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Abstract
We discuss an elementary approach to prove the first case of Fermat’s last theorem

(FLT). The essence of the proof is to notice that a+b+c is of orderNα if aN+bN+cN = 0.
To prove FLT, we first show that α can not be 2; we then show that α can not be 3, etc.
While this is is the standard method of induction, we refer to it here as the “infinite ascent”
technique, in contrast to Fermat’s original “infinite descent” technique. A conjecture, first
noted by Ribenboim is used.

Introduction

Fermat’s Last Theorem asserts that the following equation has no integer solution of a, b, and c

when N ≥ 3.

aN + bN = cN . (1)

It is one of the most famous mathematical theorem, perhaps due to what Mr. Fermat wrote on

the margin of his copy of Arithmetica of Diophantus: “I have discovered a truly remarkable
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proof of this theorem which this margin is too small to contain.”

FLT was proved by Wiles (1) and Taylor and Wiles (2) in 1994 through proving a special

case of the Shimura-Taniyama Conjecture. The proof was by no means “elementary”, and one

wonders if an elementary proof exists.

Some earlier attempts to prove Fermat’s last theorem (case I), were to examine the property

of the N -th powers modulo N of the triad 1, k, k + 1. In particular Carmichael (3,4) in 1913

showed that if xN + yN + zN = 0 has a solution in integers x, y, z each of which is prime to N ,

then there exists a positive integer s, less than (p−1)/2, such that (1+s)N−sN−1 = 0 mod N3.

Extending the earlier work by Carmichael, here we present an elementary approach, called

the “infinite ascending” to prove case I of FLT. The proof can be applied to arbitrarily many

prime numbers. To apply it to all prime numbers, however, the following statement (hereafter

called the RL Conjecture) needs to be true. This conjecture was first noted by by Ribenboim

(see page 61 of (5)).

The RL Conjecture: If s is an integer, 1 < s ≤ N − 2 where N is a prime number, and if

(1 + s)N − sN − 1 = 0 mod N3, then s2 + s+ 1 = 0 mod N3.

We focus on Case I of FLT here. We discuss case II of FLT in a separate paper.

The Proof

Rewrite equation (1) as,

aN + bN + cN = 0. (2)

We refer to equation (2) as the FLT below. We make use of the Barlow-Abel relations. These

relations are (see e.g. (5)).
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Barlow-Abel Relation case I: If pairwise relatively prime integers a, b, c satisfy FLT for

N > 2, and are not multiples of N , then we have

a+ b = tN ,
aN + bN

a+ b
= tN1 , c = −tt1 (3)

where t and t1 are co-prime and t1 is odd. Similar relations exist for b+ c and c+ a.

Consider Case I, from Fermat’s little theorem we have,

a+ b+ c = xNα = (x0 + x̃1N)Nα, (4)

where α ≥ 1 and |x0| < N . So a + b + c is of order Nα. To prove FLT, below we first show

that α can not be 2, then show that α can not be 3, etc. This is the standard method of induction.

However, we will refer to it here as the “infinite ascent” technique in contrast to Fermat’s

original “infinite descent” technique.

In the following, we first reproduce a result obtained by Carmichael in 1913. We use a

different approach from Carmichael. This is necessary since some of the relationships obtained

along the way are needed for the proof .

By multiplying q < N , we can always transform a, b, c to the following,

a→ 1 + ã1N, b→ k + b̃1N, c→ −(k + 1) + c̃1N (5)

where 1 ≤ k ≤ N − 2. Requiring aN + bN + cN = 0 leads to the condition

1N + kN − (k + 1)N = 0 mod N2 (6)

Equation (6) is a constraint on N . For prime numbers smaller than 30, no such k exists for

N = 3, 5, 11, 17, 23, 29. Therefore case I of FLT is immediately proved for these prime

numbers. Now consider prime numbers for which equation (6) is satisfied. For example,N = 7,

N = 13 and N = 19. Consider the auxiliary quantity Ω = aN + (b+ c)N . We have

Ω = (b+ c)N + aN = (xNα − a)N + aN = x0N
α+1 +O(Nα+2). (7)
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So Ω is of order Nα+1. From the Barlow-Abel relation, we can write (b+ c) as rN . Therefore,

Ω = (r)N
2

+ aN = (r0 + r̃1N)N
2

+ (a0 + ã1N)N (8)

Clearly, rN2
= r0 (mod N), so r0 = −a0. Let aN−10 = 1 +maN , we then have,

Ω = (−a0 + r̃1N)N
2

+ (a0 + ã1N)N = −aN2

0 + aN
2−1

0 r̃1N
3 + aN0 + aN−10 ã1N

2 + ...

