Proof of Riemann Hypothesis

Andrey Skrypnyk
ansk66@mail.ru

Abstract—This article describes how to calculate the formula for calculating all primes.

Index Terms—algorithm

I. RIEMANN HYPOTHESIS DEFINITION

There is a pattern in the distribution of primes among the positive integers.

II. RIEMANN HYPOTHESIS PROOF ALGORITHM

A. Distinguishing the Sequence of Odd Numbers

Let \mathbb{N} be natural numbers, including zero, and \mathbb{N}^* be natural numbers without zero.

First two primes (by condition) are:

$$1, 2. \quad (1)$$

Prime number 2 is significant for dividing the sequence into two equal sequences of even (x) and odd (y) numbers:

$$x \in \{2M \mid M \in \mathbb{N}^*\}, \quad (2)$$

$$y \in \{2M + 1 \mid M \in \mathbb{N}^*\}. \quad (3)$$

Starting from $M = 2$ (2) describes the set of composite numbers x_{comp} by condition:

$$x_{comp} \in \{2M \mid M \in \mathbb{N}^*, \ M \geq 2\}. \quad (4)$$

Thus further we will consider the sequence of odd numbers $\{y\}$ (3) to determine the pattern in the distribution of primes (y_o).

The sequence of odd numbers $\{y\}$, except for y_o, also includes the set of composite odd numbers y_{comp}:

$$y_{comp} \in \{y_o \mid y_o \geq 3, \ y \geq 3\}. \quad (5)$$

Expression (3) without limitations describes the distribution of first y_o in the sequence of odd numbers within the segment from 3 to the first $y_{comp} = 3^2 = 9$.

Let’s represent (3) as the following expression:

$$y_o = 1^2 + 2 \cdot 1 \cdot M_1 + 2, \quad (6)$$

where $M_1 \in \mathbb{N}$.

Therefore, this segment can be represented in the following way:

$$1^2 < y < 3^2. \quad (7)$$

The following segment, where (6) for determination of y_o will be limited by exception of the set of composite numbers $\{3y \mid y > 3\}$, will end with the first y_{comp} to which $y_o = 3$ will bear no relation. By definition it is $y_{comp} = 5^2 = 25$. Thus we can conclude the following.

B. Conclusion 1

All segments compliant with the specific pattern of distribution of y_o are limited by $y_{comp} = y_{on}^2$ and $y_{comp} = y_{o(n+1)}^2$.

Let’s analyze the first such segment.

C. The first segment of odd numbers from 1 to 9

Distribution of y_o is described by (6). Let’s calculate first y_o after (1):

$$3, 5, 7. \quad (8)$$

D. The second segment of odd numbers from 9 to 25

In order to exclude the composite numbers y_{comp} from the set $\{3y \mid y > 3\}$, $y_o = 1$ in (6) shall be replaced by $y_o = 3$ and summation 2 shall be replaced by variable ± 2 to cover all y_o in this segment:

$$y_o = 3^2 + 2 \cdot 3 \cdot M_3 \pm 2 = 3^2 + 2(3M_3 \pm 1), \quad (9)$$

where $M_3 \in \mathbb{N}$.

Let’s calculate next y_o in the sequence:

$$11, 13, 17, 19, 23. \quad (10)$$

E. The third segment of odd numbers from 25 to 49

For this segment y_o value shall be equal in two expressions - in (9) and in the following expression in order to exclude the composite numbers $\{5y \mid y > 5\}$:

$$y_o = 5^2 + 2 \cdot 5 \cdot M_5 \pm 2z_5 = 5^2 + 2(5M_5 \pm z_5), \quad (11)$$

where $M_5 \in \mathbb{N}$, $1 \leq z_5 \leq 2$.

Starting from the second segment, expression for y_o depends on the value of M_5. According to Conclusion 1 and (9) it is possible to calculate the lower and upper limits for M_5 in any segment of $y_{on}^2 < y < y_{o(n+1)}^2$:

$$\frac{y_{on}^2 - 9 \pm 2}{6} \leq M_5 \leq \frac{y_{o(n+1)}^2 - 9 \pm 2}{6}. \quad (12)$$

For this segment M_5 value in (9) will change:

$$3 \leq M_5 \leq 7. \quad (13)$$
Let’s compare (9) and (11):
\[3^2 + 2 \cdot 3 \cdot M_3 \pm 2 = 5^2 + 2 \cdot 5 \cdot M_5 \pm 2z_5. \] (14)
Let’s express \(M_5 \) from (14):
\[M_5 = \frac{3M_3 \pm 1 - 8 \mp z_5}{5}. \] (15)
Substitute (15) into (11):
\[y_o = 5^2 + 2 \left(\frac{5 \cdot 3M_3 \pm 1 - 8 \mp z_5}{5} \pm z_5 \right), \] (16)
where \(3 \leq M_3 < 7, \ 1 \leq z_5 \leq 2 \).

