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Abstract: Correlation coefficient is one of the broadly use indexes in multi-criteria decision-making
(MCDM) processes. However, some important issues related to correlation coefficient utilization
within probabilistic hesitant fuzzy environments remain to be addressed. The purpose of this study
is introduced a MCDM method based on correlation coefficients utilize probabilistic hesitant fuzzy
information. First, the covariance and correlation coefficient between two PHFEs is introduced,
the properties of the proposed covariance and correlation coefficient are discussed. In addition,
the northwest corner rule to obtain the expected mean related to the multiply of two PHFEs is
introduced. Second, the weighted correlation coefficient is proposed to make the proposed MCDM
method more applicable. And the properties of the proposed weighted correlation coefficient are
also discussed. Finally, an illustrative example is demonstrated the practicality and effectiveness
of the proposed method. An illustrative example is presented to demonstrate the correlation
coefficient propose in this paper lies in the interval [−1, 1], which not only consider the strength of
relationship between the PHFEs but also whether the PHFEs are positively or negatively related. The
advantage of this method is it can avoid the inconsistency of the decision-making result due to the
loss of information.

Keywords: probabilistic hesitant fuzzy element; covariance; correlation coefficient; northwest corner
rule; multi-criteria decision-making

1. Introduction

With the rapid development of economic and the progress of modern society, people are facing
more and more complicated decision-making problems, group decision-making plays an increasingly
important role when dealing with multi-criteria decision-making (MCDM) problems [1–3]. In our
daily life, group decision-making has turned out to be a commonly used tool in human activities,
whose purpose is to determine the most preferred alternative among several alternatives (or a series
of alternatives) using the evaluation values provided from a group of decision makers. In group
decision-making processes, the information provided by the experts has different forms. Because of
this, many scholars have investigated the techniques based on various kinds of decision information,
including intuitionistic fuzzy sets [4,5], hesitant fuzzy sets (HFSs) [6–8], probabilistic hesitant fuzzy
sets (PHFSs) [9,10] and probabilistic linguistic term sets [11] and so on.

Correlation coefficient is one of the broadly use indexes in MCDM processes [12–14]. Since many
data may be fuzzy and uncertain, the utilization of correlation coefficient has been extended to fuzzy
environments [15–17] and intuitionistic fuzzy environments [18–21]. For example, Huang et al. [18]
proposed a correlation coefficient formula utilizing the centroid of intuitionistic fuzzy numbers. Ye [19]
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utilizing entropy weights of intuitionistic fuzzy numbers proposed the weighted correlation coefficient.
In a sequent, Dong et al. [21] proposed weighted correlation coefficient based on the relationship of an
arbitrary alternative and the ideal alternative. Afterwards, correlation coefficient has been extended
to hesitant fuzzy environments [22–25]. At the same time, some correlation coefficients formulas
have been proposed. Such as, Chen et al. [22] derived some correlation coefficients based on the
membership degree of the HFSs and applied them in clustering analysis. Liao et al. [23] pointed out
there are some shortcoming in the correlation coefficients were introduced in [22] and then proposed a
novel correlation coefficient. The significant characteristic of the proposed formula is that it lies in the
interval [−1, 1]. Based on the same idea, Liao et al. [24] proposed several types of correlation coefficients
for hesitant fuzzy linguistic term sets and then applied them to traditional medical diagnosis problems.
Because of the potential application of the correlation coefficient, some other extensions are still going
on—for example, dual hesitant fuzzy environments [26] and neutrosophic fuzzy environments [27–29]
and so on.

Although the concept of correlation coefficient has been extended to various kinds of fuzzy
environments and has been applied in many fields. There are still some disputes in the utilization of it.
Some decision makers noticed that the correlation coefficients were proposed in above mention papers
mainly lies on the statistics formula, that is, the correlation coefficient between two random variables
X and Y is ρ(X, Y) = E(X−E(X))(Y−E(Y))√

D(X)
√

D(Y)
. In addition, the correlation coefficient has lots of important

properties, such as lies in the range of [−1, 1]. Unfortunately, most of the correlation coefficients
in above mention papers always positive, which lies in the range of [0, 1] and ignored the negative
correlation information. This shortcoming has been pointed out by some scholars [18,23,25] and the
ignored information may result in unreasonable decision-making results. Based on this consideration,
the correlation coefficient be applied in fuzzy environment should be further discussion.

