize the B´ezout number. 
In this paper, it is proved that the problem of computing, or even estimating the 

optimal multi-homogeneous B´ezout number is actually NP-hard. 
In terms of approximation theory for combinatorial optimization, the problem of 

computing the best multi-homogeneous structure does not belong to APX, unless P = 

NP. 
Moreover, polynomial time algorithms for estimating the minimal multi-

homogeneous B´ezout number up to a fixed factor cannot exist even in a randomized 

setting, unless BPP⊇NP. 

1 Introduction 

The multi-homogeneous Bezout number is a bound for the number of solutions of a 

system of multi-homogeneous polynomial equations. 

Estimating the number of isolated solutions of a polynomial system is useful for the 

design and analysis of homotopy algorithms [12]. Applications include problems in 
engineering like the design of certain mechanisms [15,18] or others, such as 
computational geometry. 

An application of multi-homogeneous B´ezout bounds outside the realm of algebraic 
equation solving is discussed in [4], where the number of roots is used to bound 

geometrical quantities such as volume and curvature. 

There is an important connection between root-counting and NP-completeness 

theory. Indeed, it is easy to reduce an NP-complete or NP-hard problem such as SAT, the 
Traveling Salesman problem, Integer Programming (and thus all other NP problems as 
well) to the question whether certain polynomial systems have a common zero. 

The best-known example giving an estimate for the number of roots of a polynomial 

equation is the Fundamental Theorem of Algebra. It was generalized to multivariate 

polynomial systems at the end of the 18th century by Etienne B´ezout. The B´ezout 

number bounds the number of (isolated) complex solutions of a polynomial f : Cn 7→ Cn 

from above by the product of the degrees of the involved polynomials. However, in many 

cases this estimate is far from optimal. A well known example is given by the eigenvalue 

problem: Given a n × n matrix M, find the eigenpairs (λ,u) ∈ C × Cn such that Mu − λu = 0. If 

http://arxiv.org/abs/cs/0405021v1


2 

we equate un to 1, the classical B´ezout number becomes 2n−1, though of course only n 

solutions exist. 

The multi-homogeneous B´ezout number provides a sharper bound on the number of 

isolated solutions of a system of equations, in a suitable product of projective spaces. The 
multi-homogeneous B´ezout bound depends on the choice of a multi-homogeneous 
structure, that is of a partition of the variables (λ,u) into several groups. 

In the eigenvalue example, the eigenvector u is defined up to a multiplicative constant, 
so it makes sense to define it as an element of Pn−1. With respect to the eigenvector λ, we 

need to introduce a homogenizing variable. We therefore rewrite the equation as: λ0Mu − 
λ1u = 0, and λ = λ1/λ0. Now the pair (λ0 : λ1) is an element of P1. The multi-homogeneous 

B´ezout number for this system is precisely n. 

Better bounds on the root number are known, such as Kushnirenko’s [10] or 
Bernstein’s [3]. However, interest in computing the multi-homogeneous B´ezout number 

stems from the fact that hardness results are known for those sharper bounds (see section 
2.2 for details). 

Another reason of interest is that in many cases, a natural multi-homogeneous 
structure is known or may be found with some additional human work. 

In this paper, we consider the following problem. Let n ∈ N and a finite A ⊂ Nn be given 

as input. Find the minimal multi-homogeneous B´ezout number, among all choices of a 

multi-homogeneous structure for a polynomial system with support A: 

  f1(z) = Pα∈A f1αz1α1z2α2 ···znαnn 

 ... (1) 

 fn(z) = Pα A fnαz1α1z2α2 ···znα

 . ∈ 

where the fiα are non-zero complex coefficients. 

Geometrically, this minimal B´ezout number is an upper bound for the number of 

isolated roots of the system (1) in Cn. 

The main result in this paper (restated formally in section 2.1 below) is: 

Theorem 1. There cannot possibly exist a polynomial time algorithm to approximate the 

minimal multi-homogeneous B´ezout number for (1) up to any fixed factor, unless 

P = NP. 

