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This paper examines some familiar results from complex analysis in the framework of hypercom-
plex analysis. It is usually taught that the oscillatory behavior of sine waves means that they have
no limit at infinity but here we derive definite limits. Where a central element in the foundations
of complex analysis is that the complex conjugate of a C-number is not analytic at the origin, we
introduce the tools of hypercomplex analysis to show that the complex conjugate of a ?C-number
is analytic at the origin.

To argue against the Riemann hypothesis in reference
[1], we extended Riemann’s analytic continuation R→C
into the hypercomplex numbers C→?C. The hypercom-
plex numbers ?C are the direct extension of the trans-
finite hyperreal numbers ∗R onto C (or Ĉ, which is the
extended complex plane C ∪ {∞}). Furthermore, in ref-
erence [2], we proposed that every theorem in C which
involves the path around a disc, such as Cauchy’s residue
theorem, is amenable to reanalysis in ?C where the path
along the disc’s boundary is replaced with a window func-
tion of 2π radians along a non-disc helical path. The
purpose of the present paper is to demonstrate a further
application of the principles of the modified cosmologi-
cal model (MCM) [2] to canonical complex analysis. We
examine the C-function f(z)=z∗, where ∗ denotes com-
plex conjugation, and then we will reexamine f as a ?C-
function with some spicy new MCM flavors. With the
spicy new tools in place, we will then derive the limits of
the sine and cosine functions at infinity.

The definition of the complex derivative is (in the for-
ward convention)

d

dz
f(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
. (1)

For our introduction, we will consider the result that
f(z) = z∗ is not analytic at the origin in C. Note, in-
cidentally, that the lack of analyticity at z= 0 gives rise
to the concept of an open deleted disc, namely the set
of all points 0 < |z − z0| < r, and that deleted discs
were the main objects used to argue against the Rie-
mann hypothesis in reference [1]. In reference [1], we
used r=∞ and then applied the tools of hyperreal anal-
ysis to Ĉ (thereby creating ?C) to consider an infinite
series of nested deleted discs where all discs on lower
tiers of infinitude lie in the deleted center point of any
given disc (which may or may not be open, depending on
what we do with r=∞.) Here, “tiers of infinitude” refers
to the relative magnitudes between infinites, finites, and
infinitesimals, as is standard in hyperreal analysis.

In C, the non-analyticity of z∗ at z=0 is demonstrated
by taking z in the form z=x+ iy′. We evaluate ∆z→0
along the x- and y′-axes, and observe that the limits are
unequal, i.e.: ∆z→0 along the x-axis (∆y′=0) gives

d

dz
f(0) = lim

∆y′=0
∆x→0

∆x− i∆y′

∆x+ i∆y′
= lim

∆x→0

∆x

∆x
= 1 , (2)

and ∆z→0 along the y′-axis (∆x=0) gives

d

dz
f(0) = lim

∆y′→0
∆x=0

∆x− i∆y′

∆x+ i∆y′
= lim

∆y→0

−i∆y′

i∆y′
= −1 . (3)

Before adding the transfinite component which differ-
entiates C from ?C, we will first modify the definition of
z. In the analysis of C, one usually takes the origins of
z, x, and y′ to be the same point but we will not do so.
To motivate what will be presented, consider the require-
ment that adjacent branes in the MCM unit cell (figure
1) are always connected [2]. For example, the Ω-brane
lies beyond the spacelike infinity of the H-brane but the
MCM crank is cranked when some link between them
is broken from H and then rotated about Ω such that
the free end of the connection is reconnected to ℵ or ∅.
This happens one or two more times to give a final pivot
about ℵ leading to a reconnection on the time-advanced
H-brane, which is H2 in figure 1. The reader’s familiarity
with the MCM is assumed but reference [3] gives a brief
description of the connective pivot process and reference
[2] gives a longer description. The anchor point of the
rotation must be the origin of coordinates, so how can
we have two origins on two different branes? This leads
us into a new definition for z: when writing z=x + iy′,
we can use the same origin for x and z while writing the
imaginary part as a difference from infinity with regards
to an origin which is infinitely far away from the shared
origin of z and x, as in figure 2 which shows how the
origins of y± are like the origins of χ5

± on H1 and H2 in
figure 1. Additionally, the MCM unit cell has a piecewise
dimension in the direction perpendicular to H, and the
unit cell is such that H is the observable (real) universe
while the cubic bulk is unobservable. The non-observable
sector in physics is usually the imaginary part so we are
well-motived, as an extension of the MCM principles, to
consider a piecewise definition y± for the imaginary part
of z.
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Let

z ≡

{
x+ iy+ , for Im(z) > 0

x− iy− , for Im(z) < 0
, (4)

where x∈(−∞,∞) and y±∈(0,∞). We obtain z=x+iy′

with

y+ =∞− y′ (5)

y− = y′ +∞ . (6)