= −aN0 (1 +maN)N + r̃1N
3 + aN0 + ã1N

2 + ...

= (ã1 −maa0)N
2 +O(N3) (9)

We now show that α can not be 1. For if so, then the fact that a+ b+ c is of order Nα yields

a1 + b1 + c1 = x0. From equation (7) and (9) we have to have,

(a1 −maa0) = x0 mod N (10)

Similarly, by considering (a+ b)N + cN and (c+ a)N + bN , we obtain,

(b1 −mbb0) = x0 mod N, (c1 −mcc0) = x0 mod N (11)

where bN−10 = 1 +mbN and cN−10 = 1 +mcN are understood.

Adding equations (10) and (11) together we see that,

maa0 +mbb0 +mcc0 + 2x0 = 0 mod N (12)

On the other hand we have,

aN + bN + cN = aN0 + bN0 + cN0 + (a1 + b1 + c1)N
2 +O(N3)

= a0(1 +maN) + b0(1 +mbN) + c0(1 +mcN) + x0N
2 +O(N3)

= (a0ma + b0mb + c0mc)N + x0N
2 +O(N3). (13)

where we have used a0 + b0 + c0 = 0. So

a0ma + b0mb + c0mc = −x0N mod N2. (14)
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Therefore

a0ma + b0mb + c0mc = 0 mod N (15)

So equation (12) contradicts with (15). Therefore we must have x0 = 0 and α ≥ 2.

If x0 = 0 and α ≥ 2, we can expand a, b and c to,

a = a0 + a1N + ã2N
2, b = b0 + b1N + b̃2N

2, c = c0 + c1N + c̃2N
2 (16)

with a0 + b0 + c0 = 0 and a1 + b1 + c1 = 0. Equations (10) and (11) become,

a1 = maa0 mod N, b1 = mbb0 mod N, c1 = mcc0 mod N, (17)

So,

a = a0(1 +maN) + ..., b = b0(1 +mbN) + ..., c = c0(1 +mcN) + ..., (18)

Or,

a = aN0 + ã′2N
2, b = bN0 + b̃′2N

2, c = cN0 + c̃′2N
2 (19)

Since a1 + b1 + c1 = 0, from the first line of equation (13) we have,

aN0 + bN0 + cN0 = 0 mod N3 (20)

Note that if a+b+c is of orderN2, then ã′2, b̃′2 and c̃′2 in equation (19) has to satisfy, ã′2+b̃′2+c̃′2 =

∆′N2 where ∆′ 6= 0 mod N. Let q = a−10 , i.e., a0q = 1 + εaN . Denote b0q = k + εbN , and

c0q = −(k + 1) + εcN . Multiply qN to equation (19), let anew = qNa, bnew = qNb, and

cnew = qNc, we find,

anew = (a0q)
N + (ã′2q

N)N2 = (1 + εaN)N + (ã′2q
N)N2 = 1 + ã′′2N

2 (21)

bnew = (b0q)
N + (b̃′2q

N)N2 = (k + εbN)N + (b̃′2q
N)N2 = kN + b̃′′2N

2 (22)

cnew = (c0q)
N + (c̃′2q

N)N2 = (−(k + 1) + εcN)N + (c̃′2q
N)N2 = −(k + 1)N + c̃′′2N

2 (23)
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Define m and m′ through,

kN−1 = 1 +mN, (k + 1)N−1 = 1 +m′N, (24)

Equations (22) and (23) can be rewritten as,

bnew = k + kmN + b̃′′′2 N
2 (25)

cnew = −(k + 1)− (k + 1)m′N + c̃′′′2 N
2 (26)

Since (a+ b+ c) is of order Nα, so anew + bnew + cnew is also of order Nα. Because α ≥ 2, we

must have,

km = (k + 1)m′ mod N. (27)

So we can write,

km = b1 + b̃2N, and (k + 1)m′ = b1 + c̃2N, (28)

where we have reused the symbols b̃2 and c̃2. Requiring aNnew + bNnew + cNnew = 0 leads to,

1 + kN − (k + 1)N = 0 mod N3, or 1 + kN − (k + 1)N = δN3, (29)

This relationship was obtained by Carmichael in 1913. This is a stronger constraint than equa-

tion (6). Of the 167 (1228) prime numbers smaller than 1000 (10000), 80 (611) of them, i.e.

only 50% of them have k’s satisfy equation (29). We further assume δ in equation (29) satisfy

δ 6= 0 mod N (see (35) and (36) for justification).

