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Abstract— The finite­set statistics (FISST) approach to multi­
target tracking—random finite sets (RFS’s), belief­mass func­
tions, and set derivatives—was introduced in the mid­1990s.
Its current extended form—probability generating functionals
(p.g.fl.’s) and functional derivatives—dates from 2001. In 2008,
an “elementary” alternative to FISST was proposed, based on
“finite point processes” rather than RFS’s. This was accom­
panied by single­sensor and multisensor versions of a claimed
generalization of the PHD filter, the “multitarget intensity filter”
or “iFilter.” Then in 2013 in the Journal of Advances in
Information Fusion (JAIF) and elsewhere, the same author went
on to claim that the FISST p.g.fl./functional derivative approach
is actually “due to” (a “corollary” of) a 50­year­old pure­
mathematics paper by Moyal; and described a “point process”
p.g.fl./functional derivative approach to multitarget tracking
supposedly based on it. In this paper it is shown that: (1)
non­RFS point processes are a phenomenologically erroneous
foundation for multitarget tracking; (2) nearly every equation,
concept, discussion, derivation, and methodology in the JAIF
paper originally appeared in FISST publications, without being
so attributed; (3) FISST cannot possibly be “due to Moyal”;
and (4) the “point process” approach described in JAIF differs
from FISST only in regard to terminology and notation, and
thus in this sense appears to be an obscured, phenomenologically
erroneous, and improperly attributed copy of FISST. The paper
concludes with the following question: Given the above, do the
peer­review standards of the Journal of Advances in Information
Fusion rise to the level expected of any credible scientific journal?
It is also shown that the derivations of the single­sensor and
multisensor iFilter appear to have had major errors, as did
a subsequent recasting of the multisensor iFilter as a “traffic
mapping filter.”

I. INTRODUCTION

The finite­set statistics (FISST) approach to multitarget
tracking and information fusion—random finite sets (RFS’s),
belief­mass functions, and set derivatives—was introduced in
the mid­1990s [8]. Its current extended form—probability
generating functionals (p.g.fl.’s) and functional derivatives—
dates from 2001 [23]. It was first systematically described in
2007 in the book [26]. See [28] for a tutorial introduction.

Since 2007, the approach has inspired a considerable
amount of research, conducted by many dozens of researchers
in at least 19 nations, reported in well over a thousand
publications. As a result, progress has been rapid and has
proceeded in diverse and sometimes unexpected directions,
propelled by many clever new ideas.

These include algorithms for: simultaneous multitarget
tracking and sensor registration; multitarget tracking and com­
prehensive clutter estimation in unknown, dynamic clutter;
provably Bayes­optimal and tractable exact closed­form mul­
titarget tracking; unified multitarget track­to­track fusion in
ad hoc sensor networks; and unified, provably Bayes­optimal
“hard + soft” information fusion.

In addition, FISST­based algorithms have been shown
to significantly outperform traditional methods, including:
single­target tracking in heavy clutter; track­before­detect
(TBD) in pixelized images; simultaneous localization and
mapping (SLAM) in robotics; and multitarget tracking using
superpositional sensors.

See [15] for a short survey of these advances, or [13] for
detailed coverage of most of them.

The purpose of this paper is to address the following
issues—and, in the process, correct many scientific miscon­
ceptions. In 2008 in [50] and [45], a claimed alternative to
FISST was proposed, which was (1) based on “finite point
processes” rather than RFS’s; and (2) “elementary” because
(unlike the FISST p.g.fl./ functional derivative approach) it
required only “familiarity with single target Bayesian filtering
and with PPP’s [Poisson point processes] at an elementary
level.” In particular, a claim was made for an “elementary”
derivation of the probability hypothesis density (PHD) filter.
Also proposed were single­sensor [50] and multisensor [45]
versions of a claimed generalization of the PHD filter, the
“multitarget intensity filter” (later renamed “iFilter”).

At the time, the “point process” approach was celebrated by
some because it seemed to offer an “elementary” alternative
to FISST. Given this, one might have expected to see
concrete evidence justifying such expectations—for example,
an “elementary” derivation of the cardinalized PHD (CPHD)
filter, or a CPHD generalization of the iFilter. However, no
such work seems to have appeared.

In 2012 [47] and 2013 [43], [48], [2], the author of [50],
[45] appeared to abandon the “elementary” approach in favor
of the FISST p.g.fl./ functional derivative approach. He did
so, however—and most notably in the Journal of Advances
in Information Fusion paper [48]—by claiming that FISST
is actually “due to” (a “corollary” of) a 50­year­old pure­
mathematics paper [33] by Moyal. Then—allegedly directly
applying Moyal’s paper (substituted in place of its mere
“corollary,” FISST)—he outlined an alleged “point process”
formulation of the p.g.fl./functional derivative approach; and
used it to produce allegedly new p.g.fl./functional derivative
derivations of the PHD filter and iFilter [48]. In 2013, he and
two co­authors [2] employed this formulation, while citing
[48] rather than FISST as its source.

This history is recounted in greater detail in Section IV.
Given that the “elementary” approach sufficed (“multitarget

intensity filters can be understood in essentially elementary
terms” [50, p. 1]), the need for either Moyal’s paper or such
rederivations is not altogether clear.

Be this as it may, when distilled to their essence the claims
in [50], [45], [48], [2] appear to be as follows:

1) 2008: Mahler’s p.g.fl./functional derivative approach
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to multitarget tracking is unnecessary because “single
target Bayesian filtering and with PPP’s at an elementary
level” suffice.

2) 2012­2013: Mahler’s p.g.fl./functional derivative ap­
proach to multitarget tracking is necessary, but is ac­
tually “due to Moyal” rather than Mahler.

Strong scientific claims such as these require strong sci­
entific scrutiny. This paper will investigate their validity in a
systematic and detailed manner, hopefully clarifying a number
of technical issues about “finite point processes” along the
way. The following major points will be demonstrated:

1) Section III: A non­RFS point process is—unlike an
RFS–a phenomenologically erroneous model of a mul­
titarget system. Moreover, any point process becomes
an RFS when it is applied to practical multitarget
tracking. Therefore, the “point process” approach in
[50], [45] differed from the FISST RFS approach only in
terminology and notation and thus, in this sense, appears
to have been an obscured and erroneous copy of it.

2) Sections V, VIII: The Journal of Advances in Informa­
tion Fusion paper [48] was accepted, and is being cited,
as original research. Yet nearly every equation, concept,
discussion, derivation, and methodology in it appeared
earlier in the FISST publications [3], [22], [23], [24],
[25], [26], [27]—but without being so attributed. A few
examples (to be discussed in more detail shortly):

a) Section V­A: FISST notation and terminology was
systematically changed without attribution. For
example, the FISST “cardinality distribution” was
changed to “cardinal number density” in [46, p.
45] and then to “canonical number distribution” in
[48, p. 128].

b) Section V­B: In [48], the “point process” derivation
of a central FISST equation (the p.g.fl. version of
Bayes’ rule, [26, Eq. (G.427)]) was (except for
notation) identical to the 2007 FISST derivation
in [26, Eqs. (G.428­G.438)]—but without being so
attributed. Yet, in [48] the original FISST equation
[26, Eq. (G.427)] was claimed to be a mere special
case of this identical “point process” copy.

c) Sections V­B through V­F: In [48], the “point
process” approach for applying p.g.fl.’s and func­
tional derivatives to multitarget tracking was (ex­
cept for terminology and notation) identical to the
FISST approach, without being so attributed.

d) Section V­F: In particular, the “point process”
derivation of the PHD filter in [48] was (except for
terminology and notation) identical to the FISST
derivation described in 2004 in [25], without being
so attributed. It was also a special case of the
FISST derivations of the CPHD filter in [24] and
the “general PHD filter” in [3]. The corresponding
“point process” rederivation of the iFilter in [48]
employed the same basic FISST derivation, without
being so acknowledged.

3) Sections VI, IX: It is impossible for the FISST approach
to multitarget tracking to be “due to,” or a mere “corol­

lary” of, a purely measure­theoretic paper that addressed
no practical applications at all, and which appeared at
the same time as the Kalman filter and nearly 20 years
before Reid’s seminal MHT paper, [36]. In particular:

a) Sections IX­C, IX­D: The FISST p.g.fl./functional
derivative approach is neither “due to Moyal” nor
“has exactly the same meaning” as in [33]—
because it cannot be found anywhere in [33].

b) Section IX­B.5, IX­C: FISST allows one to ex­
plicitly construct concrete formulas for the density
functions of RFS’s (as is required for practical
application), using Volterra’s concept of the func­
tional derivative of a p.g.fl.

c) Section IX­A.2: But the paper [33] merely defined
abstract multivariate measures in terms of Gâteaux
derivatives of p.g.fl.’s, with no means of construct­
ing their density functions. Neither functional
derivatives nor the term “functional derivative”
appear anywhere in [33].

d) Section VI­D: Reverse­engineering is fundamen­
tally different than engineering. It is easy to know
the right things to do—and even easier to claim
that these things are actually obvious—if someone
else has previously shown you how to do it all in
complete detail.

4) Sections X, XI: The derivations of both the single­ and
multisensor iFilters in [50], [45] had major mathematical
errors; and the key concept underlying the iFilter appears
to be phenomenologically questionable. Moreover, the
PHD filter is not a special case of the iFilter; and the
multisensor iFilter appears to have demonstrably poorer
performance than the RFS alternatives.

5) Sections XI­E, XI­F, XI­G: A subsequent recasting [46]
of the multisensor iFilter, as a “multisensor traffic map­
ping filter,” also appears to have had major mathematical
and conceptual errors.

The paper begins with a short refresher on proper scientific
discourse (Section II) and ends with a summary and conclu­
sions (Section VII) in which the following question is posed:
² Do the peer­review standards of the Journal of Advances

in Information Fusion rise to the level expected of any
credible scientific journal?

To achieve a more streamlined exposition, four systematic
supporting analyses have been placed as Appendices: a
comparison of the contents of the Journal of Advances in
Information Fusion paper [48] with earlier FISST publications
(Section VIII); a comparison of FISST with Moyal’s paper
[33] (Section IX); the iFilter (Section X); and the multisensor
iFilter (Section XI).

II. PREAMBLE: ON SCIENTIFIC DISCOURSE

It is necessary to begin with the following reminders:
1) Scientific critique is essential to scientific discourse.

Technical error can seriously undermine a scientific
discipline if it is propagated unnoticed and unremarked.1

1For an instructive cautionary tale, see K. Kelley and C. Moody, “The
booms and busts of molecular electronics,” IEEE Spectrum, Oct. 2015.
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2) A scientifically valid but critical argument is still a
scientifically valid argument. In particular, any factually
true statement is a scientifically valid statement.

3) To accuse the author of a scientific critique of being “un­
professional,” simply because s/he has written a critique,
is itself unprofessional. The proper scientific response to
open scientific critique is more open scientific critique—
not ad hominem attacks.

III. RFS’S VS. “POINT PROCESSES”
In this section, the RFS and “point process” formulations

of multitarget tracking theory are summarized (Section III­A).
The latter is shown to be, for purposes of practical multitarget
tracking, mathematically identical to the RFS formulation
(Section III­B); (2) phenomenologically erroneous in general
(Section III­C); and (3) not theoretically general enough to
address “hard + soft” fusion (Section III­D).

