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Abstract 

 
We discovered a way to write the equation x

n
+y

n
-z

n
=0 first studied by 

Fermat, in powers of 3 other variables defined as; the sum t = x+y-z, the 

product (xyz) and another term r = x
2
+yz-xt-t

2
. Once x

n
+y

n
-z

n
 is written in 

powers of t, r and (xyz) we found that 3 cases of a prime factor q of x
2
+yz 

divided t. We realized that from this alternative form of Fermat’s equation if 

all cases of q divided t that this would lead to a contradiction and solve 

Fermat’s Last Theorem. Intrigued by this, we then discovered that the fourth 

case, q=3sp+1 also divides t when using a lemma that uniquely defines an 

aspect of Fermat’s equation resulting in the following theorem:  
p p p

2

If x + y - z = 0 and suppose x, y, z are pairwise co - prime then any prime factor

q of (x + yz) will divide t ,where t = x+ y - z
 

 
 

 

 
 

 

 

. 
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Introduction 

There have been thousands of attempts to solve Fermat’s Last Theorem (FLT) using Elementary 

Number Theory (ENT) over the centuries. Naturally when considering a problem that can be easily 

stated and understood one would assume a relatively easy proof in ENT would exist. However, none 

were found with the equation as it is written, with the exception of Andrew Wile’s proof using 

modern number theory techniques.  

When in 1993 Andrew Beal conjectured that there were only common factor solutions to the general 

case of FLT namely x
a
+y

b
-z

c
=0 when a,b,c>2 one then assumed that there were common factor 

solutions to FLT but obviously these solutions would cancel out and be non-existent in the special 

case. We therefore wondered what would be a good way of showing common factors or more 

specifically what term’s prime composition would give common factors if they shared a prime? We 

found 3 good candidates x
2
+yz, y

2
+xz, and z

2
-xy because if they shared a prime factor (q) with powers 

of x, y, z or xy, xz, yz or xyz then we get common factor solutions q.  

We can’t see how to use this with Fermat’s equation as it is written but when we were trying to 

factor  x
2
+yz into the n=3,5,7 equation we initially found a separation of the terms (x+y-z) and (xyz). 

We then wondered whether this was possible for all n. What we wanted to do was see if we can put 

this equation in terms of( x+y-z) and (xyz), or more specifically powers of (x+y-z) and powers of (xyz) 

and indeed we could if we introduce a new term we call the symmetric r= x
2
+yz-xt-t

2
 which happens 

to have a x
2
+yz component.  

For example we have Fermat’s equation for n=7, 
7 7 7 0x y z    

and in the new representation we have for n=7, 

7 5 4 2 3 2 3 2 2
29 56 35 35 35 7 7 7 0t t r ( xyz )t r t ( xyz )t r tr ( xyz ) t r xyz )(         

 
One can see this is written in powers of the 3 terms t, r,(xyz) and these terms completely replace the 

powers of  x, y and z to become the arguments or variables in the problem. 

We then studied this new equation and realised that if we showed all the prime factors of x
2
+yz or 

y
2
+xz, or  z

2
-xy divided t we could solve Fermat’s Last theorem because this leads to a contradiction 

x
2
+yz≤ t but 2x yz t  in FLT as the case in point. 

We first show that t≡0mod3 and recognized that if we take a prime factor (q) of x
2
+yz we can easily 

show that for one case of q and two sub-cases of q namely,  

q≠3sp+1 

q=sp+1, s≠M3 

   q=3s+1, s≠Mp 

when n is prime (p) we get  t≡0modq or we get common factor solutions for these cases.  

The 4th case q=3sp
k
 +1 is more difficult but we develop methods to deal with it. We use a lemma 

(lemma 5) that defines a particular property of Fermat’s equation namely; x+y=c
p
, z-y=a

p
, z-x=b

p
 . 

Then, along with the possible solutions when q=3sp+1, we show that these q’s must also divide t. We 

further generalize to all k using an exponentiation method that combined with lemma 5 shows all q(k) 

divide t.   

We therefore end up with t≡0modq for all possible cases of q. When we look at our new 

representation of Fermat’s equation, we can show that with the decomposition of , 

31 22
1 2 3

n( q ) ( q )( q ) ( q )
nx yz q q q ...q 

q qq q where qi is prime and q(qi) the highest power dividing x
2
+yz, 

that these higher power terms must also divide t but we have that 2x yz t   which obviously 

eliminates integer solutions.  
 

Remark: The premise behind solving this problem is quite simple - all we are showing is all the 

prime factors of a particular term divide t or we get common factor solutions, resulting in the theorem; 
p p p 2

If x + y - z = 0 and suppose x, y, z are pairwise co - prime then any prime factor q of (x + yz) will divide t

where t=x+y-z 
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Historical Note: Although, FLT is an ancient problem it is only relatively recently (30 years) that we 

have found the generalized version of the problem almost certainly has only common factor solutions. 

If ancient mathematicians had known this, they would have realised that common factor solutions to 

the special case would not exist and would be a good way of solving FLT. It is difficult to find 

common factor methods working with three independent variables. However changing the form of 

Fermat’s equation to incorporate specific terms like x
2
+yz creates an environment friendly to common 

factor approaches. With this alternative version of Fermat’s equation also unknown to mathematicians 

until now, then the problem may not be outside the realms of elementary number theory after all. 

. 
Definitions 

We define the dependent variable t as, 

 

               t= x+y-z                (1.01) 

  

Another way of writing 2t is to let, x y C, z y A, z x B.       

(1.02)

(1.03)

(1.04)

(1.05)

 2t = A B+ C

x = A+ t

y = B + t

z = C - t

 
We define the symmetric r in general as,

 

(1.06)2 2 2 2 2 2r(v) = x + yz - xt + vt = y + xz - yt + vt = z - xy + zt + vt  

We can also write this as,

(1.07)2r(v) = xz + yz - xy + vt  

In this work we will only be using v= -1,  

 or (1.08)2r(-1)   r = xz + yz - xy - t

The symmetric parts are defined as, 

(1.09)2 2 2
r(x / t) = x + yz, r(y / t)= y + xz, r(-z / t) = z - xy, r(0) = xz + yz - xy

We can use any of 
2 2 2r( x / t ) x yz, r ( y / t ) y xz, r( z / t ) z - xy,      to contain our prime factors q 

In this work we will use, 

     2
r(x / t)or r' = x + yz      (1.10) 

We use capitalization when refering to these definitions in , , . , ,

Hence,

(1.11)

(1.12)

(1.13)

p p p p p p

p p p

x y z i e x x y y z z  

p p p

p p p 2

2p p p

T = x + y - z

R = x z + y z - x y -T

R' = x + y z
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Remark: ‘M’ stands for ‘multiple of” at some places in this work.  