Calculate next \(y_o \) in the third segment:
\[29, 31, 37, 41, 43, 47. \] (17)

F. Conclusion 2

Based on the results of analysis of first, second and third segments of odd numbers we can conclude the following:
Each successive segment compliant with the pattern of distribution of \(y_o \) depends on the pattern of distribution of \(y_o \) in all previous segment starting from the second segment.

Let’s analyze the following segment for final determination of the pattern of distribution of \(y_o \) in segments \(y_{on}^2 < y < y_{o(n+1)}^2 \).

G. The fourth segment of odd numbers from 49 to 121

For this segment \(y_o \) value shall be equal in two expressions - in (16) with different values of variables:
\[7 \leq M_3 < 19, \] (18)
\[1 \leq z_5 \leq 2, \] (19)
\[M_5 = \frac{3M_3 \pm 1 - 8 \mp z_5}{5} \in \mathbb{N}^*, \] (20)
and in the following expression to exclude the composite numbers \(y_{ uncomp} \) from the set \(\{y \mid y > 7\} \):
\[y_o = 7^2 + 2 \cdot 7 \cdot M_7 + 2z_7 = 7^2 + 2(7M_7 \pm z_7), \] (21)

For this segment from (21) it follows that:
\[M_7 \in \mathbb{N}, \] (22)
\[1 \leq z_7 \leq 3 \] (23)

Let’s compare (16) and (21):
\[5^2 + 2 \left(\frac{5 \cdot 3M_3 \pm 1 - 8 \mp z_5}{5} \pm z_5 \right) = \] (24)
\[= 7^2 + 2 \cdot 7 \cdot M_7 \pm 2z_7. \]
Express \(M_7 \) from (24):
\[M_7 = \frac{5 \cdot 3M_3 \pm 1 - 8 \mp z_5 \pm z_5 - 12 \mp z_7}{7}. \] (25)
Substitute \(M_7 \) from (25) into (21):
\[y_o = 7^2 + 2 \left(\frac{5 \cdot 3M_3 \pm 1 - 8 \mp z_5 \pm z_5 - 12 \mp z_7}{7} \pm z_7 \right), \] (26)
where (18), (19), (20), (22), (23) and (25) are true.

Let’s calculate the successive values of \(y_o \) in in the fourth segment of odd numbers:
\[53, 59, 61, 67, 71, 73, 79, 89, \]
\[97, 101, 103, 107, 109, 113. \] (27)

H. General Expression of Distribution of Primes

Thus we can determine the specific patterns, comparing (16) and (26).

Let’s present the general expression of distribution of \(y_o \) in n-th segments \(y_{an}^2 < y < y_{o(n+1)}^2 \) taking these patterns into consideration:
\[y_o = y_{an}^2 + 2(y_{on}M_{yon} \pm z_{yon}) \] (28)
Variables (28) are calculated using the following formulas:
\[1 \leq z_{yon} \leq \frac{y_{on} - 1}{2}, \] (29)
where \(2 \leq c \leq n \) is the number of the number in the sequence of odd primes;
\[M_{yon} = \]
\[= \frac{y_{o(n-1)}M_{yon(n-1)} \pm z_{yon(n-1)} - \frac{y_{on}^2 - y_{o(n-1)}^2}{2} \mp z_{yon}}{y_{on}}, \] (30)
where \(M_{yon} \in \mathbb{N}; \)
\[M_3 < M_{yon} < M_{yon}, \] (31)
where \(M_3 \) is calculated according to (12);
\[M_{yon} = \]
\[= \frac{y_{o(b-1)}M_{yon(b-1)} \pm z_{yon(b-1)} - \frac{y_{ob}^2 - y_{o(b-1)}^2}{2} \mp z_{yob}}{y_{ob}}, \] (32)
where \(M_{yon} \in \mathbb{N}^*, \ 3 < y_{o(b-1)} < y_{ob} < y_{on}. \)

In order to form the full sequence of \(y_o \), the n-th segments shall be analyzed in sequence. But calculation of \(y_o \) from segments to segment becomes more difficult. Thus the third segment of odd numbers in (16) has 5 variables, the fourth segment of odd numbers in (26) has 8 variables. But nevertheless, (26) unequivocally describes the distribution of \(y_o \) in sequence of numbers. If it is necessary to calculate \(y_o \) in n-th segment, avoiding the previous segments, all \(y_o \leq y_{o(n+1)} \) from previous calculations shall be known. The required range will be set by summand \(y_{on}^2 \) and values of \(M_3 \) (12). While solving the problem all (31) for this n-th segment shall be calculated in sequence.

I. Final Conclusion

Riemann Hypothesis is true. Distribution of primes among the positive integers has its own pattern. But for odd numbers of \(y \) the sections compliant with the specific pattern of distribution of primes \(y_o \) are limited by composite numbers \(y_{on}^2 \) and \(y_{o(n+1)}^2 \). Distribution of \(y_o \) in such n-th sections, starting from the third segment of odd numbers, is calculated
according to the (28). The full sequence of y_o is achieved by consequent analysis of n-th sections, starting from the first segment of odd numbers.

(2017 year)

ACKNOWLEDGMENT

REFERENCES