A. The “point process” formulation

As previously noted, in 2008 in [50] and [45], an allegedly
new approach to multitarget tracking was proposed, based on
“finite point processes.” In particular, in [50], Kingman’s
well­known book Poisson Processes [11] was cited as an
authoritative text on point processes.2

However, Kingman employed an RFS formulation of point
process theory.3 That is, let X be a target state space. Then
a point process in X is a random variable whose realizations
are finite sets—that is, unordered lists fx1 xg such that
x1 x 2 X and  ¸ 0, and fx1 x x  xg =
fx1 x xg if x = x .

Despite Kingman’s RFS formulation, in [50] the realizations
of a “point process” were defined in non­RFS terms—that is,
as vectors (x1 x) or, alternatively, ( fx1 xg)
for any  ¸ 0—where (at variance with standard modern
notation) fx1 xg here denotes a finite unordered list
rather than a finite set.4

B. RFS’s vs. “point processes” in practical tracking, 1

The x1 x in (x1 x) or ( fx1 xg)
need not be distinct—there can be many copies of any x.
The number  of copies of x is the multiplicity of x
in ( fx1 xg). If  = 1 for any  = 1  , for
every realization, then the point process is simple. Since an
finite unordered list with distinct elements is the same thing
as a finite set, a simple point process is an RFS.

To be of practical use, the probability density function
(p.d.f.) ( fx1 xg) of a point process must exist—
i.e., be finite­valued. However, a basic result of point process
theory is the following. Let X = £ ( µ R ,  finite).
Then the p.d.f. exists only if the point process is simple—i.e.,
only if it is an RFS ([4], p. 134, Prop. 5.4.IV). That is:

2To wit: “For further background on PPP’s from a multidimensional
perspective, see Kingman [6]”—[50], first paragraph of Section 2.

3RFS theory is a widely accepted formulation of point process theory.
Besides Kingman, see [1], [37], [42].

4 [50], discussion following Eq. (1).

² When a point process is applied to practical multitarget
tracking, it becomes an RFS.

² Consequently, any claimed “point process” alternative
to the FISST RFS formulation differs from it only in
terminology and notation, and so is in this sense an
obscured copy of it.

C. RFS’s vs. “point processes” in practical tracking, 2

In practical multitarget tracking, a target­state must have
the form x = (u), where u is the kinematic state and
 is a unique track­label—for example,  = ‘Bob’. As a
consequence, any realization (x1 x) of a point process
that is not a finite set cannot correctly model the state of a
multitarget system. This is because

(x1  (Bobu)  (Bobu) x)

indicates that there are two or more copies of ‘Bob’ in the
scene—a physical impossibility. That is:

² A non­RFS point process is a phenomenologically invalid
model of a random multitarget state.

² Consequently, RFS theory (and not general point process
theory) is the theoretically correct foundation for practi­
cal multitarget tracking.

² Therefore, any “point process” alternative to the RFS
formulation is, in this sense, an erroneous copy of it.

Thus when it is stated that “Mahler...refers to finite point
processes as random finite sets...” [43, p. 2], it appears that
the reverse is true. In [43] and elsewhere, it is RFS’s that are
being misleadingly referred to as “finite point processes.”

D. RFS’s vs. “point processes” in information fusion

In addition, FISST is central for the provably Bayes­optimal
unification of “hard + soft” information fusion—see Chapter
22 of [13]. Since this unification requires general random
closed sets and not just random finite sets, “point processes”
are not theoretically general enough to address such issues.

IV. FISST IS “DUE TO MOYAL”
The history of “point process” claims about FISST was

sketched in the Introduction. The purpose of this section is
to recount those claims in greater detail.

In 2012, in a tutorial [47, p. 87] at the International Confer­
ence on Information Fusion in Singapore, it was claimed that
a central equation of the FISST p.g.fl./functional derivative
approach—the p.g.fl. version of Bayes’ rule (see Eq. (4)
or Eq. (64))—is a mere “corollary” of a 50­year­old pure­
mathematics paper [33] by Moyal.5

In 2013, this claim was expanded in a paper at the Workshop
on Sensor Data Fusion in Bonn, Germany [43, p. 2]:

² “Mahler’s tracking contributions are [limited to] the use
of the PGFL to derive the Bayes posterior process and the
repeated use of the summary statistic called the intensity
(or, equivalently, the PHD) to approximate the Bayes

5A copy of [47, p. 87] can be provided upon request.
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posterior point process and thereby close the Bayesian
recursion.”

Given that (1) Mahler’s only “tracking contributions” are the
PHD filter and the application of the p.g.fl. Bayes’ rule to it,
but (2) the p.g.fl. Bayes’ rule itself is merely a “corollary” of
Moyal’s paper [33], it follows that the PHD filter is Mahler’s
only significant “tracking contribution.” In particular, the
FISST p.g.fl./multitarget calculus, and the methodologies for
applying it to multitarget tracking, are not.

This thesis was elaborated at length in 2013 in a paper [48]
published in the Journal of Advances in Information Fusion
(JAIF):6 There it was claimed that:

² “The finite­set statistics (FISST) concerns functional dif­
ferentiation of PGFLs, where functional differentiation
has exactly the same meaning as in the calculus of
variations” [48, p. 121]—where in this respect the paper
[33] by Moyal was cited.

² The functional calculus used in FISST is “due to Moyal”
[48, p. 121] (and thus, by implication, not to Mahler).

As previously noted, what followed was a p.g.fl./functional
calculus approach to multitarget tracking, allegedly based on
Moyal’s paper [33] (substituted in place of its mere “corollary,”
FISST); and it was employed to produce allegedly new “point
process” p.g.fl./functional derivative derivations of the PHD
filter and iFilter. Furthermore, the p.g.fl. Bayes’ rule was now
claimed to be a significant new result, original with the same
author who had previously characterized it [47, p. 87] as a
mere “corollary” of Moyal’s paper (see Section V­B).

A sequel [2] presented at the 2013 International Conference
on Information Fusion in Istanbul, Turkey, cited the yet­
to­be­published [48], rather than FISST, as the source of
the p.g.fl./functional derivative approach employed in it. In
particular, its authors explicitly cited (see [2, Eq. (28)]) the
“point process” derivation of the PHD filter in [48, Eqs.
(42­52)] rather than any FISST derivation—despite the fact
that (see Section V­F) the “point process” derivation was
mathematically identical to the FISST derivation described in
[25] as well as a special case of the FISST derivations of the
CPHD filter in [24] and the “general PHD filter” in [3].

V. A CONTENT ANALYSIS OF [48]

The Journal of Advances in Information Fusion paper [48]
was accepted, and is being cited, as original research. The
purpose of this section is to demonstrate that nearly every
equation, concept, discussion, derivation, and methodology in
it appeared earlier (in all cases but one, at least five years
earlier) in the FISST publications [3], [22], [23], [24], [25],
[26], [27]—but without being so attributed. As per the claims
made in [47, p. 87] and [43, p. 2], its only explicit reference
to FISST was in regard to the PHD filter [48, p. 120] (this
being, after all, Mahler’s only actual “tracking contribution”).
[48, Eqs. (1­17,18­22)] were claimed to be “due to Moyal,”7

6Statements of fact: JAIF is the house journal of the International Society
of Information Fusion (ISIF)—the organization of which the author of [48]
was President when it was submitted for publication.

7To wit: “The results presented in this section [Section 3] are due to
Moyal” [48, p. 120]

even though [48, Eqs. (6­10,12­17,22)] cannot be found in
[33]—but did appear in earlier FISST publications.

An equation­by­equation demonstration of these claims can
be found in Section VIII. What follows is an examination of
some of the more obvious instances:

1) “Point process” notation/terminology (Section V­A).
2) “Point process” derivation of the p.g.fl. Bayes’ rule

(Section V­B). This is of special significance.
3) “Point process” ­transforms (Section V­C).
4) “Point process” state estimators (Section V­D).
5) “Branching processes” (Section V­E).
6) “Point process” derivation methodology (Section V­F).
7) Other issues (Section V­G).

A. “Point process” notation and terminology

In [48], well­known FISST terminology was systematically
changed, usually without attribution. A few examples:

1) “random finite set”—changed to “finite point process,”8

even though (as was shown in Sections III­B and III­C),
a “finite point process” is actually an RFS when applied
to practical multitarget tracking.

2) set­theoretic union of RFS’s—changed to “superposi­
tion” of “point processes.”

3) “probability hypothesis density (PHD)”—changed to
“intensity function”9 (even though the terminology
“PHD” is a historical10 and widely accepted usage in
multitarget tracking).

4) “cardinality distribution”—changed to “cardinal number
density”11 in [46, p. 45] and subsequently to “canonical
number distribution” in [48, p. 128].

Also in [48], well­known FISST notation was systematically
changed, without attribution. A few typical examples:

1) The FISST ¥+1j (random target state­set) and §+1
(random measurement­set)—changed to ¥¨.

2) The FISST (!)¡1 ¢ ¥(f1  g)—changed to

¥( 1  ) = 
¥
() 

¥
j(1  j) (1)

3) The FISST multitarget likelihood function (j)
and multitarget posterior distribution j(j()) at
time —changed to

¨j¥( 1  j 1  )
¥j¨( 1  j 1  )

4) The FISST notation +1(j) ¢ +1j() =
+1() for the joint probability distribution of
§+1 and ¥+1j—changed to

¨¥() 
¥
j(1   1  j)

= ¥(1    1  ) (2)

8To wit: “Mahler...refers to finite point processes as random finite sets...”
[43, p. 2]

9To wit: “In tracking applications, [the intensity function] is sometimes
called the probability hypothesis density (PHD)” (emphasis added) [49, p. 5].

10The terminology “probability hypothesis density” was coined by Stein
and Winter, not Mahler—see [22].

11This terminology is inappropriate because, in mathematics, the term
“density” is reserved for continuously infinite spaces.
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5) The FISST p.g.fl.’s +1[ ], +1j+1[], and
+1[j]—changed to ¨¥[ ], ¥j¨[], and
¨j¥[j1  ].

6) The FISST notation
R
¥() for a set integral of

()—changed to
1X
=0

Z

¥( 1  )1 ¢ ¢ ¢  (3)

7) The FISST notation  for the power functional—
changed to

Q
=1 ().

B. “Point process” derivation of p.g.fl. Bayes’ rule

Special attention should be paid to this section. The FISST
p.g.fl. version of Bayes’ rule was derived in Eqs. (G.428­
G.438) on p. 757 of [26] and is [26, Eq. (G.427)]:

j[] =


[0 ]



[0 1]

(4)

where [26, Eqs. (G.428,G.429)]

 [ ] =

Z
 ¢  ¢ (j) ¢ j¡1() (5)

is the joint p.g.fl. of the joint distribution j¡1() =
(j) ¢ j¡1().