Since 1 + kN − (k + 1)N = 1 + k(1 +mN)− (k + 1)(1 +m′N), with the condition (29),

equation (27) becomes,

km = (k + 1)m′ mod N2, (30)

If the set [1, k,−(k+1)] satisfies the requirement (29), then the set [1, k−N,N−(k+1)] also

satisfies (29). Denote this as the adjoint set. We will regard these two as the same set. Denote

q < N to be k−1, i.e., qk = 1 (mod N), then we can generate another set [q, 1,−(q+ 1)] which
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also satisfies (29). Denote k∗ = N − (q + 1), with its inverse to be q∗, then the adjoint set of

[q, 1,−(q + 1)] is [q −N, 1, N − (q + 1)] = [−(k∗ + 1), 1, k∗]; from which we can multiply q∗

to generate another set [−(q∗ + 1), q∗, 1]. So from one set [1, k,−(k + 1)] we obtain three sets

[1, k,−(k+1)], [q, 1,−(q+1)] and [−(q∗+1), q∗, 1]. These three sets are either distinct or they

can be the same. They are the same if the RL conjecture is true. And vice versa. A quick

check of all prime numbers smaller than 10000 shows that if the requirement (29) is satisfied,

then only one set of [1, k, k + 1] exists, i.e., the three sets [1, k,−(k + 1)], [q, 1,−(q + 1)] and

[−(q∗ + 1), q∗, 1] are the same.

Definition: a prime number N is called a k3-prime if the condition (29) is satisfied by one

and only one set of [1, k,−(k + 1)] (not counting adjoint sets). In the following we prove case

I of FLT for k3-primes.

For any given prime number p, it is straightforward to verify if p is a k3-prime by examining

the condition (29).

IfN is a k3-prime, then the three sets which are generated from the single set [1, k,−(k+1)]

are the same, so we must have,

−(k + 1) = k2 − βN where 1 < β < N − 1. (31)

From equation (31), we also obtain k2+k+1 = βN , k(k+1) = −1+βN , k3 = 1+(k−1)βN ,

and k(k + 2) = (k − 1) + βN . Furthermore, from equation (30) we have,

m′ = (k + 1)m mod N. (32)

We can multiply kN and k2N to the requirement (29) to obtain,

kN + k2N − (k(k + 1))N = δkNN3, (33)

k2N + k3N − (k2(k + 1))N = δk2NN3, (34)
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Using equation (24), the requirements (29), (33) and (34) yield the following relationships:

β = (k + 2)m mod N, (35)

(k + 1)m2 + 2δ = 0 mod N. (36)

From equation (35) and (36), we see that δ 6= 0 modN. For if so, m = 0 and β = 0, but from

equation (31), it is clear β 6= 0 for k3-primes. Using k(k + 1) = −1modN, equation (36) can

be also written as,

m2k2 = 2δ mod N. (37)

ascending α from 2 to 3

Assuming α = 2, i.e. a + b + c is of order N2. Let us suppose anew, bnew and cnew in equa-

tions (21), (22), and (23) satisfy anew + bnew + cnew = ∆2N
2 + O(N3) where ∆2 is to remind

us that we are on level II of the “infinite ascending ladder”. By multiplying terms in the form

of 1 − wlN l to anew, bnew and cnew with l = 2 (this operation leaves ∆2 unchanged), we can

transform anew, bnew, and cnew into,

anew → a = 1 + ∆2N
2 + ã3N

3 (38)

bnew → b = kN + b2N
2 + b̃3N

3 = k + b1N + b′2N
2 + b̃′3N

3 (39)

cnew → c = −(k + 1)N − b2N2 + c̃3N
3 = −(k + 1)− b1N − b′2N2 + c̃′3N

3 (40)

where b1 satisfies km = b1 (mod N), as can be seen from equation (28). For convenience we

re-use a, b, c in these equations. To the order of N3, using k(k + 1) = −1 mod N, we have

k(k + 1)(aN + bN + cN) = {−(δ + ∆2) + kmb1 +
N − 1

2
b21}N3 +O(N4) (41)