This means that computing or even approximating the minimal B´ezout number up to 
a fixed factor is NP-hard. In terms of the hierarchy of approximation classes (see [2] and 

section 2.4), the minimal multi-homogeneous B´ezout number does not belong to the class 
APX unless P = NP. 
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Motivated by what is known on volume approximation (see section 2.2), one could ask 
whether allowing for randomized algorithms would be of any improvement. 

Theorem 2. There cannot possibly exist a randomized polynomial time algorithm to 

approximate the minimal multi-homogeneous B´ezout number for (1) up to any fixed factor, 
with probability of failure ǫ < 1/4, unless BPP ⊇ NP. 

While the conjecture BPP 6⊇ NP is less widely known outside the computer science 

community than the conjecture P =6 NP, its failure would imply the existence of 

probabilistic polynomial time algorithms for solving problems such as the factorization of 

large integers or the discrete logarithm. Most widespread cryptographic schemes are 

based on the assumption that those two problems are hard. 

2 Background and Statement of Main Results 

2.1 B´ezout numbers 

In the definition of (1), we assumed for simplicity that each equation had the same support 
A. In general, a system f(z) of n polynomial equations with support (A1,...,An) is a system of 

the form: 

  f1(z) = Pα∈A1 f1αz1α1z2α2 ···znαnn 

 ... (2) 

αfn(z) = Pα An fnαz1α1z2α2 ···znα

 , ∈ 

where the coefficients fi are non-zero complex numbers. 

A multi-homogeneous structure is given by a partition of {1,...,n} into (say) k sets I1,...,Ik. 

Then for each set Ij, we consider the group of variables Zj 
= {zi : i ∈ Ij}. 

The degree of fi in the group of variables Zj is 

 

When for some j, for all i, the maximum dij is attained for all α ∈ Ai, we say that (2) is 

homogeneous in the variables Zj. The dimension of the projective space associated to Zj is: 

j = 1 if (2) is homogeneous in Zj, and #Ij 

otherwise. 
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We assume that n = Pkj=1 aj. Otherwise, we would have an undetermined (n < 

) or overdetermined ( ) polynomial system, and multi-homogeneous 
B´ezout numbers would have no meaning. 

The multi-homogeneous B´ezout number B´ez(A1,...,An;I1,...,Ik) is the coefficient of

 in the formal expression  (see [12,16,17]). It bounds the 

maximal number of isolated roots of (2) in Pa1 × ··· × Pak. Therefore it also bounds the 

number of finite roots of (2), i.e. the roots in Cn. 

In the particular case where A = A1 = ··· = An there is a simpler expression for the multi-

homogeneous B´ezout number B´ez(A;I1,...,Ik) def= B´ez(A1,...,An; I1,...,Ik), namely: 

 B´ez(  , (3) 

where dj = dij (equal for each i) and the multinomial coefficient 

! 

is the coefficient of Qkj=1 ζjak in (ζ1 + ··· + ζk)n (recall that  

Heuristics for computing a suitable multi-homogeneous structure (I1,...,Ik) given 
A1,...,An are discussed in [11,13]. Surprisingly enough, there seems to be no theoretical 

results available on the complexity of computing the minimal B´ezout number. It was 
conjectured in [11, p.78] that computing the minimal multi-homogeneous B´ezout 
number is NP-hard. 

Even, no polynomial time algorithm for computing the multi- homogeneous B´ezout 
number given a multi-homogeneous structure seems to be known (see [13, p.240]). 

This is why in this paper, we restrict ourselves to the case A = A1 = ··· = An. This is a 

particular subset of the general case, and any hardness result for this particular subset 

implies the same hardness result in the general case. 