An alleged “point process” derivation of Eq. (4) was pre­
sented in [48, Eqs. (23­27)], leading to a “point process”
version of Eq. (4) [48, Eq. (28)]:

¨j¥[j1  ] =
¨¥

1¢¢¢ [0 ]
¨¥

1¢¢¢ [0 1]
(6)

where [48, Eq. (23)]:

¨¥[ ] (7)

=
1X
=0

1X
=0

¨¥()

£
Z


Z


Ã
Y
=1

()

!0@ Y
=1

()

1A
£ ¨¥j(1   1  j)
£1 ¢ ¢ ¢ 1 ¢ ¢ ¢

It was then asserted that:
² Eq. (6) is “valid for general point processes...[whereas

a]...specialized version...for multitarget tracking applica­
tions is derived in [10,p.757], where it is described as the
PGFL ‘form of the multitarget corrector’” [48, p. 124]
and is “specific to the tracking application” [48, p. 2].

Here, “[10,p.757]” refers to p. 757 of the 2007 FISST
textbook [26], where Eq. (4) was derived.

The following should be pointed out:
1) The “point process” derivation [48, Eqs. (23­27)]

was (except for notation and terminology) identical
to the FISST derivation [26, Eqs. (G.428­G.438)] in
“[10,p.757]”—but not so attributed. For example, Eq.
(7) is identical to Eq. (5)—but not so attributed.

2) Given this, it is unclear how Eq. (4) could be asserted
to be a mere “specialized version” of Eq. (6). Eq.
(4) was derived in “[10,p.757]” as a general theorem
of probability, and the allegedly fully general “point
process” derivation in [48, Eqs. (23­27)] is identical to it.
A general theorem of probability does not become less
general because it is subsequently applied to multitarget
tracking.12

3) It is equally unclear how Eq. (6) could be claimed as a
significant original contribution in [48] given that, earlier
in [47, p. 87], this same equation had been characterized
by the same author as a mere “corollary” of Moyal’s
theoretically general paper [33].

C. “Point process” p.g.fl.’s and ­transforms

In [48, p. 123] the following was stated:

² “In the signal processing literature, ¥(¡1) is called
the ­transform of the sequence of probabilities ¥() :
 = 0 1 ”

Notation aside, this is an abbreviated version of the FISST
discussions in [26, pp. 343­344, 372]—but not so attributed.

D. “Point process” multitarget state estimators

In [48, Eq. (32)], a Bayes­optimal multitarget state estimator
was defined to minimize the posterior multitarget Bayes risk:

̂Bayes = argmin
2E()

() (8)

Notation and terminology aside, this discussion is identical to
the FISST discussions in [8, pp. 189­190], [22, p. 1159, Sec.
II­B.7], and [26, p. 63]—but not so attributed. The rigorous
definition of Bayes­optimal multitarget state estimators was
original with FISST—see [13, pp. 110­111].

In particular, in [48, Eq. (32)] the following is claimed:

² “The MAP estimate is undefined for the posterior pdf
¥j¨(j). To see this, it is only necessary to observe
that ¥j¨(1j) and ¥j¨(2j) have different units
when the realizations 1 and 2 have different numbers
of points.”

Notation and terminology aside, this is identical to the
FISST discussions in [8, pp. 189­190], [26, pp. 494­495], [27,
p. 59], and [22, p. 1159, Sec. II­B.7]—but not so attributed.

The failure of the classical state estimators in the multitarget
case was an early FISST insight [21, pp. 299­300]. It was
by no means obvious at the time—consider, for example,
the following doubly erroneous statement by Stone et al. in
1999 [41, pp. 162­163]: “The [multitarget] posterior distri­
bution...represents our knowledge of the number of targets
present and their state...From this...we can compute point
estimates...such as maximum a posteriori probability estimates
or means” (emphasis added).

12Does Eq. (6 ) itself become “specific to the tracking application” because
it is subsquently so applied?
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E. “Branching processes”
In [48, Eqs. (37,38)], Eq. (7) is rewritten in “branching

process form,” which in turn is described as “central to
multitarget tracking applications”:

¨¥[ ] = ¥[ [j¢]] (9)

where  [j] = ¨[j] is the p.g.fl. of the measurement
process for a target with state . Except for notation, Eq. (9)
is identical to the no­clutter special case of the FISST equation
[3, Eq. (68,71)],

+1[ ] = +1[] ¢+1j[ ¢ +1[]] (10)

but is not so attributed.13 Moreover, the equations [48, Eqs.
(34,35)] used to derive it are identical to to the FISST [24,
Eqs. (45,44)]—or, alternatively, to the fifth and sixth equations
from top in the second column of the FISST [22, p. 1173].

F. “Point process” derivation methodology

An allegedly original “point process,” p.g.fl./functional cal­
culus derivation of the measurement­update for the PHD filter
was described in [48, Eqs. (42­52)]. It was then modified
(i.e., PHD filter state­transition model replaced by the inter­
mixing model of Section X­C) to produce a “point process,”
p.g.fl./functional calculus derivation of the iFilter.

However, it is demonstrated in this section that the “point
process” PHD filter derivation was, without being so at­
tributed: (1) identical to the one described in 2004 in [25]; (2)
the Poisson (PHD filter) special case of the 2007 derivation
of the CPHD filter in [24]; and (3) a special case of the 2012
derivation of the “general PHD filter” in [3].

The “point process” derivation in [48, Eqs. (42­52)] begins
with the formula for the p.g.fl. for the measurement process
of a system of targets with states 1   [48, Eq. (42)]:

¨j¥[j1  ] = ªclutter []
Y
=1

¨target [j] (11)

where the “PGFL of target­originated measurements” [48, Eq.
(43)] for a target with state  is:

¨target [j] = 1¡ () + ()
Z


()(j) (12)

Eqs. (11,12) were asserted without proof. However, they are
due to the FISST RFS measurement modeling methodology
(see Section IX­B.3), without being so attributed. Notation
aside, Eq. (11) is identical to the second equation from the
bottom in the second column of p. 1173 in the FISST [22]:

+1[j] = [jx1] ¢ ¢ ¢[jx] ¢£[] (13)

where £[] is the p.g.fl. of the clutter process; and also to
the FISST [3, Eq. (68)]:

+1[j] = +1[] ¢ +1[]  (14)

Likewise, Eq. (12) is identical to the third equation from
bottom in the second column of p. 1173 in the FISST [22]:

[jx] = 1¡ (x) + (x) (x) (15)

13Statement of fact: The author of [48] was aware of the paper [3] and its
contents, since he sat in the first row during its presentation.

where (x) =
R
(z) ¢ +1(zjx)z.

From this point on in [48], the FISST derivation method­
ology (see Section IX­B.6)—and, in particular, the specific
FISST derivation decribed in 2004 in [25, Eqs. (20,21)]—is
employed without attribution. To wit:

In [48, Eq. (46)], Eqs. (11,12) are used to derive a formula
for the joint p.g.fl.:

¨¥[ ] (16)

= exp

2664
¡ R () + R ()()¡ R

¥()+

R

()¥()

¡ R

()()¥()

+
R


R
 ()()(j)()¥()

3775 
Notation aside, this is identical to the seventh equation from
the top in the first column of p. 1174 in the FISST [22]:

 [ ] = exp ([]¡ + [] + []¡ )
(17)

where (x) = 1¡ (x) and where

[] =

Z
(x)(1¡ (x))(x)x (18)

[] =

Z
(x)(x)(x)(x)x (19)

(x) =

Z
(z)+1(zjx)z (20)

Eq. (6)—the “point process” copy of the FISST p.g.fl.
Bayes’ rule, Eq. (4)—is then applied. First, the functional
derivative with respect to the measurements [48, Eq. (48)]:

¨¥

1 ¢ ¢ ¢  [ ] (21)

= ¨¥[ ]
Y
=1

µ
()

+
R

()(j)()¥()

¶


Notation aside, this is identical to to the equation between Eqs.
(20,21) of the FISST [25]—but not so attributed:
+1


[ ] = +1[ ]
Y
z2

¡
(z) ++1j[z]

¢


(22)
It is also the Poisson (PHD filter) special case of the FISST
[24, Eq. (124)]. Likewise, [48, Eq. (50)]

¨¥

1 ¢ ¢ ¢  [0 1] (23)

= ¨¥[0 1]
Y
=1

µ
()

+
R

()(j)()¥()

¶
is the FISST Eq. (22) with  = 0 and  = 1.

The following is then used to derive the PHD filter
measurement­update equation—see Eq. (76)—from Eq. (21)
[48, Eq. (29)]:

¨j¥() =
¨¥

1¢¢¢ [0 1]
¨¥

1¢¢¢ [0 1]
 (24)

Notation aside, Eq. (24) is identical to the FISST [24, Eq.
(52)] or [26, Eq. (16.412)]—but not so attributed:

+1j+1(x) =


+1x
[0 1]


+1

[0 1]
 (25)
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The numerator of Eq. (24) is computed in [48, Eq. (49)]. As
was noted in 2004 in the FISST [25, Eq. (22)], this follows
easily from Eq. (25) and Eq. (33) below—without being so
attributed. It is also the Poisson (PHD filter) special case of
the FISST [24, Eq. (139)]—but not so attributed.

G. Other issues

This section addresses erroneous claims that were made
in [48] regarding (1) the origin of p.g.fl.’s (Section V­G.1);
(2) formulas for the posterior p.g.f. (Section V­G.2); (3) a
“point process” formula for the p.g.f. corresponding to the
PHD filter (Section V­G.3); and (4) a statement about “finite
point process” state models (Section V­G.4).

1) The origin of p.g.fl.’s : In [48, p. 119] it is stated that:

² “PGFLs for finite point processes were introduced in
1962 by Moyal.”

False. In the introduction of his paper, Moyal clearly
stated that “...generating functionals were introduced in this
connection [point process theory] by Kendall [9] and Bartlett
and Kendall [3]...” [33, p. 2]—citing papers published by those
authors in the late 1940s and early 1950s. (See also [33],
footnote 1 on p. 13.) Daley and Vere­Jones attribute the
first use of the p.g.fl. to Bogoliubov in 1946 [5, p. 15].14

In addition, the p.g.fl. was a point process application of
Volterra’s “functional power series” concept, which dates from
the late 1920’s [51, p. 21].

2) The “canonical number distribution” : Following [48,
Eq. (21)] it is stated that:

² “The probability ¥() [“canonical number distrib­
ution”] is ! times the integral of the ordered pdf
¥( 1  ) over all 1  .” That is:

¥() = !

Z
¥( 1  )1 ¢ ¢ ¢ (26)

False. For, ¥() is the marginal distribution of
¥( 1  ) after integrating out 1  :

¥() =

Z
¥( 1  )1 ¢ ¢ ¢  (27)

=
1

!

Z
¥( f1  g)1 ¢ ¢ ¢  (28)

where Eq. (28) follows from [48, Eq. (15)]. Eq. (26) is
an erroneous version of the FISST integral formula for the
cardinality distribution, [24, Eq. (6)] or [26, Eq. (11.115)]:

¥() =
1

!

Z
¥(fx1 xg)x1 ¢ ¢ ¢ x (29)

A related error is the following formula for the “posterior
pdf of the canonical number”15 [48, Eq. (31)]:


¥j¨
 () =

1

!




¥j¨[0] (30)

14Statement of fact: The author of [48] was aware of Daley & Vere­
Jones’ attribution, since I quoted it to him during his tutorial [47] at the 2012
International Conference on Information Fusion.

15It is inappropriate to call ¥j¨ () a “pdf” since, in standard mathe­
matical usage, this terminology is reserved for continuous spaces.