We derive the new form of Fermat’s equation using combinatorial arguments. This proof is quite long and as 

one knows combinatorial proofs take a long time to work through (over 14 pages in this instance). Hence not to 

distract the reader with this cumbersome proof we will state the results Theorem 1.1 and Corollary 1,2 for 

brevity. One can use a calculator or computer to check the validity of these equations for any input. If one 

requires the rigorous proof please see extract 2  

Proposition 1 We can write   n n nx y ( z )  in terms of (xyz)
m
 , r and  t  

We initially factor A
2
+BC-At-t

2
 in this derivation and convert back to x

2
+yz-xt-t

2
. In general we end up getting 

for n and ℓ; 

1

3 5 1 5 1 3 5 1
3

2 2 2 2 2 2 2 2 2

1 0 2 1 1
1 1

2

5 7 7 7

2 2 2 2

3 0

n odd even

# n even odd

n ( ) n ( ) n ( ) n ( ) n ( ) n ( #) n ( #) n ( )
n... ... ...

(( n n ...n )t xyzr
#! ! ! ( )! ! !

! !( )!

n ( ) n ( ) n ( ) n ( ) n (
... ...

( n n
! ! !

 

   

             
 

  


        

 

7 5 7 7
9

32 2 2 2 2

2 3 1
1 3

2

2 4 3 2 4 6 3 2

2 2 2 2 2 2

0 2 1

2 4

2

) n ( #) n ( #) n ( )
n...

...n )t ( xyz ) r
#( )! ! !

! !( )!

n ( m ) n ( m ) ( n ( m ) n ( m ) ( n ( m ) ( n ( m )
n( )( )...( ) n( )( )...( )

( ...
! m ! ! ( )! m ! !

n ( m #) ( n ( m #)
n( )(

    
 




                 

  


    3 2
3

2 2 2 (1.14)

1
2

( n ( m )
n m)...( )

m
))t ( xyz ) r

( #)
! m ! !

  
 

1
2

1

2 4 2 4 2 1 3 2

2 2 2 2 2 2 2 2

10 0 2 0 1
1 0

2

4 6 4 6

2 2 2 2

2 0

n

n odd odd

*n even, even

n ( ) n ( ) n ( ) n ( ) n ( ) n ( *) n ( *) n ( )
... ... ...

(( n n ...n )t r
*! ! ! ( )! ! !

! !( )!

n ( ) n ( ) n ( ) n ( ) n (
... ...

( n n
! ! !





 

   

             

  


         


1

6

2 2

4 3 5 4

2 2 2 2

12 2 1
1 2

2

2 4 3 2 4 6 3 2

2 2 2 2 2 2

0 2 1

1

2

n
) n ( *) n ( *) n ( )

...

...n )t ( xyz ) r ...
*( )! ! !

! !( )!

n ( m ) n ( m ) ( n ( m ) n ( m ) ( n ( m ) ( n ( m )
n( )( )...( ) n( )( )...( )

( ...
! m! ! ( )! m! !

n ( m *) ( n
n( )(



 
   




                 

  


  

1

3

2

3 3 2

2 2 (1.15)
1

1
2

n m

m

( m *) ( n ( m )
)...( )

))t ( xyz ) r
( * )

! m! !


 
   



 

This gives, 

3
32

2

0

1 2

2 2

2

3
0 2

2

terms for (1.16)

n m
( n )//

n n n m

m

m n mod

n ( s m )
( )!

t x y ( z ) n( )t ( xyz ) r
n m

s ( s )! m ! s !( )!

      



  

   

     
 

 



 

Starting with,

n n n n n nx y z ( A t ) ( B t ) (C t )       
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Therefore we can write, 

 

Theorem 1.1  t dependent equation v = -1, (n > 0) 

 

332
2

0 0 0

1 2

2 2

21 1 (1.17)
3

2
2

n- m-( n- )//
n n n n m

s m

m n mod

n ( - s - m - )
( )!n

x y ( z ) (- ) (- ) n( )t ( xyz ) r
n - m -

( - s )! m! s !( )!

     

  

  



      

 

Where r is the v= -1 symmetric x
2
+yz-xt-t

2 

32

00 0

1 2

3
Making

2

1
1 1 (1.18)

2

( n )//n
n n n m

s m

m n mod

n m

( s m )!nx y ( z ) ( ) ( ) n( )t ( xyz ) r
( s )! m! s !( )!

     




 

  

 
 

   
      

 

 
Corollary 1 

Corollary 2 

  
 
 

 
 

 

 

 

 

 

 

1 1 2 2 2 2

1 1 1 2 2 2 2

2 2
even

2 2

1 2 1 2
odd 1 20

1 1

2 2

n ! n ! n ! n !n n n n n n n
y ( x y ) ...

( n )! !( n )! ( n )! ! !( n )!

n ! n ! n !m n m n m m n/ n/
... n )

n nm !( n m )! ( n m )! m !
! !

n ! ( n )/ ( n )/
... n ) ( . )

( n ) ( n )
! !

x x y xy x y x y

x y x y x y (

x y (

   
      

   

 
   

 

 
 

 

3 4 52 4 2 2 6 3 3

2 3

2 4
1

2 2 2 22 2
=even)

2

1 3
2

1 2 1 22 2
=odd) 1 19

1

2

n( n ) n( n )( n )n n n n n n
z x ( z x ) n( z x ) zx ( z x ) z x ( z x ) z x

! !

n n
n( )( )...

n/ n / n/ n /
... ( z x )z x ( n

n
!

n n
n( )( )...

( n )/ ( n )/
... ( z x )z x ( n ( . )

( n )
!
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First Examples v = -1  

Computer Verification. One may care to verify these results by computer where t = x+y-z and  

 r =x
2
+yz-xt-t

2
=y

2
+xz-yt-t

2
=z

2
-xy+zt-t

2
 

 

There are many corollaries but notable corollaries required for FLT are as follows: 

Corollary 3 When n is a multiple of 3 then the equation ends with ±3(xyz)
n/3

 

Proof 

3
From 1 17 with 0 we have 0 then 3 hence,

2

1 3
3

0

m m

n m
( . ) , n m

n -(m+2)
( )!