More formally, we adopt the Turing model of computation and we consider the 
function: 

B´ez : n,k,A,I1,...,Ik 7→ B´ez(A;I1,...,Ik) 

where all integer numbers are in binary representation, and A is a list of n-tuples (α1,...,αn), 
and each Ij is a list of its elements. In particular, the input size is bounded below by n#Ai 

and by maxα,i⌈log2 αi⌉. Therefore, B´ez(A;I1,··· ,Ik) can be computed in polynomial time by a 
straight-forward application of formula (3). As a matter of fact, it can be computed in time 

polynomial in the size of A. 

Problem 1 (Discrete optimization problem). Given n and A, compute 

minB´ez(A;I) , 
I 
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where I = (I1,...,Ik) ranges over all the partitions of {1,...,n}. 

Problem 2 (Approximation problem). Let C > 1 be fixed. Given n and A, compute some 
B such that 

BC−1 < minB´ez(A;I) < BC 

Again, I = (I1,...,Ik) ranges over all the partitions of {1,...,n}. 

In the problems above, we are not asking for the actual partition. 

Theorem 1 (restated). Problem 2 is NP-hard. 

This is actually stronger than the conjecture by Li and Bai [11], that corresponds to 
the following immediate corollary: 

Corollary 1. Problem 1 is NP-hard. 

2.2 Other bounds for the number of roots 

Kushnirenko’s Theorem [10] bounds the number of isolated solutions of (1) in (C∗)n by n! 

Vol ConvA, where ConvA is the smallest convex polytope containing all the points of A. 

This bound is sharper than the B´ezout bound, but the known hardness results are far 
more dramatic: In [9], Khachiyan proved that computing the volume of a polytope given 

by a set of vertices is #P-hard. 

There is a large literature on algorithms for approximating the volume of a convex 

body given by a separation oracle. The problem of approximating the volume of a polytope 
in vertex representation can be reduced to the latter by standard linear programming 
techniques. 

It is known that no deterministic algorithm can approximate the volume in polynomial 
time ([14]). However, randomized polynomial time algorithms are known for the same 

problem [7,19]. 

The same situation seems to be the case regarding the estimation of the mixed volume 

[5], which gives the actual number of solutions in (C∗)n for generic polynomials of the form 

(2) [3]. 

2.3 Probabilistic algorithms 

A probabilistic machine is a machine that has access to random bits of information, each 
random bit costing one unit of time. Each random bit is an independent, uniformly 
distributed random variable in {0,1}. In that sense, a probabilistic machine is a machine 

that flips a fair coin, as many times as necessary, spending one unit of time at each flip. 
We can therefore speak of the probability that the machine returns a correct result. 

The class BPP is the class of decision problems (X,Xyes) such that there is a probabilistic 
machine and a constant ǫ < 1/2 that will: 

(i) Decide in polynomial time if x ∈ X. 

(ii) Output YES or NO, in polynomial time. 
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(iii) For every x, the output is the correct answer to the question: does x ∈ Xyes? with 

probability ≥ 1 − ǫ. 

Notice that we can improve the probability that the result is correct by running the 
same machine several times. Therefore, in the definition above, we may as well take ǫ = 

1/4. 

More generally, a probabilistic machine solves a certain problem (e.g. Problem 2) in 

polynomial time with probability ≥ 1−ǫ if and only if it always terminates in polynomial 

time, and the answer is correct with probability 1 − ǫ. 

Theorem 2 (restated). There is no ǫ < 1/2 and no probabilistic machine solving Problem 

2 with probability 1 − ǫ, unless BPP ⊇ NP. 

2.4 Approximation classes 

A theory of complexity classes appropriate for the study of combinatorial optimization 
problems is described in [2]. Problem 1 fits naturally in the class of combinatorial 

optimization problems. In this context, Problem 1 is characterized by: 

(i) A set of instances, given by the set of pairs (n,A), n ∈ N, A ⊂ Nn finite and non-empty. 

(ii) For every instance (n,A), a set of feasible solutions, namely the set of partitions I = 

(I1,...,Ik) of {1,...,n}. 

(iii) An objective function (to minimize), B´ez(A;I). 