In equations (41) the coefficient of N3 must equal to zero. So,

(b1 − km)2 = −2∆2 mod N (42)

Since b1 = km (mod N), so ∆2 is zero. Therefore we have α ≥ 3.
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ascending α from 3 to infinity

We next suppose anew + bnew + cnew = ∆3N
3 + O(N4). Following the same procedure as in

equations (38), (39) and (40), i.e., multiplying terms in the form of 1− wlN l to anew, bnew and

cnew with l ≥ 2, we find, to order N4,

anew → a = 1 + (∆3 − δ)N3 + ã4N
4 (43)

bnew → b = kN + (b2N
2 + b3N

3) + b̃4N
4 (44)

cnew → c = −(k + 1)N − (b2N
2 + b3N

3) + c̃4N
4 (45)

Again we still have a + b + c = ∆3N
3 + O(N4) since the transformation from anew → a,

bnew → b, and cnew → c do not change ∆3.

Using equations (43), (44) and (45), to order N4 we have,

aN + bN + cN = 1 + kN
2 − (k + 1)N

2

= 1 + kN(1 +mN)N − (k + 1)N(1 +m′N)N

= 1 + kN(1 +mN2 +
N − 1

2
m2N3)− (k + 1)N(1 +m′N2 +

N − 1

2
(m′)2N3)

= δN3 +mkN2(kN−1 − (k + 1)N−1) +
N − 1

2
mkN3(mkN−1 −m′(k + 1)N−1)

= N3{δ +
1

2
mk(m−m′)} (46)

where we have used km = m′(k + 1) mod N. Using equation (29) for δ, equation (32) for m′,

and multiply by 2k3, equation (46) becomes,

2k3(aN + bN + cN) = k2N3(m2 −m2k3) = 0 mod N4 (47)

So indeed aN + bN + cN = 0 up to order N3. Next to order N4, using equations (43), (44) and

(45) again, we have,

aN + bN + cN = 1 + kN
2 − (k + 1)N

2

+ (∆3 − δ)N4 (48)
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Now that from equation (46) we know 1 + kN
2 − (k + 1)N

2 is zero up to order N3, so we

can let 1 + kN
2 − (k + 1)N

2
= εN4. Multiply by kN2 , we obtain,

kN
2

(1 + kN
2 − (k + 1)N

2

) = kN
2

εN4. (49)

To order N4, the RHS of equation (49) is kεN4. The LHS is,

LHS = kN
2

+ (k2)N
2 − (k(k + 1))N

2

= kN
2

+ (βN − (k + 1))N
2

+ (1− βN)N
2

= 1 + kN
2 − (k + 1)N

2

+ ((k + 1)N
2−1 − 1)βN3

+
1

2
N4(N2 − 1)β2(1− (k + 1)N

2−2)

= εN4 + βm′N4 − β2N4

2(k + 1)
(k + 1− 1) = N4(ε+ βm′ − β2k2

2k(k + 1)
) (50)

Equating LHS and RHS,

2k(k + 1)(k − 1)ε = 2k(k + 1)βm′ − β2k2, mod N (51)

Using k(k + 1) = −1 (mod N), k − 1 = k(k + 2) (mod N), β = (k + 2)m (mod N), and

m′ = (k + 1)m (mod N), we find,

2kε = 2(k + 1)m2 + (k + 2)m2k2 → 2ε = k2m2 = 2δ mod N (52)

Since ε = δ mod N, therefore from equation (48) we see that ∆3 must be zero. Now we can

apply this recursively (“infinitely ascend”) to obtain ∆γ = 0 and (1 + kN
γ−1 − (k + 1)N

γ−1
) =

δNγ+1 +O(Nγ+2).

Now assuming ∆γ = 0 and (1 + kN
γ−1 − (k + 1)N

γ−1
) = δNγ+1 + O(Nγ+2), we show

that ∆γ+1 = 0 and (1 + kN
γ − (k + 1)N

γ
) = δNγ+2 +O(Nγ+3).