Note that we use y− for y′<0 so, in all cases, y−>0 and
|y−|<∞. A quick check on equations (5) and (6) tests
the points (x, y′) = (x0, 1) and (x, y′) = (x0,−1) under
change of coordinates. For y+, we have

1 = y′ =∞− y+ (7)

=∞−
(
∞− y′

)
(8)

=∞−
(
∞− 1

)
= 1 . (9)

For y−, we have

−1 = y′ = y− −∞ (10)

=
(
y′ +∞

)
−∞ (11)

=
(
− 1 +∞

)
−∞ = −1 . (12)

The astute reader will have noticed that the case of
Im(z)=0 was excluded from definition (4), and that this
is a problem because Im(z) = 0 defines the path along
the x-axis in equation (2). To solve this problem, we
introduce the transfinite component of the hypercomplex
numbers ?C. Using the Φ̂ notation for levels of ℵ, which
are integer labeled tiers of infinitude, as in ∗R, and which
are detailed in references [4] and [2], briefly and at length
respectively, we can write

Im(z) = 0 =⇒ y′ = α∞Φ̂−∞ , (13)

where α∞∈R, α∞ 6=0, and Φ̂−∞ denotes the maximally
infinitesimal tier of infinitude. This tells us that infinitely
small is equal to zero in the same way that 1/∞ = 0

because |Φ̂|≈1.62. Even without that, however, the hat
makes it a label for the smallest possible infinitesimal. In

FIG. 1. This figure shows the MCM unit cell. Each cube is
spanned by {x0, xi, χ5}. H is observable (real) spacetime but
the bulk space is unobservable. There is, therefore, an intu-
itive picture in which χ5

± are imaginary dimensions pointing
outside of the universe spanned by xµ.

FIG. 2. To show the similarity with figure 1, the imaginary
axis is in the horizontal direction. The “upper” complex half-
plane is on the right, and the “lower” is on the left. The origin
of z, x, and y′ is labeled O{z,x,y′}. It is usually also the origin

of the Im(z) dimension but the new piecewise definition of y±

puts their origins at O{y±} which lie at the points (x, y′) =
(0,±∞).

general, if we restrict to only a single level of ℵ, we could
write

Im(z) = 0 =⇒ y′ =

∞∑
j=1

αjΦ̂
−j , (14)

where Φ̂0 =1̂ is finite and Φ̂−j is increasingly infinitesimal
for increasing j ≥ 1. However, the purpose of migrating
from the theory of functions of complex variables to the
theory of functions of hypercomplex variables is to con-
sider multiple simultaneous tiers of infinitude. Therefore,
for the present purposes at least, we should take the def-
inition in equation (13). There probably exists some ε-δ
argument that requires 0∈ ∗C to be defined as in equa-
tion (13) but, presently, we will take it as an axiom of
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the framework of analysis.
Note well, we have required as an axiom of hypercom-

plex analysis that α∞ 6= 0. Therefore, when we examine
the limit ∆z→0 along the x-axis with z∈?C, we cannot
set ∆y′ = 0. Mirroring what we have done for C with
equations (2) and (3), consider ∆z→ 0 along the x-axis
in ?C. Since we cannot set ∆y′= 0, we need to consider
the sign of α∞ to know which of the forms of z to use,
as given by definition (4). First, we will consider α∞>0
so that z∗=x− iy+. This gives

d

dz
f(0) = lim

∆y′→0
∆x→0

∆x− i∆y+

∆x+ i∆y+
. (15)

The limit is in terms of y′ so we need to convert with
y+ =∞− y′. This gives ∆y+→∞ and

d

dz
f(0) = lim

∆y+→∞
∆x→0

∆x− i∆y+

∆x+ i∆y+
=
−i∞
i∞

= −1 . (16)

Now consider α∞<0 so that z=x−iy− and z∗=x+iy−.
This gives

d

dz
f(0) = lim

∆y′→0
∆x→0

∆x+ i∆y−

∆x− i∆y−
. (17)

Inserting ∆y− = ∆y′ +∞, we obtain

d

dz
f(0) = lim

∆y−→∞
∆x→0

∆x+ i∆y−

∆x− i∆y−
=

i∞
−i∞

= −1 . (18)

We should also examine the paths for ∆z→ 0 along the
y-axis. This is a trivial extension of what we have done
above because ∆x 6= 0 also follows from equation (13).
In the upper complex half-plane, we get equation (16).
In the lower complex half-plane, we get equation (18).
Therefore, f(z)=z∗ is analytic at the origin when z∈?C
even though it is not when z∈C.