( m )! m2n ( xyz ) n ( xyz )
n-3m m! m!m!( )!

2


  


        

 

 

 

 

 

 

6 6 6 12 2
6 6 15

6

5 5 5 10 8
5

10 9 8 7 6 3 2 6 5 2 4 4 2 4 3 3
24 20 3 36 15 0 24

3 3 2 5 2 2 2 4 3 6 2 3 4
10 6 9 6 12 6 3

x y z ( t t r xyzt t r

)( xyz )

x y z ( t t

xyzt r t r ( xyz ) t xyzt r r t ( xyz ) t r xyzt r

( xyz ) t t r t ( xyz ) r txyzr t( xyz ) r r ( xyz ) r ( xyz )

...

  
    



  
   

       

       

7 2
5 10

5

4 4 4 8 6 5 2 4 3 3 2 2 2 4 2 4
4 4 6 8 4 2 4 4

3 3

6 5 4 3 2 4 3 2 4 2 2 2 3
15 10 0 15 5 5 5

3 5 2 2
5 5

2

r xyzt t r

)( xyz )

x y z ( t t r xyzt r t xyzrt r t ( xyz ) t xyztr r ( xyz ) r )( xyz )

x y z

xyzt r t r ( xyz ) t xyzt r r t ( xyz ) t r xyztr

( xyz ) t r ( xyz ) r

 



   
           

 
 

      

  

3 6 4 3 2 2 3 2 3
3 3 3 3 3

2 2 2 4 2 2 2
2 2

1 1 1 2 1

0 0 0
3

1 1 1

2 2 2 2
3 2

3 3 3 3
4 3 3

4 4 4 4 2 2
7 8 4 2

5 5

( t t r xyzt t r xyztr r ( xyz ) )( xyz )

x y z ( t t r xyzt r )( xyz )

x y z ( t r )( xyz )

x y z

x y z t

x y z t r

x y z t tr xyz

x y z t t r xyzt r

x y

 
      

   
     

   
   

  

  

   

    

     


5 5 3 2 2

11 15 10 5 5

6 6 6 6 4 3 2 2 3 2
18 30 18 15 12 2 3

7 7 7 7 5 4 2 3 2 3 2 2
29 56 35 35 35 7 7 7

8 8 8 8 6 5 2 4 3 2
47 104 64 80 80 24

z t t r xyzt r t xyzr

x y z t t r xyzt r t xyztr r ( xyz )

x y z t t r xyzt r t xyzt r tr ( xyz ) t r xyz

x y z t t r xyzt r t xyzt r t

     

        

         

       
3 2 2 2 4 2

20 24 2 8

9 9 9 9 7 6 2 5 4 3 3 2 3 2 2 4 2 3 3
76 189 117 171 180 66 45 81 9 27 9 3

2
123 340 210 355 380 170

10 10 10 10 8 7 6 5 4

r ( xyz ) t xyztr r ( xyz ) r

x y z t t r xyzt r t xyzt r t r ( xyz ) t xyzt r tr ( xyz ) rt xyzr ( xyz )

x y z t t r xyzt r t xyzt r t r

   

             

      
3 2 2 4 2 3

100 220 35 90 40

3
10

4 3 2 2

5 2 2
2 15

11 11 11 11 9 8 2 7 6 5 3 2 5 4 2 3 4 2 3
199 605 374 715 781 407 209 561 110 242

2 3
154 33

( xyz ) t xyzt r t r ( xyz ) rt xyztr

( xyz )

x y z

t r r ( xyz )

t t r xyzt r t xyzt r t r ( xyz ) t xyzt r t r ( xyz ) rt

xyzt r ( xyz )

    



 

 

         

 
3 2 5 2 2 4 3

11 66 11 11t r t r ( xyz ) t xyzr ( xyz ) r

....
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Corollary 4 For n=M3-1 or  n=M3+1 and ℓ=0  then the coefficients of (xyz)
m
r  or (xyz)

m
 r

2
 respectively 

is ±n  

Proof 

2 2

3
From 1 17 with 0 we have 1 then 3 2 hence,

2

0

3
2 then 3 4

2

2

20

m n n m

m n n

n m
( . ) , n m

n -(m+2)
( )!

( m )!2n ( xyz ) r n ( xyz ) r n( xyz ) r n( xyz ) r
n-3m m!!m!( )!

2

n m
n m

n -(m+2)
( )!

( m )!2n ( xyz ) r n ( xyz ) r n( xyz ) r n( x
n-3m m! !!m!( )!

2


   

      


  

       2myz ) r

 

Corollary 5 For n=M3+1 and ℓ=1  then the coefficient of (xyz)
m
t  is ±n and for n=M3-1  and ℓ=2 then the 

coefficient of (xyz)
m
t
2
 is ±n(m+3)/2 

Proof 

 

(

2

( 1) (3 1)( 1)/3 ( )!
2) ( ) 2

3 1
0 ( ) 1! !( )!

2
1

The sequence for (1.21)

(3 1)
for 0 we get,

2

( 1)
( )!

!2 ( ) ( )
3 1 !

1! !( )!
2

The sequence for

m m

n m n mn
n n n mx y z n t xyz

n m
m even n odd m

m odd n even

t r

n m

n m

m
n n t xyz nt xyz

n m m
m

t

  


   
   

 




 


 

   
 

 

( 2)/3

0 ( )

1

( )

( ) ( 2) (3 2)( )! ( )!
22 2( ( ) ( )) ( ) (1.22)2

3 2 3 2
2! !( )! 0! !( )!

2 2

(3 2)
for 0 we get,

2

( ) ( 2)
( )! ( )!

2 2( ( ) (
3 2 3

2! !( )! 0! !(
2

n n n

n

m even n even

m odd n odd

x y z

n m n m n m
mn n t xyz r

n m n m
m m

n m

n m n m

n n
n m n

m m

  





  

    
  

   

 


  

 
  

2 2 21 ! 3
)) ( ) ( ) ( ) ( ) ( )

2 2! ! 2
)!

2

m m mm m m
t xyz n n t xyz n t xyz

m m

 
    



 
Corollary 6 The total sum of the exponents in each term add to n (n > 0) and 2n (n < 0) if we include the x,y,z 

degree (xyz) = 3,  r = 2 and t = 1 as a weighting factor.  