The class NPO of combinatorial optimization problems is analogous to the class NP of 
decision problems. Problem 1 belongs to that class: 

(1) The size of each feasible solution is polynomially bounded on the size of each 

instance. 

(2) Given an instance (n,A) and a string w, it can be decided in time polynomial in (n,A) 

whether w encodes a feasible solution I = (I1,...,Ik). 

(3) The objective function can be computed in polynomial time. 

The class APX of approximable problems in NPO is defined as the subset of NPO for 

which there is some C > 1 and a polynomial time algorithm such that, given an instance of 
the problem (say n,A)) produces a feasible solution I such that the objective function 

applied to that solution approximates the minimum up to a factor of C. Theorem 2 admits 
as a corollary: 

Corollary 2. Problem 1 does not belong to APX, unless P = NP. 

Our result actually holds even if we do not require the algorithms to compute a feasible 
solution. 
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3 Proof of the Main Theorems 

3.1 From graph theory to systems of equations. 

Definition 1. A k-coloring of a graph G = (V,E) is a partition of the set of vertices V into k 

disjoint subsets (“colors”) Ij, so that adjacent vertices do not belong to the same “color” Ij. 

Problem 3 (Graph 3-Coloring). Given a graph G = (V,E), decide if there exists a 3-coloring 
of G. 

 

Figure 1: In this example, A(H) = {(0,0,0,0),(1,0,0,0),(0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), 

(1,0,1,0), (0,1,1,0), (0,0,1,1), (1,1,1,0)}. A possible polynomial with that support would be 

1+v1+v2+v3+v4+v1v2+v1v3+v2v3+v3v4+v1v2v3. 

It is known since [8] that the Graph 3-Coloring Problem is NP-hard (see also [6]). We 
will actually need to consider an equivalent formulation of the Graph 3-coloring problem. 

Recall that the cartesian product of two graphs G1 = (V1,E1) and G2 = (V2,E2) is the 

graph G1 ×G2 = (V1 ×V2,E) with ((  if and only if  and 

 and ( . 
Also, let K3 denote the complete graph with 3 vertices. 

Lemma 1. The graph G admits a 3-coloring if and only if the graph G × K3 admits a 3-coloring 

I = (I1,I2,I3) with #I1 = #I2 = #I3 = |G|. 

Proof. G admits a 3-coloring if and only if G × K3 admits a 3-coloring. Moreover, any 

coloring I of G × K3 satisfies #I1 = #I2 = #I3.  

To each graph H = (V,E) we will associate two spaces of polynomial systems. Each of 

those spaces is characterized by a support set A = A(H) (resp. A(H)l) to be constructed and 
corresponds to the space of polynomials of the form (1) with complex coefficients. Of 

particular interest will be graphs of the form H = G × K3. 

We start by identifying the set V of vertices of H to the set {1,...,m}. Let Ks denote the 

complete graph of size s, i.e. the graph with s vertices all of them pairwise connected by 

edges. 
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To each copy of Ks, s = 0,...,3 that can be embedded as a subgraph of H (say the subgraph 
generated by {v1,··· ,vs}) we associate the monomial 

zv1zv2 ···zvs 

(the empty graph K0 corresponds to the constant monomial). Then we consider the linear 

space generated by all those monomials (Figure 1). Therefore, the support A(H) is the set 
of all ev1 + ··· + evs ⊂ Nm such that 0 ≤ s ≤ 3 and {v1,...,vs} induces a copy of Ks as a subgraph of 

H. Here, ei denotes the i-th vector of the canonical basis of Rn. 

Given a set A, we denote by Al the l-fold i cartesian product of A. 

The two spaces of polynomial systems associated to a graph H will be the polynomial 
systems with support A(H) and A(H)l. 

Remark that none of the two classes of systems above is homogeneous in any possible 
group of variables (because we introduced a constant monomial). Therefore, in the 
calculation of the B´ezout number for a partition I, we can set aj = #Ij. 

Lemma 2. Let l be fixed. Then, there is a polynomial time algorithm to compute A(H) and 

A(H)l, given H. 