Since Zhu [30] first proposed the concept of PHFSs, it has been attracted some scholars’ attention
and many achievements have been made. For example, Zhang et al. [31] pointed out that there are
some shortcoming in the concept of PHFSs that was proposed in [30], they asserted that there were
maybe some incomplete information in the decision-making processes and then they proposed the
improvement PHFSs. He et al. [32] extended the PHFSs to the probabilistic interval preference ordering
sets and Hao et al. [33] extended it to the probabilistic dual hesitant fuzzy sets. In addition, PHFSs
have been extended to probabilistic linguistic term sets [11,34,35]. Although the concept of PHFSs has
been extended to various kinds of fuzzy environments and some decision-making methods have been
proposed. For example, Zhou et al. [36] discussed group consensus based on additive consistency
and Li et al. [9] introduced a MCDM process based on Hausdorff distance. However, some important
issues in PHFSs utilization remain to be addressed. For example, the probability part does not pay
enough attention, the existing decision-making methods mainly directly integrated the probability
part into the membership degree part [9,36], this make cause a lot of information loss.

Considering that PHFSs consists of two parts, that is, the membership degree of the elements
to the set and the corresponding probabilities of the membership degree, this information can be
interpreted as a probability distribution function. Inspired by statistics knowledge, each probabilistic
hesitant fuzzy element (PHFE) can be treated as a discrete random variable. Since every PHFE has
two parts, that is: γi and pi, where γi can be regarded as the condition of a random variable, pi can be
regarded as the corresponding probability with γi, the similar opinion has been proposed by Hung [37].
Based on this consideration, we can apply some concepts in statistics such as expected value, variance,
covariance and correlation coefficient, to construct a novel MCDM method within the background of
a probabilistic hesitant environment. Considering sometimes two random variables maybe do not
mutual independent. In this paper, the expected mean related to the multiply of two PHFEs can be
obtained through using the northwest corner rule, from the course of operations research, balance
problems of transport model [38].

To overcome the above mention limitations, this paper focuses on the correlation coefficient
between two PHFSs and based on the northwest corner rule to obtain the expected mean related to the
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multiply of two PHFEs when the PHFEs are not mutual independent. Finally, a novel MCDM method
with the probabilistic hesitant fuzzy environment is introduced based on the proposed weighted
correlation coefficient. The primary motivations and contributions of this paper are summarized
as follows.

(1) A novel formula to calculate the correlation coefficient between two PHFSs is proposed.
The correlation coefficient is proposed in this paper utilize the knowledge of statistics, the
significant characteristic of the proposed formula is that it lies in the interval [−1, 1]. The proposed
formula not only consider the strength of the PHFSs but also whether the PHFSs are positively
or negatively related, it avoids the inconsistency of the decision-making result due to the loss
of information.

(2) The existing decision-making methods within probabilistic hesitant fuzzy environments, few
papers discussed the condition when two PHFEs are not mutual independent. In this paper,
the northwest corner rule to obtain the expected mean related to the multiply of two PHFEs
is introduced.

(3) A novel MCDM method within the probabilistic hesitant fuzzy environment is introduced based
on the proposed weighted correlation coefficient and this proposed method is applied to practical
decision-making problems, that is, the evaluation of the alternatives.

The rest of this paper is organized as follows. Section 2 reviews some basic concepts related
to HFSs and PHFSs and some correlation coefficient formulas related to HFSs. In Section 3, we
introduce a novel correlation coefficient formula for PHFSs, the properties of the proposed covariance
and correlation coefficient are discussed. And the northwest corner rule to obtain the expected
mean related to the multiply of two PHFEs is introduced. In Section 4, the weighted correlation
coefficient is proposed and the properties of the proposed weighted correlation coefficient are discussed.
The weighted correlation coefficient of two PHFEs is applied to an evaluation of the alternatives
problem in Section 5. Finally, the conclusions are given in Section 6.

2. Preliminaries

In this section, several basic definitions and notations related to our research will be reviewed,
mainly including HFS, correlation coefficient and the concept of PHFS, its score function and
indeterminacy index function. In addition, an evaluation information integrate method is introduced.

Definition 1. [39] Let X be a reference set, a HFS A on X is defined in terms of a function hA(x) when applied
to X returns a finite subset of [0, 1].

To be easily understand, Xia et al. [40] expressed the HFS by a mathematical symbol:

A = {< x, hA(x) > |x ∈ X }. (1)

Here, the function hA(x) is a set of some different values in [0, 1], representing the possible
membership degrees of the element x in X to A. For convenience, hA(x) is called a HFE.