Proof 

Equation (1.17) the total sum is 
3

3 3
2

n m
m m n m n

 
         

 
We therefore have for n = M3,  lone (xyz)

n/3
 terms (Corollary 3) 

For n=M3-1we have
1

2 2

23 3and

n n

( xyz ) t ( xyz ) r


 

terms in n > 0 and vice versa in n < 0. For n=M3+1 we 

have 

4 4

23 3
1and

n n

( xyz ) t ( xyz ) r

 

 terms in n > 0 (Corollaries 4,5)     
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Corollary 7 The first term coefficient is given by the Lucas sequence over n and for n= p(prime) is congruent to 

1modp, all the other terms are congruent to 0modp. The first term coefficient is generated from the Lucas 

function and hence Ln is congruent to 1modn if n  is prime [2] 

Proof 

/2

0

We have when and 0 from thm 1.1

( 1)!

!(( 2 )!

This is a formula for the Lucas sequence hence and for ,  is congruent to 1     is prime [2]

We can see from 1.1 that if then the denominator factori

n
n

s

n

n m

n s
n t

s n s

n p L modn if n

n

  



 

 









als are always less than o if

then there is a term in the numerator hence all terms when are congrurent to 0 mod

n s

n p p n p 

 

 

Corollary 8 We can apply the t, r, (xyz) representation to any three variable equation of the form Ax
a
+By

b
-

Cz
c
 =D if we make T equal the equation in question T=D  and X=Ax

a
,Y=By

b
 , Z=Cz

c 

2

dependent equation,

2 2 3
2 3

2 21 1 (1.23)
3

0 0 0 2
2

1 2

Where represents the terms in the equation and

n n n n

T

n ( s m ) n m
( )!/ ( n ) /n

mX Y ( Z ) ( ) ( ) n( )T ( XYZ ) R
n m

s m ( s )! m! s !( )!

m n mod

X ,Y ,Z R X YZ XT

     
      

       
 

   

  

    2 2 2 2 2

2 2 2

For example in  FLT we have that T= x 0

0

2 2 3

2 21 1
3

0 2
2

p p p

p p p p p p p

p n p n p n n p p p

T Y XZ YT T Z XY ZT T

y z

soT is and R x y z x T T x y z

Hence,

n ( s m ) n m
( )!

m( x ) ( y ) ( z ) ( ) ( ) n( )T ( x y z ) R
n m

m ( s )! m! s !( )!

m n

       

  

     

     

     
 

 



3

2
3

2 21
3

0 0
2

1

2 3

(1.24)

0 0

1 2

0 0 independent equation 

n/
p n p n p n n p p p

n ( m )
n m( )!

m
( ) n ( x ) ( R )

n m
m ( n,m even ) ! m !( )!

m ( n,m odd )

/ ( n ) /n

s

mod

Hence if T then we necessarily have and we get the T

( x ) ( y ) ( z ) y z


 


 






      
  
 

 

 

  

2

(1.25)

Where p p pR x y z

 


 

 
2 2 2

2

2 2 2

2

0 mod 0 0 mod , 0 mod ,

0 mod

can be factored into since is odd hence 0 mod

With 0 then ( ) (

p p p p p p p p p

p p p

p p p p p p

p p p p p p p p p p p p p p p p

If x yz q and x y z then x y z q y x z q

z x y q

x y z x yz p x y z q

x y z x y z x z y y z x z y z x

        

 

   

         

Lemma 1

Proof

2

2 2

2 2

2 2

)

hence if 0 mod so must 0 mod

Similarly, ( ) ( )

hence if 0 mod so must 0 mod

p p p

p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p

y x z

x y z q y x z q

x y z x z y y z z x y x y z x y

x y z q z x y q
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2 2 2

3 3

3 3

0 0 , 0  

0 0 0

1

1

1

p p p

p p p p p p p p p

m p

m p

m p

m

If x, y, z mod q and x y - z and where q is a prime factor of any

of the symmetric parts R x y z mod q or R y x z mod q or R z x y mod q

we can write;

g x mod q

g y mod q

g z mod q

Where g is define d as

   

        





 

Lemma 2

has a primitive root and we use the primitive root as the generator of the

multiplicative set of integers or generates all residues for 0

Lets choose a acting o

m

m

the multiplicative primitive root set generator

q g

mod ulo q g mod q , m q

g

 

Proof

2 2 2

2

2

2 3

3 3

2

n such that the residue is 1 hence,

1

With 0 from 1

0

0

and with 0

hence, 0

1 0

and with,

a

m p

p p p p p p p p p

m p m p p

p m p p

m p p

p m p

m p

m p

x mod q

g x mod q

x y z y x z z x y mod q lemma we have

g x g y z mod q

x g y z mod q

g y z mod q

x g y mod q

g y mod q

g z y



     

 

 

 

 

 



2 3

3 3

3 3

3 3

3 3 3 3 3 3

0

0

1 0

Therefore ,

1 (1.26)

1 (1.27)

1 (1.28)

we have modq, z (1.29)

p

p m p

m p

m p

m p

m p

p p p p p p

mod q

x g z mod q

g z mod q

g x mod q

g y mod q

g z mod q

x y y mod q, z x mod q



 

 





 

     

 
2 2 2 2

3 3 3 3

2 2 2 2

1 1 1 1

When 1 1 1 then,

1 1 0 1 1 0

If 1 or

m p m p m p m p m p

m p m p m p

m p m p m p m p m p m p

m p

If g x mod q then , g y mod q and g z mod q therefore g y , g z mod q

g x mod q , g y mod q, g z mod q

( g y )( g y g y ) mod q , ( g z )( g z g z ) mod q.

g y mod q

    

   

       



Lemma 3

Proof

2 2 2

1 then 2 or 2 respectively

from g 0

Then from 0 we get 3 0 which it is not

hence 1 1

m P m p p

m p m p m p

m p m p p

m p m p

g z mod q , g z mod q y mod q

x g y g z

g x g y z mod q mod q

g y mod q, g z mod q,

    

  

  

  

 

 

3 3 2 2

2 2 2

2 2

We can write 0 0

If then 2 1 2 1 from x +g y -g z =0,

4 4

p p p p

p p p p p p p p

p p m p m p m p m p m p

m p

We have quadratic congruences in y and z with unique solutions for y , z

y z mod q, ( y z )( y y z z ) mod q

y z mod q g y mod q, g z mod q g

g y g

     

    

 

Lemma 4

Proof

2 2

0 and 1 2 0

which is a contradiction 3 0 hence 0 . 