3.2 A gap between B´ezout numbers 

In case the graph H admits a 3-coloring I = (I1,I2,I3), any corresponding polynomial system 

is always trilinear (linear in each set of variables). If moreover H is of the form H = G × K3 

with |G| = n, the cardinality of the Ij is always n, and formula (3) becomes: 

B´ez(  

The crucial step in the proof of Theorem 1 is to show that 

B´ez(  

unless k = 3 and I is a 3-coloring of G × K3. 

In order to do that, we introduce the following cleaner abstraction for the B´ezout 

number: if k ∈ N and a = (a1,...,ak) ∈ Nk are such that Pkj=1 aj = 3n, we set 

 

Lemma 3. If H = G × K3 and I = (I1,...,Ik) is a partition of the set {1,...,3n} of vertices of H, then 

B´ez(A(H);I) ≥ B(a) 

with aj = #Ij. 
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Proof. Consider the n disjoint copies of K3 in H = G×K3 induced by the nodes of G. By the 

pigeonhole principle, there is at least one of those copies with at least ⌈aj/n⌉ elements of 

Ij. Hence, the degree dj in the j-th group of variables is at least ⌈aj/n⌉. 

The main step towards establishing the “gap” is the following Proposition: 

Proposition 1. Let n,k ∈ Nn and let a1 ≥ a2 ≥ ··· ≥ ak ≥ 1 be such that 3n. Then, 

either k = 3 and a1 = a2 = a3 = n, or: 

 . 

Moreover, this bound is sharp. 

The proof of Proposition 1 is postponed to section 4. 

Putting it all together, 

Lemma 4. Let G be a graph and n = |G|. If G admits a 3-coloring, then 

 

Otherwise, 

 

Proof. According to Lemma 1, G admits a 3-coloring if and only if G × K3 admits a 

3-coloring. 

If I = (I1,I2,I3) is a 3-coloring of G × K3, then 

B´ez(  

If I = (I1,...,Ik) is not a 3-coloring of G × K3, then we distinguish two cases. 

We set aj = #Ij. 

Case 1: a = (n,n,n) and hence k = 3. Then the degree in at least one group of variables 

is ≥ 2, and 

B´ez(  

 Case 2: a = (6 n,n,n). Then 

B´ez(  , 

where the first inequality follows from Lemma 3 and the second from Proposition 1. In 

both cases, 
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. 

 

Lemma 4 would be sufficient to prove a weaker version of Theorem 1, where the factor 

C in problem 2 is less than 4/3. 

3.3 Improving the gap 

In order to obtain a proof valid for any C the idea is to increase the gap by considering 
several copies of a polynomial system, but each copy in a new set of variables. This idea 

works out because of the special multiplicative structure of the multi-homogeneous 
B´ezout number. We will need: 

Proposition 2. Let m,l ∈ N. Let A ⊂ Nm be finite and assume that 0 ∈ A. Then, 

 
Proof. 1. Let I = (I1,··· ,Ik) be the partition of {1,...,m} where the minimal B´ezout number for 

A is attained. 

This induces a partition J = (Jjs)1≤j≤k,1≤s≤l of {1,...,m} × {1,...,l}, given by Jjs = Ij × {s}. 

Identifying each pair (i,s) with i + ms, the Jjs are also a partition of {1,...,lm}. 

By construction of Al, the degree djs in the variables corresponding to Jjs is equal to the 

degree dj of the variables Ij in A. 

The systems corresponding to A and Al cannot be homogeneous for any partition, since 

0 ∈ A and 0 ∈ Al. Then we have aj = #Ij = ajs for any s. Therefore, 

 minB´ez(  B´ez(  
K 

 

2. Now, suppose that the minimal B´ezout number for Al is attained for a partition 

). We claim that each Jt fits into exactly one of the l sets {1,...,m}× 
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Suppose this is not the case. Assume without loss of generality that J1 splits into K ⊂ 
{1,...,m} × {1} and L ⊂ {1,...,m} × {2,...,l}, both K and L non-empty. 