Since ¥j¨[0] is a constant, its ’th derivative is 0 and so

¥j¨
 () = 0 for   0.16 Eq. (30) is an erroneous version

of the FISST [24, Eq. (168)]:

+1j+1() =
1

!

()
+1j+1(0) (31)

3) A “point process” p.g.f. formula : In [48, Eq. (54)], it is
stated that the following formula (for the posterior probability
generating function (p.g.f.)), “appears to be new to the PHD
literature”:


¥j¨
PHD () (32)

= exp

·
(¡ 1)

Z


(1¡ ()¥()
¸

£
Y
=1

() + 
R

(j)()¥()

() +
R
 (j)()¥()



False. In 2004 in [25, Eq. (21)], the posterior p.g.fl. for the
PHD filter was identified as:

+1j+1[] = +1j[(¡1)(1¡)] (33)

¢
Y
z2

(z) ++1j[z]
(z) ++1j[z]



Eq. (32) trivially follows from the substitution  = . Eq.
(32) is also the Poisson (PHD filter) special case of the well­
known FISST formula for the posterior p.g.f. of the CPHD
filter [24, Eq. (61)], [26, Eq. (16.326)].

4) “Finite point process” state models : In [48, p. 130] the
following is stated:
² “Finite point process models...are only approximate mod­

els for multitarget state. Accepting the point process
model for the multitarget state as a given, the PHD filter
and iFilter are good applications...”

False, in multiple respects. First, an RFS ¥ µ X is
an exact model of the random multitarget state. Second, the
statement appears to repeat a common misconception: that the
Poisson (PHD filter) approximation of ¥ is “the” unique RFS
“model” of the random multitarget state. Not only is ¥ the
actual RFS model, there is a progression of successively more
accurate approximations of ¥: the i.i.d.c. approximation (for
CPHD filters), the multi­Bernoulli approximation (for multi­
Bernoulli filters), and the generalized labeled multi­Bernoulli
(GLMB) approximation (for GLMB filters). See [28] for a
tutorial summary or [13] for deep detail.

Third, and as was noted in Section III­C, a non­RFS “finite
point process” is a phenomenologically erroneous model of the
random multitarget state. Thus the very phrase “finite point
process models for multitarget state” is misleading at best and
an oxymoron at the worst.

VI. REVERSE­ENGINEERING VS. ENGINEERING

In Section V (and as documented in equation­by­equation
detail in Section VIII), it was shown that the selection of equa­
tions, concepts, discussions, derivations, and methodologies
chosen in [48] is a subset of FISST’s—while not being so
attributed. In Section IX, it is demonstrated that:

16The same error occurs in [48, Eq. (36)].
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1) Sections IX­C, IX­D: The alleged “point process”
p.g.fl./functional calculus approach in [48] is neither
“due to Moyal” nor “has exactly the same meaning” as
in [33]—because it cannot be found anywhere in [33].

2) Section IX­C: It is, however, identical to the heuristic
version of the p.g.fl./functional derivative approach used
in FISST—but without being so attributed.

The purpose of this section is to demonstrate that the FISST
p.g.fl./functional calculus could not be “due to Moyal” even
if it could be found in [33].

Let us begin with an example. In Section V­G.1 it was
pointed out that Bartlett’s and Kendall’s p.g.fl. was an adapta­
tion of Volterra’s “functional power series” (f.p.s.) [51, p. 21].
Could we—in imitation of the “point process” insinuations of
[47, p. 87], [43, p. 2], [48]—claim that the p.g.fl. is actually
“due to Volterra”—a mere “corollary” of [51]? And that we
could thereby bypass Bartlett and Kendall by purporting a
p.g.fl. theory based only on [51]? Clearly we could not.
Bartlett and Kendall devised a novel application of the f.p.s. to
point process theory—an application Volterra could not have
even known about. Only perfect hindsight would allow us
to retroactively declare the f.p.s. to be the first p.g.fl. This
observation leads us to the following point:
² The contents of the JAIF paper [48] can be portrayed

as obvious implications or applications of Moyal’s paper
[33] only with the benefit of perfect hindsight gained
from pre­existing knowledge of FISST—i.e., only with
recourse to reverse engineering.

Three specific instances of such hindsight will be examined
as case studies: the p.g.fl. (Section VI­A), the functional deriv­
ative (Section VI­B), and the FISST derivation methodologies
(Section VI­C).

Consider the following analogy: the reverse­engineering
of an electronic device. Any particular component of the
device might be easily found in one of any number of
parts catalogues. Unacknowledged reverse­engineering has
occurred if one: (1) copies the parts list, (2) copies the
schematic for assembling the parts into a functional device, (3)
builds the device according that schematic; and (4) portrays
the resulting device as either original or obvious.

In like manner, thousands of equations, concepts, discus­
sions, and methodologies (the “parts”) can be found in various
publications in the point process literature (the “catalogues”).
None of these publications addressed multitarget detection and
tracking prior to the appearance of FISST.

A. The p.g.fl.

Moyal mentioned two point process “generating function­
als”: the p.g.fl. and the characteristic functional (c.fl.).
However, the p.g.fl. and c.fl. are not the only possible
generating functionals. Daley and Vere­Jones [4] describe
many others, including the factorial moment­generating func­
tional (f.m.g.fl.), the factorial cumulant generating functional
(f.c.g.fl.), and the Laplace functional (L.fl.).

The p.g.fl. is not specially privileged—different purposes
require different generating functionals. Snyder and Miller
[40] apply point process theory to imaging applications. They

employ only the c.fl.—the p.g.fl. is never even mentioned. The
well­known textbook [10] by Karr employs only the L.fl.—
and, once again, the p.g.fl. is never mentioned.

Out of all of the generating functionals, in [48] it was the
p.g.fl. that was selected as the proper choice for multitarget
tracking. This insight could not be “due to Moyal” since
Moyal’s paper did not address even Bayes filtering, let alone
multitarget tracking. It is the case, however, that when [48]
was submitted for publication the p.g.fl. had been a prominent
“part” in the FISST “parts list” for over a decade—see [23],
[22], [24], [26], and Section IX­B.4.

B. The functional derivative

Given the p.g.fl., there are many possible functional calculi
from which one can choose: Gâteaux differentials, chain dif­
ferentials, Gâteaux derivatives, Hadamard derivatives, Frechét
derivatives, functional derivatives, etc.

Out of all of the possible calculi, in [48] it was the heuristic
functional derivative—see Section IX­C—that was selected as
the proper choice for multitarget tracking. This insight could
not be “due to Moyal,” since neither the functional derivative
(heuristic or otherwise) nor the term “functional derivative”
can be found in Moyal’s paper—see Sections IX­A.2 and
IX­D. Indeed, Moyal employed Gâteaux derivatives, not
functional derivatives—see Section IX­A.2. It is the case,
however, that when [48] was submitted for publication both
the functional derivative and its heuristic version had been
prominent “parts” in the FISST “parts list” for over a decade—
see [23], [22], [24], [26], and Section IX­B.5.

C. The FISST derivation methodologies

Given the p.g.fl. and functional derivative, one also needs
systematic methodologies for successfully applying them to
multitarget tracking. Out the thousands of point process
concepts and methodologies available in point process “cata­
logues,” it was the concepts of the FISST derivation methodol­
ogy of Section IX­B.6 that were selected in [48] as the proper
choice for multitarget tracking (Section V­F). In addition, in
[48] the end­results of the FISST modeling methodology of
Section IX­B.3 were assumed without attribution.

None of these could be obvious extrapolations of Moyal’s
paper to multitarget tracking, given that it appeared at the
same time as the Kalman filter and nearly 20 years before
Reid’s seminal MHT paper, [36]. It is the case, however,
that when [48] was submitted for publication these concepts
and methodologies had been highly visible components of the
FISST “schematic” for over a decade—see [23], [22], [24],
[26], and Sections IX­B.3 and IX­B.6.

D. Reverse­engineering

As was noted in the Introduction:
² Reverse­engineering is fundamentally different than en­

gineering. It is easy to know the right things to do
(e.g., to know what “parts” to look for in point process
“catalogues”)—and even easier to claim that these things
are actually obvious—if someone else has shown you
how to do it all (i.e., has specified the “parts list” and
the “schematic”) in complete detail.
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VII. CONCLUSIONS

In this paper the following claims were demonstrated:

1) The “point process” alternative to the FISST RFS for­
mulation of multitarget tracking, originally described in
2008 in [50], [45], appears to have been an obscured
and phenomenologically erroneous copy of the RFS
approach (Section III). Moreover, [50], [45] appear
to have had major mathematical and conceptual errors
(Sections X, XI).

2) The 2013 Journal of Advances in Information Fusion
(JAIF) paper [48] was accepted, and is being cited, as
original research. Yet nearly every equation, concept,
discussion, derivation, and methodology in it first ap­
peared in earlier FISST publications—but without being
so attributed (Sections V, VIII).

3) In particular, in [48] it was claimed that a central FISST
formula, the p.g.fl. version of Bayes’ rule, is a mere
special case of an alleged “point process” version of
that same formula—even though the derivation of the
“point process” formula was mathematically identical
to the FISST derivation of the original FISST formula,
without being so attributed (Section V­B).

4) The contents of the JAIF paper [48] can be portrayed as
obvious implications or applications of the paper [33]
by Moyal only with the benefit of perfect hindsight
gained from pre­existing knowledge of the FISST “parts
list” and “schematic”—i.e., only with recourse to reverse
engineering (Section VI).

5) Consequently, the “point process” p.g.fl./functional
derivative approach to multitarget tracking described
in [48] and subsequently in [2] appears to be an ob­
scured, phenomenologically erroneous, and improperly
attributed copy of FISST.

Given these facts, the following question seems reasonable:

² Do the peer­review standards of the Journal of Advances
in Information Fusion rise to the level expected of any
scientifically credible journal?

It seems otherwise. It is unclear how, in any competent
review, the errors identified in Section V­G could have been
overlooked. The one in V­G.4 was obvious; those in Eqs.
(26,30) were glaring; and the one in Section V­G.3 should
have been blinding to anyone who actually examined Moyal’s
paper. It is unclear how other facts could have evaded notice:
that almost the entirety of [48] had previously appeared in
FISST publications; that this went unacknowledged in [48];
and that FISST could not possibly be “due to Moyal.”

One explanation: JAIF does not require reviewers to be
expert in a paper’s subject, but merely “respected scien­
tists/mathematicians.”17 Thus: eminences who know little
about FISST are, regardless, JAIF­qualified to review papers
about FISST. This elevation of uninformed eminence over
actual expertise suggests a deep misunderstanding at JAIF
of what proper scientific peer review is all about. The
substitution of an appearance of scientific rigor in place of
the reality seems almost guaranteed to proliferate scientific

17R. Lynch (former ISIF VP of Communications), email, March 3, 2015.

misconception and error, or worse—and not just in regard to
“finite point processes” vis­a­vis multitarget tracking.

VIII. APPENDIX: CONTENT ANALYSIS OF [48]

Here it is demonstrated that nearly all of the equations,
concepts, discussions, derivations, and methodologies in the
Journal of Advances in Information Fusion paper [48] are,
except for notation and terminology, identical to those in the
earlier FISST publications [8], [23], [27], [22], [25, Sec. 3.4],
[24], [26], and [3].18 The phrase “is identical to” is shorthand
for “is identical to except for notation and terminology.”