So we have 2 quadratic congruences in and with 2 unique solutions for

m p p m p

p p p p p p

p p p p

x z mod q , g x mod q,

mod q y z mod q so y y z z mod q

y z y , z
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Fermat’s Last Theorem 
 
x

n
+y

n
-z

n 
= 0 has no non zero integer (and hence rational) solutions when n > 2.  

 

3

3

Make prime We assume that have no common divisors for if they did we could factor them out and

find a new solution to the equation.

If one of then the other 2 variables must be 1mod 3 to satisfy +y -z 0

i.e

p p p

p
)

x, y, z M

( M

n ( p ) . x, y, z

x

.





 

Proof

3 1 3 1 0

3 3 1 3 1 3 1 0 3 1 3 1 3 1 3

0 and so if

0 3 (5.01)

If then only is allowed, hence

0 3 (5.02)

then and 0 an inequality, hen

p p

p p p

p p p

( M ) ( M )

x, y, z M ( M ) ( M ) ( M ) t M M M M

x, y, z t x y z x

x y - z t mod

t mod

y z z x y d x y ( x y d )

   

           

    

   

 

        

2

2 2

2

ce 0

With and 0 and is odd as one of must be even and is even. Furthermore,

i.e We can also show this for 5 03

Using lets make a prime decomposition  facto

t

z x, y r ' x yz r ' r ' x, y, z t

x yz t ( z y t ) yz t . r( y / t ), r( z / t ). ( . )

r ' x yz, q



    

      

  r of which is odd 3

For all the cases of  we show that 0 or  share common factor or we get a contradiction 

modulo 

If 3 then 0 as above, otherwise We need to define 2 cases (plus 2 sub -cas

r '

q t mod q x, y, z q

q.

q t mod q





 

Proposition 5

 

es) when 3

3 1 (5.05)

1 3 (5.06)

3 1 (5.07)

3 1 (5.08)

Write and make 1 This is an extention of Bezoult's lemma where are co-prime or if

then is Hence,

1

q :

q sp

q sp , s M

q s , s Mp

q sp

lp uq v u v . q, p

q p GCD p ( v Mp ).

lp v



 

  

  

 

   

 

 

Case 1.

1)

1b)

1c)

2)

 

3 9

22 2

5 7 7 9 11

2 2 2 2 2
0

3

1 (5.09)

Choose such that 1 where 3 and from our ( independent) representation (Corollary 8) with 0

( l ) ( l )

p l p l p l p p

l l l l l l
( )( ) ( )( )( )(

l( xyz ) (( R ) ( xyz ) ( R )
!

q v v q q

v v( q ) q lp l M T T

( x ) ( y ) ( z )

 



     

 

   

    

  

15

4 2

3

1 2

2

13

2

5

2 4 3 2

2 2 2 (5.10)

i.e. if (from Fermat's little theorem)

0 0 0

0

l

p

l m

( m ) p

p p p p

)

( xyz ) ( R )
!

( l ( n )) ( l ( n )) ( l ( n ))
( )( )...( )

... ( xyz ) ( R ) )
m !

LHS t mod q ( x y z ) Mq t Mq t mod q x, y, z Mq

RHS mod q . ( R x y z x Mr )

t m







     



       

     

  (5.11)

Remark : If one of contain then so do the other 2 variables and we have a common factor solution which

must factor out.

od q

x, y, z q
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( 3) ( 9)

22 2(

5 7 7 9 11
( )( ) ( )( )( )(

2 2 2 2 2
( ) ( ) ( ) 0 ( ) (( ) ( ) )

3!

Write and make 3 ,

3 1 3 (5.12)

3 where is even 3 is odd 3 hence from (C.29), 0.

l l

p l p l p l p p

l l l l l l

x y z l xyz R xyz R

lp uq v u v p

lp v p q v v q pq

l vs q s l M T

 
     

     

   

     

     

Case 1b)

15

4 2

3

( 1) 2

3 3 3

13
)

2
( ) ( )

5!

( ( 2)) ( ( 4)) ( (3 2))
( )( )...( )

2 2 2
... ( ) ( ) )

!
(5.13)

mod if , ,

0 mod

-3( ) 0 mod (5.14)

Hence we get common factor solutions in this case.

l

p

l m

m p

p p p

p

xyz R

l n l n l n

xyz R
m

LHS x y z q x y z Mq

RHS q

xyz q







     



   



 

 

   

3 9 15

2 42 2

5 7 7 9 11 13

2 2 2 2 2 2
0

3 5

Write and make 1

1 1 (5.15)

3 where is even 3 is odd 3

( l ) ( l ) l

p l p l p l p p p

l l l l l l
( )( ) ( )( )( )( )

( x ) ( y ) ( z ) l( xyz ) (( R ) ( xyz ) ( R ) ( xyz ) ( R )
! !

lp uq v u v ,

lp v q v v q q

lp v s q s q M l M .

  
     

     

   

     

    

Case 1c)

2

3

1 2

2 4 3 2

2 2 2 (5.16)

if

0

0 (5.17)

l m

( m ) p

( l ( n )) ( l ( n )) ( l ( n ))
( )( )...( )

... ( xyz ) ( R ) )
m !

LHS t mod q x, y, z Mq

RHS mod q

t mod q





     





 





2With 3 1 we can factor from Lemma1p pq sp , r ' R x ( yz ) by   Case 2)

 

For case 2 we need to uniquely define x
p
+y

p
-z

p
=0 as opposed to x

p
+y

p
-z

p
≡0modq. This is done via this 

lemma 5  

 

Lemma 5, If x
p
 +y

p
-z

p
=0 then Case 1) We can write x+y=c

p
, z-y=a

p
, z-x=b

p
 if x

p
+y

p
-z

p
=0 if p does 

not divide x,y,z 

Case 2) If one of x,y,z=Mp then we can write z-y=p
p-1

a
p
,z-x=p

p-1
b

p
,x+y=p

p-1
c

p 
respectively 

Case 1) With  factor out  therefore must divide 

Make  where  is any common divisor of ( ) and 

From Corollory 2 (see extract 2) we have,

( - 3)-1 -3 -5
( ){( ) - ( ) ( )

2!

p p p
z

n p x y C C z

z cw c x y z

p pp p p
x y x y x y p x y xy x y

  

 

      

Proof

2 2
....

( -1)/2 ( -1)/2
... ( )}

Hence, ( ) otherwise would share all common factors with

(excluding ) which is not possible in the special case.