If dK denotes the degree in the K-variables and dL the degree in the L variables, then d1 

= dK + dL. Also, a1 = aK + aL where aK is the size of K and aL is the size of L. The multi-
homogeneous B´ezout number corresponding to the partition J′ = (K,L,J2,··· ,Jr) is: 

B´ez(  

Therefore, 
L 

B´ez( 

B´ez( 

and the B´ezout number was not minimal, thus establishing the claim. 

3. Denote by J = ∪ls=1
J(s) the partition minimizing the B´ezout number corresponding to 

Al. In the notation above, we assume that J(s) is a partition of {1,...,m}×{s}. 

In that case, 

B´ez(  

 

 

Combining Lemma 4 and Proposition 2, we established that: 

Lemma 5. Let G be a graph and n = |G|. Let l ∈ N. If G admits a 3-coloring, then 

 

Otherwise, 

 

Proof of Theorem 1. Assume that ApproxB´ez is a deterministic, polynomial time 

algorithm for solving problem 2, i.e., for estimating the B´ezout number up to a factor of 

C. 

Then the following algorithm decides Graph 3-coloring (Problem 3) in polynomial 

time: 

A l ;  
′ ) 

A l ,  ) 
= 

 a 1 
a K 

 
d 

a K 
K d 

a 
L 

( d K + d L ) a 1 < 1 
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Algorithm 1 (Decides Graph 3-coloring problem). 

Input: a graph G of size n. 

Output: YES if G admits a 3-coloring, NO otherwise. 

Constants: . 

1. Compute 

2. If ρ2 < C then Output YES, else Output NO. 

By our choice of the constant l, √C ≤ (4/3)l. Therefore, Lemma 5 asserts that the output 

of algorithm 1 is correct. 

The bit-size of the numbers that occur when computing the denominator of line 2 are 

bounded above by O(3nllog(3nl)). The size of the graph G × K3 is O(n), and Lemma 2 says 

that Al can be computed in polynomial time. 

It follows that Algorithm 1 runs in polynomial time. Since Graph 3-coloring is NP-

complete, we deduce that P = NP.  

Proof of Theorem 2. Assume now that ApproxB´ez is a probabilistic polynomial time 

algorithm for solving problem 2, which returns a correct result with probability 1 − ǫ, ǫ < 

1/4. 

Then Algorithm 1 will return the correct answer for the Graph 3-coloring Problem, 

with probability at least 1 − ǫ. This implies that Problem 3 is actually in BPP.  

4 Proof of Proposition 1 

We will need the following trivial Lemma in the proof of Proposition 1: 

Lemma 6. Let x,n ∈ N. Then, 

 . 

In particular, the left-hand side is ≥ 2 whenever n 6 | x, and is always ≥ 1. 

Proof. Since , we have: 
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Also, we will make use of the Stirling Formula [1, (6.1.38)]: 

  , (4) 

where 0 < θ(x) < 1. 

Proof of Proposition 1. The ratio between B(a) and B(n,n,n) is: 

 

From Stirling formula (4) it follows immediately that: 

  (5) 

Now we distinguish the cases k = 1, k = 2, and k ≥ 3. The first two cases are easy: 

Case 1: If k = 1, then a1 = 3n and (5) becomes: 

 

which is bounded below by  

Case 2: If k = 2, Lemma 6 implies that 

 

Since , we obtain: 

 

Case 3: Let k ≥ 3. If a3 = n, then k = 3 and a1 = a2 = a3 = n, so there is nothing to prove. 

Therefore, we assume from now on that a3 < n. 

We separate the right-hand side of (5) into two products, the first for j = 1,2,3 and the 
second for j ≥ 4. Equation (5) becomes now: 

  (6) 
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using the fact that aj < n for j ≥ 4. In case k = 3, the second factor in equation (6) above is 

equal to one. 