1) [48, Eq. (1)]: identical to [22, Eq. (44)] or [24, Eq. (15)]
or [26, Eq. (11.154)].

2) [48, Eq. (2)]: identical to the result in [22, p. 1165,
Prop. 5c] or to the fifth equation from the top in the
first column of [22, p. 1174].

3) [48, Eq. (3)]: identical to [22, Eq. (47)] or [3, Eq. (3)].
4) [48, Eq. (5)]: obvious from [48, Eq. (1)].
5) [48, Eq. (6)] (1st equation): identical to [22, Eq. (50)].
6) [48, Eq. (6)] (2nd equation): identical to 1st equation

in 1st column of p. 1170 of [22] and to [22, Eq. (108)]
with  = x.

7) [48, Eq. (7)]: special case of [26, Eq. (11.251)] with
j j = 1.

8) [48, Eq. (8)]: obvious from [48, Eq. (7)].
9) [48, Eq. (9)]: obvious from [48, Eq. (8)].

10) [48, Eq. (10)]: special case of [26, Eq. (11.251)] with
j j = 2.

11) [48, Eq. (12)](1st equation): identical to [26, Eq.
(11.251)].

12) [48, Eq. (12)] (2nd equation): identical to [26, Eq.
(11.251)].

13) [48, Eq. (13)]: special case of [24, Eq. (22)] or [26, Eq.
(14.278)] with jj = 1.

14) [48, Eq. (14)]: special case of [24, Eq. (22)] or [26, Eq.
(14.278)] with jj = 2.

15) [48, Eq. (15)]: identical to [24, Eq. (22)] or to [26, Eq.
(14.278)].

16) [48, Eq. (16)]: identical to [3, Eqs. (22,15)] or [26, Eqs.
(16.35,16.26)].

17) [48, Eq. (17)]: identical to [22, Eqs. (60,41)] with  =
fx1 xg.

18) [48, Eq. (18)]: properly cited (to Daley & Vere­Jones).
19) [48, Eq. (19)]: properly cited (to Daley & Vere­Jones).
20) [48, Eq. (20)]: identical to [24, Eqs. (10,17)] or [26,

Eqs. (11.158­11.163)].
21) [48, Eq. (21)]: identical to [24, Eqs. (10,17)] or [26,

Eqs. (11.158­11.163)].
22) The following is then stated: “In the signal processing

literature, ¥(¡1) is called the ­transform of the
sequence of probabilities ¥() :  = 0 1 ” This is
identical to [26, pp. 343­344, 372].

23) [48, Eq. (21)]: identical to [24, Eq. (11)] or [26, Eqs.
(11.11)].

18Statements of fact: The papers [22] and [24] are very well­known. The
author of [48] was sitting in the front row when [3] was presented. He once
told me that he had read [27]. In [48], he cites [26, pp. 757­756]. In [2] he
cites [23].
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24) The following is then stated: “The probability ¥()
is ! times the integral of the ordered pdf
¥( 1  ) over all 1  .” This is identical
to [24, Eq. (6)] or [26, Eq. (11.115)].

25) [48, Eq. (22)]: identical to [24, Eq. (12)] or [26, Eq.
(11.164)].

26) [48, Eq. (23)]: identical to 4th equation from top in
the 2nd column of p. 1173 in [22]. Also: [48, Eq.
(24)] is an obvious consequence of this equation.

27) [48, Eq. (24)]: obvious consequence of [48, Eq. (23)].
28) [48, Eq. (25)]: identical to [26, Eq. (G.434)].19

29) [48, Eq. (26)]: identical to [26, Eq. (G.435)]:20

30) [48, Eq. (27)]: identical to [26, Eqs. (G.437,G.438)].
31) [48, Eqs. (25,26,27,28)]: identical to [26, Eq. (G.434,

G.435, G.436, G. 437, G.438)].
32) [48, Eq. (29)]: identical to [24, Eq. (52)] or [26, Eq.

(16.412)].
33) [48, Eq. (30)]: identical to [24, Eq. (46)] or [26, Eq.

(16.404)] with  = .
34) [48, Eq. (31)] (1st equation): an erroneous attempt to

replicate [24, Eq. (168)].
35) [48, Eq. (31)] (2nd equation): obvious consequence of

[48, Eq. (21)].
36) “Posterior pdf of the canonical number” or “canonical

number distribution” [48, p. 128] or “cardinal number
density” [46, p. 45]: systematic substitutions for the
FISST “cardinality distribution.”

37) Section 4.4 of [48]: unattributed copy of discussions
in [27, p. 59], [8, p. 189­190], and [22, p. 1159, Sec.
II­B.7].

38) [48, p. 124]: “The MAP estimate is undefined for the
[multitarget] posterior pdf ¥j¨(j). To see this, it
is only necessary to observe that ¥j¨(1j) and
¥j¨(2j) have different units when the realizations
1 and 2 have different numbers of points” (where
 = ( 1  ) and  = (1  )). An
unattributed copy of the discussions in [27, p. 59], [22,
p. 1159, Sec. II­B.7], and [26, pp. 494­495].

39) [48, p. 124]: “Pseudo­MAP estimates can be defined
using the posterior distribution of the canonical number
and intensity functions, or other summary statistics.”
Unattributed reference to the heuristic multitarget state
estimators for the PHD and CPHD filters as described
in [26, pp. 595, 640].

40) [48, Eqs. (34,35)]: identical to 5th and 6th equations
from top in 2nd column of p. 1173 of [22], or to [24,
Eqs. (45,44)].

41) [48, Eq. (36)]: an erroneous attempt to replicate [22,
Eq. (26)].

42) [48, Eq. (37)]: identical to special case of [3, Eq. (68)]
with +1[] = 1 (no clutter), and where [3, Eq. (65)]
+1[](x) = +1[jx].21

19Note: The “+1( j)” in Eq. (G.434) is a typo—it should be
“+1(j).”

20Note: The “+1( j())” in Eq. (G.435) is a typo—it should be
“+1(j()).”

21Note: In [3, Eq. (65)], “+1[jx]” is a typo. It should be “+1[jx]”.

43) [48, Eq. (38)]: identical to special case of [3, Eq. (71)]
with +1[] = 1 (no clutter).

44) [48, Eq. (39)]: identical to special case of [22, Eq. (75)]
with +1j(xjw) = 0 (targets do not spawn other
targets).

45) [48, Eq. (42)]: identical to 2nd equation from the bottom
in 2nd column of p. 1173 in [22] where £[] is the
p.g.fl. of the clutter process; and also to [3, Eq. (68)].

46) [48, Eq. (43)]: identical to 3rd equation from bottom
in 2nd column of p. 1173 in [22], where (x) =R
(z)+1(zjx)z.

47) Also, [48, Eq. (44)] is an obvious consequence of Points
43 and 44.

48) [48, Eq. (45)]: obvious consequence of Points 38 and
43.

49) [48, Eq. (46)]: identical to 7th equation from the top in
1st column of p. 1174 in [22].

50) What follows is a continuation of the unattributed copy
of the FISST derivation of the PHD filter, using the
FISST methodology described in [25, Sec. 3.4] and
[24, pp. 1535­1538]. Eqs. (47­52) are special cases of
equations that occur in the derivation of the CPHD filter
in [24, pp. 1535­1538]. Some are, except for notation,
identical to those in [25, Sec. 3.4]. [48, Eq. (47)] is
a special case of the equation between Eqs. (20,21) of
[25] with jj = 1. It is also the PHD filter special
case of [24, Eq. (124)] with  = 1. [48, Eq. (48)] is
identical to the equation between Eqs. (20,21) of [25].
It is also the PHD filter special case of [24, Eq. (124)].
[48, Eq. (49)] is the PHD filter special case of [24, Eq.
(139)]. [48, Eq. (50)] is identical to is a special case of
the equation between Eqs. (20,21) of [25] with  = 0
and  = 1. It is also the PHD filter special case of [24,
Eq. (126)]. [48, Eq. (51)] is the PHD filter special case
of [24, Eq. (141)]. [48, Eq. (52)]:is identical to [24, Eq.
(155)] or [22, Eqs. (8­9)] or [26, Eqs. (16.108,16.109)].
[48, Eq. (54)] is identical to [25, Eqs. (21,22)] with
 = . It is also a special case of the CPHD filter
equation [24, Eq. (156)].

51) Section 5.2: A 2nd unattributed copy of the FISST
derivation methodology as described in [25], [24, pp.
1535­1538], [3]—this time applied to the iFilter.

52) [48, Eq. (53)]: identical to [22, Eq. (65)].

IX. APPENDIX: FISST VS. MOYAL

In this section it will be demonstrated that:
1) The alleged “point process” p.g.fl./functional calculus

approach in [48] is neither “due to Moyal” nor “has
exactly the same meaning” as in [33]—because it cannot
be found anywhere in [33].

2) It is, however, identical to the heuristic version of the
p.g.fl./functional derivative approach used in FISST—
but without being so attributed.

The section is organized as follows: a summary of Moyal’s
functional calculus (Section IX­A); a summary of the FISST
calculus and methodologies (Section IX­B); heuristic func­
tional derivatives (Section IX­C); and a discussion of “secular
functions” (Section IX­D).
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A. Summary of Moyal’s calculus

In [33, p. 2­3], Moyal formulated three versions of point
process theory and showed them to be equivalent. For our
purposes we need only consider one of them, which was
discussed in Section III­A. The statistics of a point process P
are specified by its probability measure  () = Pr(P 2 )
where  is a measurable subset of the space X of
all finite unordered lists22 f1  g of arbitrary length
 ¸ 0 [33, Eq. (2.5)]. The measure  induces, and is
completely determined by, symmetric multivariate measures
 ()(1  ) for all measurable 1   µ X (known
in modern parlance as “Janossy measures” [4]).

1) Measure­theoretic p.g.fl.’s : Let (¢) be a bounded,
complex­valued integrable function with norm [33, Eq. (4.1)]

kk = sup
2X
j()j (34)

Then the p.g.fl. of P is ([33, Eq. (4.11)] with  = 0):

[] =
1X
=0

Z
X
(1) ¢ ¢ ¢() ¢  ()(1 ¢ ¢ ¢ ) (35)

where the integrals are taken with respect to the measures
 ()(1  ), and where the summation converges for
those  such that [kk] 1.

2) Gâteaux differentials and derivatives : Moyal employs
the “ ­th order variation” [33, Eq. (4.11)]

1[] =

"


1 ¢ ¢ ¢
"
+

X
=1



##
1===0

(36)
where 1()  () are bounded, complex­valued func­
tions. The first­order variation is, therefore,

[] =

·



 [+ ]

¸
=0

(37)

= lim
!0
 [+ ]¡ []


 (38)

In the modern mathematical literature, Eq. (38) is known as a
Gâteaux differential, and is not specific to functionals.

If [] is linear and continuous in , then []
is known as the Gâteaux derivative of [] at  and is
often denoted as ()[] [7].