That z∗ is not analytic at the origin is a foundational
result in the theory of functions of complex variables so
the discrepancy with the theory of functions of hyper-
complex variables should be a door to the generalization
of many other results in C to ∗C. For instance, examining
the identity

ez =
d

dz
ez , (19)

yields the result that gives this paper its title. Using the
definition of the derivative, we have

ez = lim
∆z→0

ez+∆z − ez

∆z
(20)

= lim
∆z→0

ez
(
e∆z − 1

∆z

)
. (21)

First, we consider y+ by substituting z=x+ iy+ so that

ez = lim
∆y+→∞

∆x→0

ez

(
e∆xei∆y

+ − 1

∆x+ i∆y+

)
(22)

= ez
(
ei∞ − 1

i∞

)
. (23)

From this, we observe that equation (19) requires

ei∞ − 1 = i∞ . (24)

Therefore,

cos(∞) + i sin(∞) = 1 + i∞ . (25)

It follows directly that

cos(∞) = 1 (26)

sin(∞) =∞ . (27)

Checking for y−, we substitute z=x− iy− into equation
(21) to get

ez = lim
∆y−→∞

∆x→0

ez

(
e∆xe−i∆y

− − 1

∆x− i∆y−

)
(28)

= ez
(
e−i∞ − 1

−i∞

)
. (29)

Again, it follows that

cos(−∞) + i sin(−∞) = 1− i∞ . (30)
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Comparing to equation (25), this preserves the symmetry
of sine and cosine as

cos(∞) = cos(−∞) (31)

sin(∞) = − sin(−∞) . (32)

This seems like a good result but sin(x) > 1 is prob-
lematic. We might note that it is no different than

∞∑
n=1

n = − 1

12
, (33)

(which may well be cleaned up in ∗C) but, actually,
we can do much, much better than that. The value
sin(∞)=∞ was derived after converting to y±. We need
to convert back to y′ to see how the ∗C result holds up
in C. Equations (25) and (30) show complex numbers

x+ iy+ = 1 + i∞ (34)

x− iy− = 1− i∞ , (35)

where the most relevant part is

y+ =∞ (36)

y− =∞ . (37)

To get the result in C, we need to convert to y′ with

y′ =∞− y+ =∞−
(
∞
)

= 0 (38)

y′ = y− −∞ =
(
∞
)
−∞ = 0 . (39)

Therefore, we find

lim
θ→∞

cos(θ) = 1 (40)

lim
θ→∞

sin(θ) = 0 . (41)

Q.E.D.
The formulae presented here should be extended to

include the principles developed in reference [4] regard-
ing transfinite definitions for the exponential function.

The reader should note the consistency of this work with
the overall gist of the MCM: by pushing beyond infinity,
we have learned something new about what happens at
infinity.

COMMENT ON NOTATION

The notation such that ∞/∞=1 is valid in the linear
case developed here. This notation always produces the
same answer as a more rigorous method. Here we repro-
duce a limit by the rigorous steps to show that it gives
the same answer as the notation used above. In general,
argument against ∞/∞=1 fails in ?C because infinity is

defined such that Φ̂j/Φ̂k=Φ̂j−k even when j=k.

Equation (16) was

d

dz
f(0) = lim

∆y+→∞
∆x→0

∆x− i∆y+

∆x+ i∆y+
=
−i∞
i∞

= −1 , (42)

and here we have not written all of the steps. In full, we
have

d

dz
f(0) = lim

∆y+→∞
∆x→0

∆x− i∆y+

∆x+ i∆y+
(43)

= lim
∆y+→∞

∆x→0

∆x− i∆y+

∆x+ i∆y+
· 1 (44)

= lim
∆y+→∞

∆x→0

∆x− i∆y+

∆x+ i∆y+

1
∆y+

1
∆y+

(45)

= lim
∆y+→∞

∆x→0

∆x

∆y+
− i

∆x

∆y+
+ i

(46)

=

lim
∆y+→∞

∆x→0

(
∆x

∆y+
− i
)

lim
∆y+→∞

∆x→0

(
∆x

∆y+
+ i

) =
−i
i

= −1 , (47)

which is the same answer as equation (42). These two
systems of notation always give the same answer for the
types of linear, or affine, spaces considered here.
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