Since a3 < n, n 6 | a3 and Lemma 6 implies that for a3 < n 

 

Moreover, √3 a1a2a3 ≤ (a1 +a2 +a3)/3 ≤ n, so the first factor of the right-hand side of (6) 

can be bounded below by 

 

If k = 3 we are done. Otherwise, we notice that since the aj are non-increasing,  

for all j ≥ 4. In order to bound the second factor of (6), we will need the 

following technical Lemma: 

Lemma 7. Let n,x ∈ N and let . Then, unless (n,x) ∈ {(2,1),(3,2),(4,3), 

(6,4),(7,5),(8,6)}, we have: 

 

(Proof is postponed). 

n aj 3n a j B(a) B(n,n,n) B(a) 

 
B(n,n,n) 

2 1 6 1 1 1 1 1 

1 

4,5,6 720 90 8 

   2 1 1 1 1 4,5 360  4 

   2 2 1 1 4 180  2 

   3 1 1 1 4 120  4 
3 

3 2 9 2 2 2 2 1 

3 2 2 2 

4 

4 

22680 

7560 

1680 27 
2 
9 
2 

4 3 12 3 3 3 3 4 369600 34650 32 

3 
6 4 18 4 4 4 4 1 

1 

4 19297278000 17153136 1125 

   4 4 4 4 2 4 9648639000  1125 

2 

   5 4 4 4 1 4 3859455600  225 

   5 5 4 4 4 771891120  45 
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   6 4 4 4 4 643242600  75 

2 

7 5 21 5 5 5 5 1 

6 5 5 5 

4 

4 

246387645504 

41064607584 

399072960 3087 
5 

1029 
10 

8 6 24 6 6 6 6 4 2308743493056 9465511770 10976 

45 

 

Table 1: Ratios for all the exceptional pairs (n,a). 

Therefore, unless some of the pairs (n,aj), j ≥ 4 belong to the exceptional subset 

{(2,1),(3,2),(4,3),(6,4),(7,5),(8,6)}, we have: 

 . 

Finally, we consider the values of n and a where some (n,aj), j ≥ 4, is in the exceptional 

subset. All the possible values of n and a are listed in table 1. The ratio is always ≥ 4/3, 

and the value of 4/3 is attained for n = 2 and a = (3,1,1,1).  

Proof of Lemma 7. Let 

 

(see figure 2). We first consider values of x ≥ 7. By hypothesis, n/x ≥ 4/3 so logn − logx 

≥ log(4/3), and therefore gn(x) ≥ h(x), where: 

 

(see Figure 2 also). Notice that h(x) is independent of n. The derivative of h is 

 

The numerator vanishes at 
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Figure 2: Plots of gn(x) and h(x). 

Numerically, x ≃ 0.1867281114 or x ≃ 1.551301638. Therefore, the function h(x) is 

increasing for x ≥ 2. Again, numerically h(7) ≃ 0.1099761345 and therefore, if x ≥ 7 we 

always have: egn(x) ≥ 1.1162 > 1 

Now we consider x ≤ 6. Having gn > 0, is equivalent to: 

 

At this point, we proved that gn(x) is positive, except possibly for pairs (n,x) with 1 ≤ x 

≤ 6 and ). The values of n0 are tabulated in Table 2. From 

Table 2 it is clear that the only exceptions are those listed in the hypothesis. 

 

x 4x 
3 

n0(x) Possible 

n’s 

1 1.333333333 2.724464424 2 

2 2.666666666 3.844857634 3 

3 4 4.939610298 4 

4 5.333333333 6.016610872 5 

5 6.666666666 7.081620345 6 

6 8 8.137996302 8 

 

-1 

-0.5 

 0 

 0.5 

 1 

 1.5 

 2 

 2.5 

 1  2  3  4  5  6  7  8  9  10 

h(x) 
g(2,x) 
g(3,x) 
g(4,x) 
g(5,x) 
g(6,x) 
g(7,x) 
g(8,x) 
g(9,x) 

g(10,x) 
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Table 2: Possible values of n for x small 
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