Now suppose that the p.g.fl. [] of P is known. Then
the multivariate measures of P can be recovered via iterated
Gâteaux differentials [33, Eq. (4.14)]:

 ()(1  ) =
1

!
¢ 11 1[0] (39)

where 1() denotes the indicator function of  µ X.
(Since the left side is presumed to be a measure, Moyal
implicitly assumes that the right side is an iterated Gâteaux
derivative.) The multivariate factorial moment measures of P
can similarly be recovered as [33, Eq. (4.16)]:

()(1  ) = 

11 1

[1] (40)

22Moyal used the notation f1  g to denote a finite unordered list,
not (as is now standard practice) a finite set.

In particular, the first factorial moment measure—i.e., the
measure corresponding to the PHD if the PHD exists—is:

(1)() = 1[1] (41)

Moyal does not provide or suggest any methodology for
deriving concrete formulas even for his multivariate measures
in Eqs. (39­41)—let alone for their corresponding density
functions (as would be required for application). A less
abstract and more practically useful approach is required.
FISST was specifically designed to be such an approach.

B. Summary of FISST

This section is organized as follows: belief measures (Sec­
tion IX­B.1); set derivatives (Section IX­B.2); RFS motion and
measurement modeling(Section IX­B.3); the FISST approach
to p.g.fl.’s (Section IX­B.4); functional derivatives (Section IX­
B.5); the FISST derivation methodology (Section IX­B.6); and
heuristic functional derivatives (Section IX­C).

1) Belief measures : As was noted in Sections III­B and III­
C, when applied to practical multitarget tracking: (1) a “point
process” is the same thing as an RFS and (2) a non­RFS “point
process” is phenomenologically erroneous. Moyal’s measure­
theoretic framework is therefore an unnecessary obfuscation
and so FISST employs RFS’s from the very outset. If ¥
is an RFS then the Janossy measures  ()(1  ) have
Janossy densities

(1  ) =
1

!
¢ ¥(f1  g) (42)

where ¥() is the FISST notation for a multitarget
probability density function.

Moreover, FISST specifically avoids more complicated for­
mulations of RFS theory by adopting the stochastic geometry
formulation [42]. In this case the statistics of ¥ are
characterized by its belief measure [26, pp. 711­716]:

¥() = Pr(¥ µ ) (43)

which is not only far more physically intuitive than Moyal’s
measures f ()(1  )g1=0, but also allows direct set­
theoretic access to the RFS ¥.

2) Set derivatives : Moreover, the Janossy densities can be
constructed from ¥(). Define the first­order set derivative
of ¥() at the point  2 X to be [8, pp. 144­151], [26,
pp. 380­381], [28, Eqs. (54,55)]

¥
x
() = lim

j0xj&0
lim
jxj&0

¥(0x [x)¡ ¥(0x)
jxj (44)

where x and 0x are drawn from special families [39, Ch.
10] of small neighborhoods of  with 0x

def.=  ¡ 0x. If
 = fx1 xg with jj = , the general set derivative
is [8, pp. 144­151], [26, pp. 380­381]

¥

() =

½
¥() if  = ;


x1¢¢¢x () if otherwise
 (45)

Given this, ¥() can be computed as a set derivative:

¥() =
¥

(;) (46)
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Similarly, the density functions of Moyal’s measures
()(1  ) and (1)() can be computed directly
as set derivatives of belief measures:

¥() =
¥

(X), ¥(x) =

¥
x
(X) (47)

3) RFS modeling methodology : Belief measures and set
derivatives form the basis of a rigorous, systematic methodol­
ogy for multitarget motion and measurement modeling.

The simplest RFS motion model has the form

¥j¡1 = j¡1(x01) [  [ j¡1(x00) [j¡1 (48)

where 0 = fx01x00g with j0j = 0 is the multitarget
state­set at time ¡1; where j¡1(x0) is the RFS model
of the survival or disappearance of a target with state x0 at
time ¡1; j¡1 is the RFS model for newly­appearing
targets; and ¥j¡1 is the predicted multitarget state­set.

Likewise, the simplest RFS measurement model is

§j = ¨(x1) [  [¨(x) [  (49)

where  = fx1xg with jj =  is the multi­
target state­set at time ; where ¨(x) is the random
measurement­set generated by a target with state x at time
; j¡1 is the RFS modeling the clutter process at time
; and §j is the random measurement­set at time .

The statistics of ¥j¡1 and §j are completely
characterized by their belief measures

j¡1() = Pr(¥j¡1 µ ) (50)

j() = Pr(§j µ ) (51)

Once concrete formulas have been derived for j¡1()
and j(), formulas for the multitarget Markov density
and multitarget likelihood function can be derived using set
derivatives:

j¡1(j0) =
j¡1


(;j 0) =
·
j¡1


(j 0)
¸
=;
(52)

j(j) =
j

(;j) =

·
j

(j)

¸
=;
 (53)

4) RFS formula for p.g.fl.’s : In 2001 in [23], the belief
measure and set derivative were generalized to, respectively,
the probability generating functional (p.g.fl.) and the func­
tional derivative. In FISST the p.g.fl. is defined as:

¥[] =

Z
 ¢ ¥


(;) (54)

where the set integral is defined by:23Z
() =

1X
=0

1

!

Z
(fx1 xg)x1 ¢ ¢ ¢ x (55)

and where the power functional  is defined by  = 1
if  = ; and  =

Q
x2 (x) if otherwise. Following

modern practice [4], in FISST it is assumed that 0 · (x) · 1
identically—in which case 0 · ¥[] · 1.

23The factor (!)¡1 is important, because it results in greatly simplified
multitarget calculus formulas. It is also often assumed in physics—see [9,
pp. 234, 266].

5) Rigorous functional derivatives : The functional deriv­
ative of a functional  [] was introduced by Volterra
[51, pp. 22­23, 75] and is commonly denoted [7, Eqs.
(A.15,A.23,A.24)]:24



(x)
[] abbr.=



x
[] (56)

where the right side is the abbreviation used in FISST. Note
the following:

² The functional derivative is not the Gâteaux differential
 [] used by Moyal, Eq. (35).25

² Neither the functional derivative nor the terminology
“functional derivative” occur anywhere in Moyal’s paper.

Rather, if  [] is linear and continuous in (¢) then
the following gives the relationship between the functional
derivative and the Gâteaux derivative [51, p. 24, Eq. (3)]:Z

(x) ¢ 
x
[]x =




[] (57)

where the right side is the FISST notation26 for a Gâteaux
derivative ( )[].

The p.g.fl. is a generalized belief measure and the functional
derivative is a generalized set derivative since [26, p. 373]

¥() = ¥[1] (58)
¥

() =

¥

[1] (59)

From Eqs. (46,47), it follows that the density functions of
Moyal’s measures  ()(1  ), ()(1  ), and
(1)() can be computed as functional derivatives—which,
rigorously speaking, are set derivatives:27

¥

[0] =

¥

(;) = ¥() (60)

¥

[1] =

¥

(X) =¥() (61)

¥
x
[1] =

¥
x
(X) = ¥(x) (62)

6) FISST derivation methodology : This methodology is
based on the p.g.fl. versions of the multitarget prediction
integral and the multitarget Bayes’ rule [26]:

j¡1[] =
Z
j¡1[j0] ¢ ¡1j¡1() (63)

j[] =


[0 ]



[0 1]

(64)

24This meaning of the term “functional derivative”—i.e., as Volterra’s
derivative—is the established usage in the mathematical literature. Besides
[7, p. 35], see the entry for “functional derivative” in both Wikipedia and the
online Encyclopedia of Mathematics.

25See [7, Eqs. (A.15,A.23,A.24)] or the entry for “Gâteaux differential” in
Wikipedia or the online Encyclopedia of Mathematics.

26This notation, which is deliberately imitative of undergraduate calculus,
is unique to FISST—but was not so attributed in [48].

27The theoretically rigorous functional derivative (¥x)[] for a
general (¢) is also a set derivative (see [28, Eq. (78)]), but the specifics
are unnecessary for current purposes.
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where

[ ] =

Z
 ¢[j] ¢ j¡1() (65)

j¡1[j0] =
Z
 ¢ j¡1(j0) (66)

[j] =
Z
 ¢ (j) (67)

Given this, approximate RFS filters, such as PHD, CPHD, or
multi­Bernoulli filters, can be derived from the formulas for
j¡1[] and j[].

C. Heuristic Functional Derivatives

Suppose, as is commonly done in physics [38, pp. 173­174],
that we substitute  = x. Then from Eq. (57) we could
compute the functional derivative directly:



x
[] = lim

&0
¥[+ x]¡¥[]


=


x
[] (68)

However, this substitution is mathematically erroneous in both
Moyal’s and the FISST frameworks. This is because (¢) is
not only unbounded, it is not even a function since () =
1. Nevertheless, in FISST it is employed as a purely heuristic
adjunct to the rigorous definition, Eq. (44).

In any case, Eq. (68) is not “due to Moyal” or “has exactly
the same meaning as in” Moyal’s [33] because it cannot
be found anywhere in [33]. This, in turn, is because it is
mathematically erroneous in Moyal’s framework.

D. Functional derivatives and “secular functions”

In the paragraph following [48, Eq. (6)], this difficulty was
addressed as follows. There it was stated that:

² “Alternatively, specifying the variation to be a function
in a test sequence for the delta function and taking the
limit gives the same result.”

That is, if x ! x (in some sense that is not explained)
then the Gâteaux derivative in the direction of x is:

¥
x
[] def.= lim

!1
¥
x

[] (69)

Eq. (69) cannot be “due to Moyal” because it cannot be found
anywhere in Moyal’s paper. This, in turn, is due to the fact
that it is erroneous within the mathematical theory described
therein. If  ! x then, for every number   0, there
must exist an integer   0 such that k ¡ xk   for
all  ¸  , where k¢k is Moyal’s norm, Eq. (34). However,
k¡xk is mathematically undefined—and would be infinite
(and therefore always larger than ) even if defined.

However, the phrase “a test sequence for the delta function”
appears to be an unstated reference to Lighthill’s theory of
“generalized functions” [12]. For, in a subsequent paper [49],
Eq. (69) was recast in terms of the “secular function” defined

as follows [49, Eq. (6)]:28

(;x) = lim
!1¥[+  ¢ x] (70)

where (without being so identified in [49]) x are “good
functions” [12, p. 16] such that

lim
!1

Z
x(y) ¢ (y)y = (x) (71)

for any “good function” . Specifically in [49] the functional
derivative is recast as:


(1)
(0;x) =

·



lim
!1¥[+  ¢x]

¸
=0

(72)

= lim
!1

·



¥[+  ¢ x]

¸
=0

(73)

= lim
!1

¥
x

=
¥
x
[] (74)

where the first part of Eq. (74) results from Eq. (37).
However this may be, it is irrelevant. Eq. (69) still cannot

be “due to Moyal” because Moyal neither cites [12] nor makes
any reference to generalized function theory. Indeed, he may
have been unaware of [12] at the time, since it had appeared
only four years earlier.

X. APPENDIX: THE “IFILTER”
In this section, the iFilter is described (Section XI), along

with major mathematical (Section X­B) and phenomenological
(Section X­C) issues in its derivation, as well as various claims
made for it (Section X­D).