Therefore, if does not divide then and

and is d

(5.22)p

p

x y

p p
p x y z

p
x y c xy z

p

p
p C x y C c z cw

z

 

 

   

ivisable by all of

Similarly, - must divide and from Corollory 1(see extract 2) - and

and - and for , , 0

x y

p p
z y A x z y A a x au

p
z x B b y bv a b c
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Furthermore , if none of , , contain then we have,

and / (5.23)

and / (5.24)

- and / (5.25)

Furthermore, ( ) hence but /

Moreover we now can write , -2

Hen

A B C p

p
x au A t a t a t

p
y bv B t b t b t

p
z cw C t c t c t

p p
x y z Mp C z Mp C z t p t

A B C t

    

    

   

       

  

1

ce ,

2 2 (5.26)

Case 2) If divides, say , and hence then we have

However, the other terms , will not contain otherwise we have a common factor .

Because we have a  coefficient in the last term of c

p p
c

p p p
a b c t mpabc

p C z C p

A B p p

p



     



orollary 2 the shared common

factor  between  and  does not need to be to the power  but one less -1.

5 5 5 5
So lets say 5 and  and  So from corollary 2

5 4 5 2 2 2
p {( ) ( ) }

5
{(

p x y z p p

p x y p z p w

p p p
w p p p p xy px y

p
w p



   

  



-1

4 5 2 2 2
) ( ) }

hence and in turn giving common factor solutions

Therefore,  where c is the other shared factors as above.
p p

p p xy px y

w Mp xy Mp p

x y p c

 

 

 

3 3 3 3

2 2 2

(3

If 1mod , 1mod , 1mod and 3 1 then from lemma 3, 4 either:

mod and g mod mod (5.27)

or

mod and mod and mod (5.28)

m p m p m p

sp p p sp p p sp p p

sp p p sp p p sp p p

g x q g y q g z q q sp

g z y q x z q and g y x q

g z y q g x z q g y x q

We can also write g

     

    

    

Lemma 6
1)

(4)

(7)

( )

(3( 1) 1)

mod for 0,1, 2...( 1) . .

3 1 mod

Write,

mod

mod

mod

mod

m

l sp p p

s

sp p p

s p p p

s p p p

s p p p

s p p p p

z y q l p etc for each of these congruences

There must exist one l such that g z y q

g z y q

g z y q

g z y q

g z y q

g z y



 

   

   

 

 

 

 

 

Proof

( 1) 1 ( 2) 2 1

4 4 ( 1) 1 4 ( 2) 2 1

(3 2) (3 2)( 1) 1 (3 2)( 2) 2 1

od

Factoring we get,

( )( ... )

( )( ... )

( )( ... )

We have rows  with each one having a unique so

s s p p s p p p

s s p p s p p p

s p s p p p s p p p p

q

g z y g z g z y y

g z y g z g z y y

g z y g z g z y y

p

    

    

       

  

  

 

lution otherwise  we get common factor solutions if

they share the same solution. Since  there are at most 1 unique solutions in the second brackets there

must be one solution in the first braket on any particular row.

p 
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Likewise for the other relations so we can write a table as follows;

 

31 2

4 4 4

7 7 7

(3 2) (3 2) (3 2)

2

mod mod mod

mod mod mod

mod mod mod

mod mod mod

mod mod mod

s s s

s s s

s s s

ss s

p s p s p s

s

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g z

  

    

    

    

    

    

Table 1

or

sp

2sp

g

g

5 64

2 2

5 5 5

8 8 8

(3 1) (3 1) (3 1)

mod mod mod

mod mod mod

mod mod mod

mod mod mod

mod mod mod

s s

s s s

s s s

s ss

p s p s p s

y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q  

    

    

    

    

    

 

 

Lemma 7: When one of x
2
+yz≡0modq, y

2
+xz≡0modq, z

2
-xy≡0modq then two of the solutions to 

lemma 6 must fall on the same row. 

2

2

2

There are a number of ways to show this. We have 0 mod hence we ave,

g mod for some , ,

0 mod

( ) 0 mod

so we have mod and mod (so in the top table)2 3

For 0 mod

x yz q h

n n
x y q g if x y z Mq

n n
g x g yz q

n
y x g z q

n n
g y x q g x z q

y xz q

 

 

 

 

 
   

 

Proof

2

, 1 3

For 0 mod , 1 2z xy q



  

 

For x
2
+yz and our two lemma 7 solutions being on the same row, they must be on the ps or 2ps row. 

because by lemma5 taken together we have g
ℓs

 (x+y)≡(x-z)modq →g
ℓs

c
p
≡-b

p
modq  But we must have 

a  g
n
c≡-bmodq if a,b,c≠Mq  hence raising both sides to p means ℓ=Mp 

There is only one p exponent on each of the tables if s≠Mp and this occurs 1/3 partition points; 2ps 

and ps.  

For Case 2 of lemma 5 depending on which x,y,z is divisible by p we choose a decomposition term 

such that we have two of a
p
,b

p
,c

p
 giving the  1/3, 2/3 partition points; 

If x=Mp then choose x
2
 +yz 

If y=Mp then choose y
2
+xz 
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If z=Mp then choose z
2
-xy  

These 1/3, 2/3  points mean t≡0modq as follows. 

We work out what a
p
 is in terms of b

p
 and c

p
 for example. This is independent on what the first 

column solution is and is only dependent on the ps or 2ps solution given by lemma 5 and 7 

1

1

1

1

2

2 2

2

2 2

2 2

2
1

2

Write mod

( 1) ( ) mod

and write mod

( 1) ( ) mod

mod (5.29)

(Hence it is independent of ) but mod

( 1)

s ps p

s spsp sp p

s sp p

s spsp sp p

sp p sp p p p

sp p p

sp

g z g x a q

g g z g z x a q

g z g y c q

g g z g z y c q

g b g a a c q

g c b q

g





 

   

  

    

   

 

  4

2 1 2 3

2

4 4 2

4 2 2

2

( 1) mod (5.30)

( 1)( 1) mod since 1mod

mod (5.31)

Next we have from (5.29)

mod

( 1) ( 1) mod (5.32)

mod or mod

He

p sp p

sp sp sp sp

sp p p

sp p sp p sp p p

sp p sp sp p

p sp p sp p p

a g c q

Now g g g q g q

g a c q

g b g a g a b q

g b g g a q

b g a q g b a q



 

   

  

  

   

 

