Kinetic reevaluation on Adsorption of Co(II), Hg(II) and Ag(I)

from fuel ethanol by silica gel supported sulfur-containing PAMAM dendrimers[Fuel 199 (2017) 91–101 and 206 (2017)

80-88]

Yong-Son Hong^{a,}*, Hong-Chol Jin^b

^aDepartment of Physical Chemistry, Faculty of Chemistry, Kim Hyong Jik Normal University, Pyongyang, Democratic People's Republic of Korea

^bFaculty of Thermal engineering, Kim Chaek University of Technology, Pyongyang, Democratic P eople's Republic of Korea

Corresponding author. *E-mail address: yongsonhong77@yahoo.com

In our letter, the adsorption of Co(II), Hg(II) and Ag(I) from fuel ethanol by silica gel supporte d sulfur-containing PAMAM dendrimers [Fuel 199 (2017) 91–101 and 206 (2017) 80–88] were reevaluated using deactivation kinetics model (DKM). As the result, the reaction orders newly were estimated and the calculated rate constants were quantitatively compared on both ads orbate and adsorbents.

Recently, the adsorption of Co(II), Hg(II) and Ag(I) from fuel ethanol on silica gel supported s ulfur-containing PAMAM dendrimers were reported by Song et al.[1,2]. In adsorption kinetics study, their experiment data were analyzed using pseudo-second-order kinetic model (PSO) [3]. The PSO was used in many previous studies for adsorption kinetics, the dominance of this model are simple and convenient to use. But the PSO involved the adsorption amount which is the thermodynamic quantity and assumed reaction order. Therefore, the calculated rate co nstants can't be compared and furthermore, the activation energy can't be calculated. It can also be said that the adsorption process is one of heterogeneous reaction process.

The experiment data published by Song et al. [1, 2] were reevaluated kinetically using deacti vation kinetics model (DKM), a kinetic model for heterogeneous reaction. The DKM had prop osed in 2014 [4] and used it for the kinetic analysis of H_2S removal over mesoporous LaFeO₃ /MCM-41 sorbent during hot coal gas desulfurization in a fixed-bed reactor. In 2017 [5], the validity of DKM was verified through kinetic analysis for other experimental data. DKM has not considered the detailed characteristic parameters of the solid sorbent in such a microsco pic way as unreacted shrinking core model (SCM) [6] or random pore model (RPM)[7] but in a macroscopic way. The change of fractional conversion with time in solid phase was expres sed as a deactivation rate, as shown in Eq (1):

1

$$\frac{dX}{dt} = k_d C_A (1 - X)^{\alpha} \tag{1}$$

where X is deactivation degree of adsorbent ($0 \le X \le 1$, dimensionless), C_A is concentration (m mol $\cdot L^{-1}$) of A component at any time(min), k_d is a deactivation rate constant of the adsorbe nt ($L \cdot \text{mmol}^{-1} \cdot \text{min}^{-1}$), α is the reaction order of (1-X).

The adsorption kinetic equation used Eq. (1) in batch system is Eq. (2).

$$\begin{cases} \frac{dC_{A}}{dt} = -k_{A}C_{A}(1-X) \\ \frac{dX}{dt} = k_{d}C_{A}(1-X) \end{cases}$$
(2)

where k_A is apparent adsorption rate constant of A (min⁻¹). Eq. (2) was solved with ODE func tion of MATLAB and the kinetic parameters (reaction orders and rate constants) were calculat ed using the nonlinear least-squares fitting of the adsorbates concentration obtained by solvin g Eq. (2) to the experimental data. The input data required for the nonlinear optimization w ere only the non-dimensionalized concentrations (C/C_0) of the adsorbates with time and X wa s automatically evaluated in the calculation process.

The parameters of PSO estimated by them [1, 2] and kinetic parameters calculated by Eq. (2) were shown in Table.