A. iFilter: Concept

Introduced in 2008 in [50], the “multitarget intensity
filter”—subsequently renamed the “iFilter”—was promoted as
a signal achievement of the “elementary,” “point process”
approach to multitarget tracking. A two­step process was
adopted in [50]. First, an alleged “elementary” re­derivation
of the PHD filter was devised. Then, after replacing the PHD
filter’s clutter and target­appearance models with different
ones, this derivation was refashioned into a derivation of the
iFilter. Consequently, any error in the derivation of the PHD
filter propagates into an error in the derivation of the iFilter.

We begin with summaries of the PHD filter (Section X­A.2)
and the iFilter (Section X­A.1).

1) PHD filter models and equations : At any prediction
time ¡1, the target­appearance process is assumed to be
Poisson with known PHD j¡1


j¡1(x), where j¡1

is the expected number of appearing targets and j¡1(x) is
the spatial distribution of those appearances. The probability
that a target with state x0 at time ¡1 will persist into time
 is (x0)

abbr.= j¡1(x0). If it persists, the probability

28The claimed purpose of “secular functions” is to transform functional
derivatives into ordinary Newtonian derivatives, so that conventional computer
algebra algorithms can be used to construct explicit formulas for functional
derivatives. However, an arsenal of FISST calculus identities (e.g., the general
product and chain rules) permit the derivation of extremely complicated
functional derivatives (see Chapters 3, 4 of [13]). It was not explained in
[49] why conventional computer algebra—even if up to the task, which is
questionable—would be more advantageous than the FISST calculus.



14

(density) that it will transition to state x is j¡1(xjx0).
The PHD filter time­update equation is:

j¡1(x) = j¡1

j¡1(x) (75)

+

Z
(x

0) ¢ j¡1(xjx0) ¢¡1j¡1(x0)x0

Likewise, at any time  with newly­collected
measurement­set , the clutter process is assumed to be
Poisson with known PHD (intensity function) (z) where
 is the expected number of clutter measurements (“clutter
rate”) and (z) is the clutter spatial distribution. The
probability that a target with state x generates a measurement
is (x)

abbr.= (x), and the probability (density) that
this measurement will be z is (zjx). The PHD filter
measurement­update is:

j(x)
j¡1(x)

= (x) (76)

= 1¡ (x) +
X
z2

(x) ¢ (zjx)
(z) + (z)

(77)

where (z) =
R
(x) ¢ (zjx) ¢j¡1(x)x and where

(x) is called the “pseudolikelihood.”
2) iFilter models and equations : The following material

first appeared in 2012 in [16]. In [50] the target state space
X is replaced by X+= X ] X where X is a space
of “clutter targets” from which all clutter measurements are
generated. The probability that a “clutter target” will generate
a clutter measurement is (), and the probability (density)
that it will generate z is (z).

The appearance of a new target with state x at time 
is modeled as the transition of some clutter target to x, as
described by

(xj) = (1¡ (j)) ¢ +1j(x) (78)

where (j) is the probability that a clutter target will
transition to another clutter target. Analogously, clutter at time
 is modeled as the transition of a target at time ¡1 with
state x0 to to some clutter target, with probability (jx0).
Thus an actual target with state x0 at time ¡1 transitions
to an actual target with state x at time  according to

(xjx0) = (1¡ (jx0)) ¢ +1j(xjx0) (79)

The iFilter propagates not only the PHD j(x) but also,
implicitly, the expected number _j of clutter targets. It was
claimed in [50, p. 1] that:
² “[T]he target birth and measurement clutter processes that

are assumed specified a priori in [Mahler’s PHD papers]
are estimated here.”

This is untrue. In actuality, (z) and j¡1(x) are
assumed known a priori (in fact, j¡1(x) is implicitly
assumed to be constant29) and thus only  and j¡1
are estimated. However, even this turns out to be untrue in
general, see Section X­D.

The iFilter time­update equations are

29See [50], sentence following Eq. (41)).

j¡1(x) = ¡1(xj) ¢ _¡1j¡1 (80)

+

Z
(xjx0) ¢¡1j¡1(x0)x0

_j¡1 = ¡1(j) ¢ _¡1j¡1 (81)

+

Z
¡1(jx0) ¢¡1j¡1(x0)x0

where ̂j¡1 = (1 ¡ (j)) ¢ _¡1j¡1 is a claimed
estimate of j¡1. The iFilter data­update equations are

j(x)
j¡1(x)

= 1¡ (x) +
X
z2

(x) ¢ (zjx)
̂(z) + (z)

(82)

_j
_j¡1

= 1¡ () +
X
z2

() ¢ (z)
̂(z) + (z)

(83)

where ̂ = () ¢ _j¡1 is a claimed estimate of .

B. iFilter: Mathematical issues

In [50, Eq. (27)], the authors introduce   0 such that

j () =




X
=1

j( j) () j¡1()
 arg j¡1 ()

 (84)

To reverse­engineer Eq. (76), they must show that  = ,
where  is the current number of measurements. Without
proof, they claimed that (1)  is a random variable whose
probability distribution is () / ¡ [50, Eq. (28)];
and (2)  can be determined by applying the maximum a
posteriori (MAP) estimator to ¡, resulting in  = .
This argument contains three major errors of basic statistical
reasoning, first pointed out in 2010 [18]:

1)  is not a random variable. It is actually equal to ,
which—since it is a fixed realization of a random integer
—is a constant. Thus  is also a constant.

2) The probability distribution of  is, therefore, not
() / ¡ but rather a Dirac delta () = ()
(which, of course, cannot be legitimately assumed since
this would require knowing a priori that  = —the
very thing that is to be proved).

3) Why a MAP estimator rather than, say, the expected
value estimator—in which case we get  6= ?

Thus, unfortunately, the “elementary” derivation of the PHD
filter is erroneous. Consequently, so is the “elementary”
derivation of the iFilter.30

C. iFilter: Phenomenological issues

There is a more fundamental difficulty: the iFilter appears
to be questionable from a phenomenological point of view
[16]. The key concept underlying it is the notion of modeling
clutter (and target disappearances) as transitions of actual
targets to “clutter targets,” and modeling target appearances
as transitions of “clutter targets” to actual targets.

30The above major errors are not the only ones in [50], just the ones that
are most easily explained and understood.
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However, an effective multitarget tracker must be able to
accurately distinguish targets from background clutter. It is
therefore crucial to efficiently exploit differences between (1)
clutter versus target measurement­generation statistics, and (2)
clutter versus target motion (i.e., state­transition statistics).

But when targets are allowed to become clutter and/or vice­
versa, clutter statistics and target statistics become intertwined.
This will make it more difficult to distinguish targets from
clutter—e.g., when a jet fighter can transition to a radar false
alarm or vice­versa. Such difficulties will be even more
pronounced when the statistics of the targets depend on target
identity—e.g., when a helicopter can transition to a windmill
or a tank to a shed, or vice­versa.

In a correct model, actual targets must transition only to
actual targets and “clutter targets” only to “clutter targets.”
This issue is discussed at length in pp. 558­560 of [13].

D. iFilter: Other issues

The following claims were made in [50]:
1) Claim 1: The iFilter can always estimate the target­

appearance rate ̂j¡1 : False, as is shown by the following
counterexample [16]. Suppose that there is no clutter, in which
case there can be no “clutter targets.” In this case _¡1j¡1—
the expected number of “clutter targets”—must be zero, so that
̂j¡1 = 0 regardless of what j¡1 might be.

2) Claim 2: The iFilter can always estimate the clutter
rate  : False, as is shown by the following counterexample.
Assume that (x) = () = 1 and that the probability
of target disappearance is constant, (jx) = 1¡  . LetR
(xj)x = 1¡ _ be the total probability that a single

target will appear. Finally, suppose that these happen to be
“conjugate” in the sense that  + _ = 1 Then it is easily
shown [16] that _+1j = _ ¢  and therefore that the
estimated clutter rate is ̂ = _j¡1 = _ ¢ for any .
That is, ̂ is a always a fixed fraction of the current number
of measurements, regardless of what  might actually be.

3) Claim 3: The PHD filter is a special case of the
iFilter31 : False, because the PHD filter time­update is not a
special case of the iFilter time­update. As a counterexample,
once again assume that there is no clutter and therefore
no clutter generators. Since _¡1j¡1 = 0, the iFilter
target­appearance term in Eq. (80) vanishes—whereas the
corresponding PHD filter term in Eq. (75) does not.

Furthermore, it is the reverse claim that is true: the iFilter
is actually a PHD filter with a questionable state­transition
model. Specifically, and has been shown in [16] or Section
631­636 and p. 644 of [13], the iFilter can—using only
straightforward algebra—be directly derived as an ordinary
PHD filter under the following assumptions: (i) the state space
is X ] X; and (ii) the state­transition model on X ] X is
the questionable iFilter intermixing model.

Moreover, and as is shown in [30], [32], [6] and pp. 560­593
of [13], straightforward algebra can be used to derive a “­
CPHD filter” that can estimate not only  but also (z); as
well as a “­CPHD filter” special case that estimates only .

31To wit: “Replacing the estimated clutter intensity with the a priori clutter
intensity gives the PHD filter...” ([50], p. 6, 1st paragraph).

FISST p.g.fl. methods can additionally be applied to estimate
the probability distribution () on the number  of
clutter measurements at time  (see [31] or p. 592 of [13]).
This approach can be further extended to estimate j¡1
and j¡1(x) in addition to , (z), and () [17].

Finally, suppose that there are few target appearances or
disappearances. Then it can be shown that the questionable
intermixing state­transition model will be approximately dis­
abled and that, as a consequence, the iFilter will behave like
the ­PHD filter special case of the ­CPHD filter (see [16]).

4) Claim 4: “Intensity filters” can be understood in
essentially elementary terms: False—even if the derivations
of the PHD filter and “intensity filter” in [50] were not
erroneous. Reverse­engineering of the PHD, CPHD, and other
RFS filters has become something of a subspeciality—see pp.
200­201 of [13]. However, the following questions must be
posed whenever some claim of engineering superiority vis­a­
vis FISST is asserted or implied in any such exercise: Would
its authors have been able to independently come up with the
correct answer if they had not been able to (so to speak) look
it up in the back of the FISST textbook? What does their
method accomplish other than re­inventing the wheel?

In the specific case of the “elementary,” “point process”
approach: it has apparently not been possible to reverse­
engineer the CPHD filter using only “single target Bayesian
filtering and with PPP’s at an elementary level”—or to devise
a CPHD filter generalization of the iFilter.

XI. APPENDIX: THE MULTISENSOR IFILTER

This section begins with a background summary of mul­
tisensor PHD and CPHD filters (Section XI­A). Then the
multisensor version of the iFilter is described (Section XI­B),
along with major mathematical issues in its derivation (Section
XI) and performance issues (Section XI­D). The “multisensor
traffic mapping filter” is discussed in Section XI­E), along with
major mathematical (Section XI­F) and conceptual (Section
XI­G) issues in its derivation.

A. Multisensor PHD and CPHD filters

The PHD and CPHD filters, like the iFilter, presume the
existence of a single sensor. Shortly after its introduction, the
PHD filter was heuristically extended by several authors to
the multisensor case using the “iterated corrector” approach—
i.e., by sequentially applying the PHD filter update equation,
Eq. (76), once for each sensor. However, the output of this
filter depends on sensor order. While this has little effect
on performance when sensor probabilities of detection are
approximately equal, performance can be significantly affected
otherwise (see [34] or pp. 288­289 of [13]).