2 2 2

2

2 2

nce we can write; mod

( 2 ) 2 mod

( 1)2 0 mod and since ( 1) 0 mod

0 mod (5.33)

sp p sp p sp p p p p

sp

sp sp

g a g b g c c a b q

g t t q

g t q g q

t q

     

  

   

 

 

Therefore, t must also be divisible by q=3sp+1, s≠Mp. However, this is not necessarily true when 

q=3sp
n
+1 for  n>1. To generalize to all n we do the following. 
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2

4 4 4

7 7

   3 1  0   x 0

Starting with 3 1 we can write from the lemma 6

mod mod mod

mod mod mod

mod

n n nn p p p p p p

sp sp sp

sp sp sp

sp

If q sp and x y z then we also have y z

q sp

g z y q g x z q g y x q

g z y q g x z q g y x q

g z y q g

       

 

    

    

 

Lemma 8

Proof

Table 1

31 2

7

(3 2) (3 2) (3 2)

1 2 3

2

mod mod

mod mod mod

mod mod mod

Assume the solution and , , are solutions respectively.

One can see if 3 1 we have the

sp sp

spsp sp

p sp p sp p sp

sp

x z q g y x q

g z y q g x z q g y x q

g z y q g x z q g y x q

g

q sp

  

  

    

    

 

2

exponents of being multiples of

From lemma 5 we have , ,

There is no loss of generality if we write where 0 mod or 0 mod ,

since and if ( , ) they would share common factors , .

Moreover, there must ex

sp

g p

x au y bv z cw

g x z dq d a d u

x au z M a u a u

  

    

 

2

2

ist an such that mod for some , 0 mod

where is the residue mod whereby rising it to we have mod

if 2 mod151 then 22 if 5

Also without loss of generality we can write, ( 0 mod or 0 mod )

We can

s

p

s

g q q

q p z q

z p

g hq h a h q

    

 



 

 

 

   

   

Example,

2

2 2

2 2

1add to both sides for 0,1, 2... , 0 or 0 1 thereby giving us,

( ) ( ) (5.34)

Hence,

( ') ( ( ) ) ' (5.35)

where '

We can get all residues mod or mod on the RHS by adjusti

s

i

s s

i i

sp sp p

i

i

g h h i i a i u

g h h g h q

g h g h q z f q

h

a u

 

 

 

     

   

     

 

2

2

ng such that ' mod or ' mod

because , , 0 mod or 0 mod

(Note: if or then choose another primitive root as is now large 3 1 and has many

primitive roots)

Therefore, if we make the residue mod or mod we have

i

sp

h f d a f d u

z g q a u

a g u g q sp

d a d u

g x g

 

 

  

 2

2

' , or (5.36)

Moreover, since then or

Let 5, 151, 7, 2 mod151, 5 mod , (0,1, 2, 3, 4, 5, 6) 0,1, 2, 3, 4, 5, 6 mod

(22 0 ) 2 (5 mod 7) , (22 1 ) 2 (2 mod 7) , (22 2 ) 2 (4 mod 7

sp p

p p p

s

p p p

Maq Muq

x au Ma Mu

p q a z d q f h g a

q q q q q





 

 

        

         

Example :

2 3

) , (22 3 ) 2 (1mod 7) ,

(22 4 ) 2 (6 mod 7) , (22 5 ) 2 (3 mod 7) , (22 6 ) 2 (0 mod 7)

Hence if ' 5 then we choose (22 0 ) 5 mod ,

Furthermore, we can get all residues in the coeficients of the  , , ...  

p

p a a

p

p

q q q

q q q q q q

d d a q a

a a a a

  

        

   

2 2

2 3

2 1 2

terms mod  (that being ', '' ...etc.)

or , , ... mod by adding multiples of  ,   respectively and since ' (0,1... 1) mod we can make

' ' ... ' giving ' ' ... ' hence we  can make

p

sp spp p p

a d d

u u u u u a u d a a

M m a or m a m a g x g m a m a x M

 

    . Likewise

:as above if we add 7 , (0 7 ) to both sides of [5.29] for (22 0 ) 2 5 mod , we get

((3 mod 7)7 5 mod 7) , ((1mod 7)7 5 mod 7) , ((6 mod 7)7 5 mod 7) , ((4 mod 7)7 5 mod 7) ,

((2 mod 7)7 5 mod 7) , ((0 mod 7)7 5 mod 7 )

p p

p

a x Mu

n q n q a

q q q q

q



    

    

 

Example

q
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2

2 1 2 1So we can add multiples of , ... and , ... to both sides of (5.34) to get

the exponentiation of ( ) ( ') where ' is obviously less than or we could view

it as x is a power .

we can do this because we have in o

p p

p p

p

aq a q a q uq u q u q

x au x x x

g

 

 

Remark, ur table1 which can be eliminated in

(5.36) . If we did not have in the exponent then we could not eliminate it leaving terms

meaning , would not necessarily divide .

Likewise, we can do this for the other columns of table 1 to get ( )

n

p p

p g

a u x

y bv

2 2 2

2 2 2

2 2 2

( ') , ( ) ( ')

Hence, we can write

' ' ' 0 (5.37)

One can see from Lemma 5 ' ' ' , ' ' ' , ' ' ' and ', ', ' do not necessarily

equal , ,

Now we have from Lemma 1 that whic

p p p p

p p p

p p p

p p p p p p p p p

y z cw z

x y z

x y c z y a z x b a b c

a b c

x y z y x z z x y

  

  

     

    
2 2 2 2 2 2 2 2 2

2 2 2

2 2

2

2 ' 2 2

3 3 3

2

h  is the same as

' ' ' ' ' ' ' '

Therefore, we get ' ' ' mod

We have from table 1 and lemma 6

' ' mod , ' ' mod

However, now for we have ' ' ' , ' ' '

p p p p p p p p p

p p p

sp spp p p p

p

x y z y x z z x y

x y z q

g x z q g y x q

Mp z x b x y c

    

 

  

    
2

2

3 3 3

2

2

3

... ...

so if we have ' ' mod

then and this is the 1/ 3, 2 / 3 solution points . Therefore ' ' ' ' 0 mod

and 0 mod .

We can repeat this for 3 1 to give '' '' '' 0 etc. ... 3 1

''' '''
n n

sp

p p p n

p p

g x z q

Mp t x y z q

t x y z q

q sp x y z q sp

x y

 

    

   

      

   ...''' 0 and we get smaller triples ''' '' ' etc. as increases.