					I			
lon	Adsorbent	PSO[1, 2]			DKM, Eq. (2)*, [this work]			
		k ₂	q _e		k _A	k _d		
		mmol	mmol	R ²	Lmmo	l ⁻¹ L ^{0.5} mmol ^{-0.5}	R^2	
		g ⁻¹ min ⁻¹	g ⁻¹		min ⁻¹	min ⁻¹		
Co(II)[1]	SiO ₂ -G0.5	0.58	0.25	1.000	0.0487	0.1176	1.0000	
	SiO ₂ -G1.0	0.15	0.44	0.999	0.0398	0.0394	0.9999	
	SiO ₂ -G1.5	0.72	0.26	1.000	0.0661	0.1515	1.0000	
	SiO ₂ -G2.0	0.07	0.50	0.999	0.0236	0.0176	0.9999	
	SiO ₂ -G2.5	0.16	0.34	0.998	0.0247	0.0381	0.9999	
	SiO ₂ -G3.0	0.09	0.34	0.999	0.0137	0.0210	0.9999	
Hg(11)[2]	SiO ₂ -G0.0	0.1491	0.54	0.9993	0.0609	0.0387	0.9998	
	SiO ₂ -G1.0	0.1604	0.58	0.9996	0.0764	0.0401	0.9998	
	SiO ₂ -G2.0	0.1083	0.63	0.9991	0.0598	0.0234	0.9997	
Ag(I)[2]	SiO ₂ -G0.0	0.0594	0.47	0.9989	0.0175	0.0149	0.9999	
	SiO ₂ -G1.0	0.0872	0.52	0.9993	0.0321	0.0221	0.9998	
	SiO ₂ -G2.0	0.0528	0.51	0.9994	0.0183	0.0130	0.9999	
	Condition: 25 mg absorbent and 20 mL of				*:	*: reaction orders		
	1 mmol L ⁻¹ metal ion solution				<i>α</i> =2	<i>α</i> =2, β=2, γ=0.5, λ=2		

Table. Calculated parameters

The following conclusions could be drawn from Table.

- The reaction orders were evaluated (Eq. (3)). If all reaction orders were equal to 1 or

2, some calculated adsorption rate constants became smaller than 0.

$$\begin{cases} \frac{dC_{\rm A}}{dt} = -k_{\rm A}C_{\rm A}^2(1-X)^2 \\ \frac{dX}{dt} = k_d C_{\rm A}^{0.5}(1-X)^2 \end{cases}$$
(3)

- The calculated rate constants could quantitatively be compared on both adsorbate and adsorbents unlike PSO.

- Also, the activation energy can be calculated if the experiment data with temperature had been given. The activation energy can't be accurately calculated with the PSO in whi ch both the rate constant and the adsorption amount change with temperature.

Kinetic conclusions could be obtained like above using DKM and these conclusions couldn't b e obtained using PSO. In our view, it may be more necessary to use DKM than pseudo orde r models including the adsorption amount in adsorption kinetic studies.

References

- [1] Song XT, Niu YZ, Zhang PP, Zhang CY, Zhang Z, Zhu Y, Qu RJ. Removal of Co(II) from fuel ethanol by silica-gel supported PAMAM dendrimers: Combined experimental and theoretic al study. Fuel 2017;199:91–101.
- [2] Song XT, Niu YZ, Qiu ZM, Zhang ZX, Zhou YZ, Zhao JJ, Chen H. Adsorption of Hg(II) and Ag(I) from fuel ethanol by silica gel supported sulfur-containing PAMAM dendrimers: Kineti cs, equilibrium and thermodynamics. Fuel 2017;206: 80–8
- [3] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J 1998;70 (2):115-24.
- [4] Hong YS, Zhang ZF, Cai ZP, Zhao XH, Liu BS. Deactivation Kinetics Model of H₂S Removal over Mesoporous LaFeO₃ /MCM-41 Sorbent during Hot Coal Gas Desulfurization. Energy Fu els 2014;28:6012–18.
- [5] Hong YS, Sin KR, Pak JS, Kim CJ, Liu BS. Kinetic Analysis of H₂S Removal over Mesoporou s Cu–Mn Mixed Oxide/SBA-15 and La–Mn Mixed Oxide/KIT-6 Sorbents during Hot Coal Gas Desulfurization Using the Deactivation Kinetics Model. Energy Fuels, 2017;31:9874–80.
- [6] Do DD. On the validity of the shrinking core model in noncatalytic gas solid reaction. Che m Eng Sci 1982;37:1477–81.
- [7] Bhatia SK, Perlmutter DD. A random pore model for fluidsolid reactions: I. Isothermal kine tic control, AIChE J. 1981;26:379–86.