An exact multisensor PHD filter was introduced in 2009 (see
[19] and pp. 283­287 of [13]), but is computationally chal­
lenging. Three “parallel combination” (PCAM) PHD/CPHD
filters, which are computationally tractable and independent
of sensor order, were introduced in 2010 (see [14] and pp.
289­300 of [13]). The simplest and least accurate of these is
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a “product pseudolikelihood” PHD filter. That is, the pseudo­
likelihoods of Eq. (77) are constructed for each sensor and
then multiplied together to create a joint pseudolikelihood.32

B. Multisensor iFilter: Concept

At the same time that the iFilter was introduced in 2008,
a “Bayesian” attempt was made to extend both it and the
PHD filter to the multisensor case [45]. Specifically, the
predicted PHD j¡1(x) is updated using each sensor,
and the resulting PHDs are averaged. This is equivalent to
an “averaged­pseudolikelihood” approach. That is, for the
PHD filter, the pseudolikelihoods of Eq. (77) are constructed
for each sensor and then averaged (rather than multiplied) to
create a joint pseudolikelihood:

j(x)
j¡1(x)

=
+


1


¤



(x) =
1
¤


¤
X
=1



 

(x) (85)

where ¤
 is the number of sensors; where



 denotes
the measurement­set collected at time  by the ’th sensor;
and where





(x) is the PHD filter pseudolikelihood of Eq.

(76). An analogous equation holds for the iFilter.

C. Multisensor iFilter: Mathematical issues

As was first pointed out in 2009 [20], the averaged­
pseudolikelihood approach appears to be conceptually ques­
tionable and, from a Bayesian point of view, mathematically
erroneous. Its performance is also demonstrably worse than
RFS multisensor PHD/CPHD filters. The discussion first
appeared in [28] and is excerpted from pp. 300­309 of [13].

Consider the following special case: a single target is
present and the sensors have no clutter and no missed detec­
tions. The predicted and updated PHDs are then probability
density functions and Eq. (85) becomes

+

j(x)
j¡1(x)

=
1
¤


¤
X
=1




z
(x)


(


z)

(86)

where, given obvious notation,


(


z) =

Z

(x) ¢




z
(x) ¢j¡1(x)x (87)

From this it is immediately follows that

+

j(x) =
1
¤


¤
X
=1

j(xjz) (88)

where j(xjz) is the posterior distribution updated using
the measurement


z from the ’th sensor.

The following difficulties are apparent:

1)
+

j(x) is quite different than the Bayes­optimal
solution—i.e., the multisensor, single­target version of

32This multisensor PHD filter was originally proposed in 2003 as a heuristic
[22, Eq. (106)].

Bayes’ rule:

£
j(x) =

1

1
z
(x) ¢ ¢ ¢

¤


¤

z
(x) ¢ j¡1(x)R 1

1
z
(y) ¢ ¢ ¢

¤


¤

z
(y) ¢ j¡1(y)y

 (89)

2) Since the track distribution
+

j(x) is a mixture distri­
bution, it will cause localization accuracy to decrease
(as compared to the single­sensor track distributions
j(xjz)); and localization accuracy will decrease fur­
ther with the number of sensors.

The second point is most easily demonstrated using a
simple example: two bearing­only sensors in the plane, with
respective likelihood functions

1

( ) = 2( ¡ ) (90)
2

( ) = 2( ¡ ) (91)

where 2() denotes a one­dimensional Gaussian distribu­
tion with variance 2. That is, the sensors are oriented so as
to triangulate the position of a target located at ( ). For
conceptual clarity, let the prior distribution be

j¡1( ) = 20(¡ 0) ¢20( ¡ 0) (92)

where 20 is arbitrarily large, 20 ! 1, in which case
j¡1( ) is uniform. Let 1 2 be the measurements
collected by the sensors. Then Bayes’ rule yields

£
j( ) »= 2(¡ 1) ¢2( ¡ 2) (93)

and results in a triangulated localization at (1 2) with
variance »= 22. But with the averaged likelihood,

+

j( ) »=
1

2

·
2(¡ 1) ¢20( ¡ 0)
+20(¡ 0) ¢2( ¡ 2)

¸
 (94)

This distribution has four “tails” whose lengths increase with
the size of its variance, which is »= 20 !1. See pp. 302­307
of [13] for illustrations and details.

Now apply additional bearing­only sensors, all with ori­
entations different from the first two and each other. The
variance increases with the number of sensors—whereas it
greatly decreases if the multisensor Bayes’ rule is used instead.

D. Multisensor iFilter: Performance issues

These analytical assessments have been verified
empirically—see [35] and pp. 306­309 of [13]. Specifically,
Nagappa and Clark conducted simulations comparing
multisensor PHD and CPHD filters such as those in Section
XI­A.

In a first set of three­sensor simulations, two sensors
had  = 095 and the third  = 09. In de­
creasing order of performance: PCAM­CPHD, PCAM­PHD,
iterated­corrector CPHD, iterated­corrector PHD, averaged­
pseudolikelihood PHD. The performance of the averaged­
pseudolikelihood PHD filter was particularly poor, with the
iterated­corrector PHD filter having intermediate performance.
Similar results were observed when the probability of detec­
tion of the third sensor was decreased to  = 085 and
again to  = 07.
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E. The “multisensor traffic mapping filter”
In [45], the “multisensor multitarget intensity filter” was ex­

plicitly identified as a multitarget tracking filter. As previously
noted, the theoretically problematic nature of this multisensor
tracking filter was pointed out in 2009 [20] and its poor
tracking performance in 2011 [35].

A year later, the following revelation appeared: the “mul­
tisensor multitarget intensity filter” in [45] had not only been
“misidentified there as a multisensor target filter” (emphasis
added), it was actually something quite different: a “multi­
sensor traffic mapping filter” [45, p. 1]. Which is to say: it
appears that the “elementary,” “point process” derivation of the
“multisensor multitarget intensity filter”—i.e., as a multitarget
tracking filter—had to have been erroneous at a fundamental
conceptual level.

The purpose of the “multisensor traffic mapping filter” is as
follows: “estimate, or map, the mean rate at which different
regions of a state space generate target detection opportunities
in a field of distributed sensors” [45, p. 1]. It was further
claimed to be “practical for applications with large numbers
of sensors because [its] computational complexity is linear in
the numbers of sensors and measurements” [45, p. 1].

The “multisensor traffic mapping filter” can be summarized
as follows. Given time , let ¤

 be the number of sensors
(abbreviated hereafter as ¤

), which are assumed independent.
Then, for  =   ¤, let: (1) 

(x) = “probability that
target [with state] x is detected by sensor ” [45, p. 46];
(2) 

(

z) = clutter intensity function for sensor ; and

(3)


(

zjx) = measurement density for sensor . Finally,

let


(x) ¸ 0 be such that
P¤

=1



(x) = 1 identically

[45, Eq. (17)]. Here,


(x) is a “field­level probability”
that “represents the fraction of the total number of detection
opportunities [at x] for sensor ,” and is “very different” than
the “sensor­level probability” 

(x) [45, p. 46].
The “multisensor traffic mapping filter” propagates a PHD
j(x), which is interpreted as the expected number of “de­
tection opportunities” in an infinitesimal region surrounding x
[45, Eq. (17)]. Suppose that the sensors collect measurement­

sets
1

 
¤


 with j j = 
. Then the updated intensity

function is given by [45, Eq. (26)]:
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
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
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(95)

where 
(


z) =

R 
(x) ¢



(

zjx)¢ j¡1(x)x. Eq. (95)

reduces to Eq. (85) when


(x) =
¤
¡1 for all  = 1  ¤.

F. “Traffic mapping filter”: Mathematical issues

Eq. (95) is erroneous, unfortunately. As a consequence,
the claimed computational linearity of the “multisensor traffic
mapping filter” is spurious since Eq. (95) is not a theoretically
valid measurement­update equation.

The proof of Eq. (95) was based on the following p.g.fl.
identity (asserted without proof) [46, Eq. (20)]:

[
1
 

¤

 ] =

1

[
1
 ] ¢ ¢ ¢

¤


[
¤

 ] (96)

where, for any ,

[
1
 


 ] =

Z
1

1
 ¢ ¢ ¢ 


 ¢  (97)
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
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 ¢ ¢ ¢ 



is the p.g.fl. of the joint process (
1

¨ 


¨§) [45, p. 46]

(where


 is a realization of the random measurement­set


¨
and  a realization of the random state­set §). In particular,

for  = 1,


[

 ] is assumed to be “the same as that of a

PHD filter” [45, Eq. (19)], using the sensor . That is,

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where




(x) =

R

(

z) ¢ (zjx)z. Also, given sensor

independence,
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
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(
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

j) (99)

However, even given these “traffic process” assumptions, Eq.
(96)—and thus Eq. (95)—is true only if ¤

 = 1 (i.e., only for
a single sensor).

A detailed counterexample under such assumptions can
be found in Appendix K.3 of [13]. However, a simpler
counterexample is more informative. Assume that Eq. (96)
is true. If so, it is true for the following special case: a
single target, and two sensors with no missed detections or
false alarms. Under these assumptions, Eq. (96) reduces toZ

1
(
1
z) ¢ 2(2z) ¢ (x) ¢ (1zjx) ¢ (2zjx) (100)

¢j¡1(x)1z2zx
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2
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2
z) ¢ (x) ¢ (2zjx) ¢ j¡1(x)2zx

¶


If this is true, it must be true for the following special case:
(

1
zjx) = (1z) and (

2
zjx) = (2z) identically—in which

case Eq. (96) reduces toZ
(x) ¢ j¡1(x)x =

µZ
(x) ¢ j¡1(x)x

¶2
 (101)

If this is true, it must be true when (x) = 12 identically—
in which case Eq. (96) reduces to 12 = 14, a contradiction.

The source of the error appears to have been a mistaken
presumption that Eq. (96) is true because Eq. (99) is true.

G. “Traffic mapping filter”: Conceptual issues

When closely examined, the “multisensor traffic mapping
filter” appears to be a multitarget tracking filter in disguise.

First, it is not clear what real­world problem “traffic map­

ping” is meant to solve. The


(x) are claimed to model
“geometrical considerations concerning the point [x] and the
entire sensor field” [45, p. 46]. But what are these “geometri­
cal considerations,” and what is the precise physical meaning

of


(x) in regard to them? How might one construct a

concrete formula for


(x)?



18

Second, the term “target detection opportunity” is never
defined in a precise manner, mathematically or physically. We
are informed only that such “opportunities” are “correlated
with regions containing targets” [45, p. 48] and that they
include “both detections and missed detections” [45, p. 45].

Given this, it is unclear why “target detection opportunity”
is not just a synonym for “target.” It is unclear how to count
a missed detection as a “target detection opportunity,” unless
one has previously established the existence of a target, which
should have been detected but was not. It is unclear how to
count a detection as a “target detection opportunity,” unless
one has first determined that it was caused by an established
(or new) target rather than clutter. That is: not only is a target
a “target detection opportunity,” one cannot have a “target
detection opportunity” in the absence of a target. The two
concepts appear to be synonymous.
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