The above arguments hold for all therefore all ' divide

npz x x x x n

n q s t

   

 

 

2

2 2

0

2 1

This follows from the symmetry of

p p pIf x y z and suppose x, y, z are pairwise co prime then any prime factor q of ( x yz ) will divi de t

where t x y z

Theorem . is valid for any prime factor q of ( y xz ) or ( z xy )

    

  

 

Corollary 39

Theorem 2.1

the problem and methods above

  

Closing Argument 

2

If we have common factors, the special case  x  + 0  loses no generality in assuming that the greatest 

common divisor of   and  is 1. Hence must contain all the prime decompositions of

We can now use 3 in

n n ny - z

x; y z t q ( x yz ).





31 22
1 2 3

equality arguments for exponent in congrurent to 1 modulo 3,

congrurent to 2 modulo 3 and exponent We need our equation1 1 in primes and Corollaries 9,15,18.

We will write n

p p p

( q ) ( q( q ) ( q )
x / t n

p x y z

, p q. . p

r x yz q q q ...q

 



  
q qq q

2

where  is prime and is defined to be the

highest power of  dividing   

)
i i

i

q ( q )

q x yz.

q
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2
1 2 3

3 1 3

Proof. If are all equal to 1 then but from [5.03].

Hence, we have an inequality and contradiction . Therefore one

i x / t

n x / t

For exponent p congrurent to mod ulo and q exp onent p then t M r

( q ), ( q ), ( q )... ( q ) t M r x yz t

  

  

Lemma 9 :

q q q q

1 2 3

1

3 1 2 2 2
1

1 2 2 2 2
1

or more of 1

Lets firstly assume 2

From corollaries 9,15,18 we have 0 (5.38)

One can  see because the last term

n

p p p m m

m

( q ), ( q ), ( q )... ( q )

( q )

x y z Mq p( xyz ) t p( x yz xt t ) ( xyz )

p( xyz ) t Mq p( x yz xt t )









        

   

q q q q

q

2
1

2
1

2

2 2 3
1 1 1 1

hence because gives us common factors in and

then but hence we have an inequality and contradiction as before.

Lets make 3 we still get so then the higher terms in or

m

x/ t

( xyz ) Mq

t Mq ( xyz ) q x; y z

t M r x yz t

( q ) t Mq t r t r M 





  

  q 6
1

6 1 2 2 2
1

1 4 2 2
1

4
1 1

we write,

0 (5.39)

Hence, and but hence we have an inequality and contradiction as before.

Next make 4 we still get and our higher ter

p p p m m

m

q

x y z Mq p( xyz ) t p( x yz xt t ) ( xyz )

p( xyz ) t Mq t x yz x yz t

( q ) t Mq





        

    

 q

1

8
1

8 1 2 2 2 8
1 1

2 2
1 1 1 1

1

ms become hence

and and we get our contradiction again

Therefore, for any we get As in increases in powers increases in powers

2 s

p p p m m

( q )

Mq ,

x y z Mq p( xyz ) t p( x yz xt t ) ( xyz ) t Mq .

( q ) t Mq . q x yz ( q ) t

( q )

        

  
qq q

q 1

1

1 2 3

o then must the higher terms containing higher combinations which in turn increases and we

continue to get the contradiction as  .

One can see this is true for all 1 so we can conclude whin x / t

t , r t

( q )

( q ), ( q ), ( q )... ( q ) t M r





 

q

q q q q

2
1 2 3

ch is a

contradiction

3 2 3

Proof. If are all equal to 1 then but from [5.03].

Hence we have an inequality and c

x / t

i x / t

n x / t

r t.

For exponent p congrurent to mod ulo and q exp onent p then t M r

( q ), ( q ), ( q )... ( q ) t M r x yz t



  

  

Lemma 10:

q q q q

1 2 3

1

3 2 2 2
1

2
1 1

ontradiction . Therefore one or more of 1

Lets firstly assume 2

3
From corollaries 9,15,18 we have 0 (5.40)

2

hence, in the last term but

n

p p p m m

( q ), ( q ), ( q )... ( q )

( q )

m
x y z Mq p ( xyz ) t p( xyz ) ( x yz xt t )

xt Mq r






        



q q q q

q

2
1 1

2

2 2 3 6
1 1 1 1 1

6
1

gives us common factor in and so

then but hence we have an inequality and contradiction as before.

Lets make 3 we still get and higher terms in and we write,

3

2

x / t

p p p

x q x; y z t Mq

t M r x yz t

( q ) t Mq t r t r Mq

m
x y z Mq p

 



  

  


   

q

2 2 2

3 3
1 1

3 4 4
1 1 1 1

1

0 (5.41)

hence and we get a contradiction as before

Next make 4 we still get and hence and and we get a contradiction again

Therefore, for any we get

m m( xyz ) t p( xyz ) ( x yz xt t )

xt Mq t Mq

( q ) t Mq xt Mq t Mq

( q ) , t Mq

    

  

   



q

q 1
1 1

1 2 3

and we get a contradiction as  .

One can see this is true for all 1 so we can conclude which is a

contradiction

From  Corollary 20,  in that the coefficients of  all terms

( q )

n x / t

x / t

( q )

( q ), ( q ), ( q )... ( q ) t M r

r t.



 



q q

q q q q

are  congrurent to 0  except the first we need to

make sure the  contradiction still works for  q or r contains a power of  i x / t

mod p

p p
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3 11 12

From corollary 20  the coefficients of  all terms are  congrurent to 0  except the first which is congrurent to 1

so if then we divide out 

i x / tFor exponent p and q p then lemma , are unchanged; t M r

mod p mod p

t Mp p

  



Lemma 11

1

leaving the relavent end terms  coefficents equal to 1 so we have the same form of the

equation but with the first term deminished by so that term is however this term is irrelevant in the above

arguments so our contradiction ho

p nt p Mp 

2

lds in this case too.

For 3 we get directly 3 0 if 3 hence common factor solutions again.

If 3 and since 3 then 3 3 therefore, one of 3 and then so must the other 2 variables

hence share a common factor 3. (5.42)

Re

p xyz mod q q

q , t M xyz M x, y, z M

  

   

mark 0 even if or is negative for we would just rearranged the equation for odd exponents

i.e if is a negative integer becomes and becomes the higher term but in that case we

would just write

With 4 solved by Ferma

n n n n n n

t x y

y x y z y z x x

x z

n



   



 t we can conclude there are no discrete solutions to Fermat's equation for 2n .

 

 