We make use of (k+1)N
γ−1 = (k+1)(N−1)(1+N+N2+...+Nγ−1) = (1+m′N)(1+m′N)N(1+

m′N)N
2
...(1 + m′N)N

γ−1
= 1 + m′N + ..., and similar expression for kNγ−1 (kNγ−1 = 1 +

mN + ...).
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First, equations (43), (44) and (45) are now,

anew → a = 1 + (∆γ+1 − δ)Nγ+1 + ãγ+2N
γ+2 (53)

bnew → b = kN
γ−1

+ (b2N
2 + ...+ bγ+1N

γ+1) + b̃γ+2N
γ+2 (54)

cnew → c = −(k + 1)N
γ−1 − (b2N

2 + ...+ bγ+1N
γ+1) + c̃γ+2N

γ+2 (55)

For example, if γ = 3, we have

anew → a = 1 + (∆4 − δ)N4 + ã5N
5 (56)

bnew → b = kN
2

+ (b2N
2 + b3N

3 + b4N
4) + b̃5N

5 (57)

cnew → c = −(k + 1)N
2 − (b2N

2 + b3N
3 + b4N

4) + c̃5N
5 (58)

If (1 + kN
γ−1 − (k + 1)N

γ−1
) = δNγ+1 +O(Nγ+2), then up to order Nγ+1, we find,

1 + kN
γ − (k + 1)N

γ

= 1 + kN
γ−1

k(N−1)N
γ−1 − (k + 1)N

γ−1

(k + 1)(N−1)N
γ

= 1 + kN
γ−1

(1 +mN)N
γ−1 − (k + 1)N

γ−1

(1 +m′N)N
γ

= (1 + kN
γ−1 − (k + 1)N

γ−1

) + (mkN
γ−1 −m′(k + 1)N

γ−1

)Nγ

+
Nγ+1(Nγ−1 − 1)

2
(m2kN

γ−1 −m′2(k + 1)N
γ−1

) + ...

= δNγ+1 + (mkN
γ−1 −m′(1 + kN

γ−1 − δNγ+1))Nγ − Nγ+1

2
(m2k −m′2(k + 1)) + ...

= δNγ+1 + ((m−m′)kNγ−1 −m′)Nγ +
Nγ+1

2
(m′2(k + 1)−m2k) + ...

= δNγ+1 + ((m−m′)k(1 +mN)−m′)Nγ +
Nγ+1

2
(m′ −m)mk + ...

= δNγ+1 + ((mk −m′(k + 1))− k2m2N)Nγ +
Nγ+1

2
m2k2 + ...

= (δ − 1

2
k2m2)Nγ+1 + ... = 0 (59)

where in the last step we used equation (37). So we can let (1 + kN
γ − (k + 1)N

γ
) = εNγ+2 +

O(Nγ+3). Multiply by kNγ , we obtain,

kN
γ

(1 + kN
γ − (k + 1)N

γ

) = kN
γ

εNγ+2. (60)
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To the order Nγ+2, the RHS of equation (49) is kεNγ+2. The LHS is,

LHS = kN
γ

+ (k2)N
γ − (k(k + 1))N

γ

= kN
γ

+ (βN − (k + 1))N
γ

+ (1− βN)N
γ

= 1 + kN
γ − (k + 1)N

γ

+ ((k + 1)N
γ−1 − 1)βNγ+1

+
1

2
Nγ(Nγ − 1)β2N2(1− (k + 1)N

γ−2)

= εNγ+2 + βm′Nγ+2 − β2Nγ+2

2(k + 1)
(k + 1− (k + 1)N

γ−1)

= Nγ+2(ε+ βm′ − β2k2

2k(k + 1)
) (61)

Equating LHS and RHS, we find the same equation (52) and ε = δ. So, ∆γ+1 must be zero. We

can continue this procedure and find a + b + c = 0 (mod Nτ ), with τ arbitrarily large. This is

absurd. Therefore Case I of FLT (for k3-primes) is proved.

Discussion

Mr. Fermat is arguably the best amateur mathematician in history. Less known is that he was

also a very insightful physicist. He discovered that between two points light travels along a

path which yields the least travel time. This stimulated the later development of the least action

principle in theoretical physics. Perhaps Mr. Fermat’s impact to Physics is no less than his

contribution to Mathematics.

Could the approach presented here the one Mr. Fermat was thinking when he made his

famous remark in the margin of his copy of Arithmetica of Diophantus? Possibly, but we may

never know. It could well be that Mr. Fermat had an even better proof.
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