A note on properties of a prime-generating quadratic polynomial 13n^2 $+53 n+41$

Waldemar Puszkarz
Los Angeles, California

March 23, 2018

Abstract

This note presents some properties of a quadratic polynomial $13 n^{\wedge} 2+53 n+41$. One of them is unique, while others are shared with other prime-generating quadratics. The main purpose of this note is to emphasize certain common features of such quadratics that may not have been noted before.

The quadratic $13 n^{\wedge} 2+53 n+41$ has some interesting properties that we discuss in what follows. We label them A, B, and C . The truly unique is property A .

Property A. 1) it is a prime-generating polynomial (generates 11 primes in a row starting at $n=0$), see [1], 2) its coefficients are distinct positive primes, and 3) the sum of its coefficients is the smallest possible under conditions 1) and 2). This sum is 107 , and 107 $=2 * 53+1$ (see property B). The 11 consecutive primes mentioned are: 41, 107, 199, 317, 461, 631, 827, 1049, 1297, 1571, 1871.

To spell it out, this is a prime-generating quadratic polynomial with distinct positive prime coefficients whose sum is smaller than for any other such a polynomial.

If 2) is relaxed to allow non-distinct positive primes, then 1) and 3) are met by $2 \mathrm{n}^{\wedge} 2+2 \mathrm{n}$ +19 (same as [A007639] in the OEIS [2] for n running from 1) that generates 18 primes in a row. The prime-generating quadratic that generates at least 20 primes in a row and meets 2) and 3) is $43 n^{\wedge} 2+151 n+1427$; all 27 consecutive primes that it generates are in [A272285] as $43(n-8)^{\wedge} 2+151(n-8)+1427=43 n^{\wedge} 2-537 n+2971$. If 2) is relaxed to allow non-distinct positive primes, the prime-generating quadratic that generates at least 20 primes in a row and meets 3) is $3 n^{\wedge} 2+3 n+23$ (same as [A007637] for n running from 1); it generates 22 primes in a row.

Property B. If $f(n)=a n^{\wedge} 2+b n+c$, then in this case $b=a+c-1$, implying $a+b+c=2 b$ +1 , and ensuring that if b is prime, it is a Sophie Germain prime. This property is shared by a number of other prime-generating quadratics, including $\mathrm{n}^{\wedge} 2+23 \mathrm{n}+23$ [A292509] and $2 n^{\wedge} 2+44 n+43$ (17 primes in a row in both cases), as well as $3 n^{\wedge} 2+39 n+37$ [A256585] and $47 n^{\wedge} 2+99 n+53$ (18 primes in a row in both cases).

Let us note that there are also prime-generating quadratics with a property very similar to property B, namely, $\mathrm{b}=\mathrm{a}+\mathrm{c}+1$. Two of such quadratics are mentioned in [3] ($7 \mathrm{n}^{\wedge} 2+$ $49 n+41$ [A272077] and $11 n^{\wedge} 2+55 n+43$ [A292578]) and yet another one, generating 18 primes in a row, is $10 \mathrm{n}^{\wedge} 2+70 \mathrm{n}+59$.

Property C. Two of its coefficients are proper (of the form $6 \mathrm{k}+5$) distinct Sophie Germain primes: 41 and 53.2 is the largest number of such primes that a primegenerating quadratic can have for its coefficients, whether they are distinct or not. If improper Sophie Germain primes are allowed, then one can have prime-generating quadratics whose all coefficients are Sophie Germain primes, e.g., $3 n^{\wedge} 2+3 n+23$. This property, properties A1, A2, and property B are shared by $41 n^{\wedge} 2+83 n+43$ and $61 n^{\wedge} 2+$ $113 n+53$, generating 11 and 19 primes in a row, respectively.

The first of these quadratics also stands out in that its coefficients a and c form a prime pair and while 41 and 83 are Sophie Germain primes, we also have $83=2 * 41+1$, which means that these primes are a part of a three-link Cunningham chain of the first kind (41, 83, 167) [4].

References

[1] http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html
[2] http://oeis.org/
[3] W. Puszkarz, A note on some class of prime-generating quadratics, viXra preprint (2018)
[4] https://en.wikipedia.org/wiki/Cunningham_chain

