The last theorem of Fermat. The simplest proof. Edited text

In Memory of my MOTHER

All calculations are done with numbers in base n, a prime number greater than 2.

The contradiction:

The Fermat equality does not hold over (k+1)-th digits, where k is the number of zeroes at the zeroes ending of the number U=A+B-C=un^k.

<u>The notations</u> that are used in the proofs: A' / A_(k) – the first / the k-th digit from the end of the number A; A_[k] is the k-digit ending of the number A (i.e. A_[k] =A mod n^k); A_[k+] – the number remaining after removing the k-digit ending of number A.

So, let's assume that for natural numbers A, B, C and prime n>2:

1°) $A^n+B^n=C^n$, or $A^n+B^n-C^n=0$, where

2°) U=A+B-C=un^k, where n is not a cofactor of u. And, if the digit

3°) $u^* = \{U_{(k+1)} - [(A_{[k]} + B_{[k]} - C_{[k]})]_{(k+1)}\}' = 0,$

then we multiply the equality of 1° by 2ⁿ [for convenience, the notation of all numbers and numbers with new values will remain the same], after which

4°) $u^* = (A_{(k+1)} + B_{(k+1)} - C_{(k+1)})' \neq 0$ [because $A_{[k]} + B_{[k]} - C_{[k]}$ can have only two values: 0 or n^k].

5°) Lemma. A' = $A^{n'}$ [another form of Fermat's little theorem].

6°) From Newton binomial $(A_{(k+1)}n^k+A_{[k]})^n=Dn^{k+2}+A_{(k+1)}n^{k+1}+A_{[k]}^n$, it follows that (k+1)-th digit of the degree does not depend on (k+1)-th digit of the base.

Proof of the FLT

According to 5° and 2°, <u>the digit</u> $(A_{[k+]}^n + B_{[k+]}^n - C_{[k+]}^n)' = (A_{(k+1)} + B_{(k+1)} - C_{(k+1)})' = u^* \neq 0$ and, after recovery of discarded endings $A_{[k]}$, $B_{[k]}$, $C_{[k]}$ in numbers A, B, C, <u>retains</u> its value because $(A_{[k]}^n + B_{[k]}^n - C_{[k]}^n)_{[k+1]} = 0$ (see 6° and 1°) and the digits $A_{(k+1)}$, $B_{(k+1)}$, $C_{(k+1)}$ of the bases are not involved in the formation of the digit $(A^n + B^n - C^n)_{(k+1)}$ (see 6°).

This confirms the truth of Fermat's Last Theorem.

Mezos, May 13, 2018.