Example 1. Let X = {x1, x2, x3} be a reference set, hA(x1) = {0.2, 0.4, 0.6}, hA(x2) = {0.3, 0.4, 0.5} and
hA(x3) = {0.2, 0.3, 0.5, 0.6}.

Be three HFEs of xi(i = 1, 2, 3) to a set A, respectively. Then A can be considered as a HFS,

A = {〈x1, {0.2, 0.4, 0.6}〉, 〈x2, {0.3, 0.4, 0.5}〉, 〈x3, {0.2, 0.3, 0.5, 0.6}〉}.

Correlation coefficient is a frequently use formulas and has been applied in measure the similarity
between two objects. Liao et al. [23] defined the correlation coefficient between two HFSs as follows.
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Definition 2. [23] Let X = {x1, x2, · · · , xn} be a discrete universe of discourse and Fi be the hesitant

fuzzy space containing all HFSs defined over X. For any two HFSs, hA(xi) =

{
γAi1 , γAi2 , · · · , γAilAi

}
and

hB(xi) =

{
γBi1 , γBi2 , · · · , γBilBi

}
, the correlation coefficient between them is defined as follows:

ρ(A, B) =
Cov(A, B)

[D(A)D(B)]1/2 , (2)

where

Cov(A, B) =
1
n

n

∑
i=1

[−
h A(xi)−

−
A
]
·
[−

hB(xi)−
−
B
]

,

D(A) =
1
n

n

∑
i=1

[−
h A(xi)−

−
A
]
·
[−

h A(xi)−
−
A
]

,

D(B) =
1
n

n

∑
i=1

[−
hB(xi)−

−
B
]
·
[−

hB(xi)−
−
B
]

.

and,
−
h A(xi) = 1

lAi
∑

lAi
k=1 γAik ,

−
hB(xi) = 1

lBi
∑

lBi
k=1 γBik ,

−
A = 1

n ∑n
i=1

−
h A(xi) and

−
B = 1

n ∑n
i=1

−
hB(xi). Where

lAi and lBi are respectively denotes the number of the elements in hA(xi) and hB(xi).

Recently, Zhang et al. [31] proposed the improvement of PHFSs, which have added the partial
ignorance information to PHFSs that was proposed by Zhu [30].

Definition 3. [31] Let X be a reference set, then a PHFS P on X can be expressed by as:

P = {< x, hx(px) > |x ∈ X }. (3)

Here, the function hx is a set of several different values in [0, 1], which is described by the
probability distribution px. Where hx denotes the possible membership degree of element x in X to P.
For convenience, hx(px) is called a PHFE and denoted as h(p) and is indicated by

h(p) = {γi(pi)|i = 1, 2, · · · , |h(p)| },

where pi satisfying ∑
|h(p)|
i=1 pi ≤ 1, is the probability of the possible value γi and |h(p)| is the number of

all γi(pi) in h(p). If ∑
|h(p)|
i=1 pi < 1, means there is some missing values in PHFE. If there is no special

explanation, in this paper, we only discuss the condition ∑
|h(p)|
i=1 pi = 1.

Example 2. Let X = {x1, x2} be a reference set, h1(p1) = {0.2(0.3), 0.4(0.2), 0.5(0.1), 0.7(0.4)} and
h2(p2) = {0.3(0.1), 0.4(0.9)} be two PHFEs of xi(i = 1, 2) to a set P, respectively. Then P can be considered
as a PHFS,

P = {〈x1, {0.2(0.3), 0.4(0.2), 0.5(0.1), 0.7(0.4)}〉, 〈x2, {0.3(0.1), 0.4(0.9)}〉}.

If we ignore the probabilities of the possible values in a PHFE, then the possible values are with
the same probability, in this case, PHFE turn to HFE.

In order to rank the PHFEs, Xu et al. [41] introduced the score function and indeterminacy index
function of PHFEs. As a matter of fact, the score function and indeterminacy index function can be
regarded as expect mean and variance of PHFEs.
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Definition 4. [41] Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the expect mean of it is defined as:

E(A) =
|h(p)|

∑
i=1

γi pi. (4)

It is noted that if the probabilities of PHFE are equally, that is p1 = p2 = · · · = p|h(p)| =
1
|h(p)| , in

this case, expect mean will turn to the score function of HFS that was introduced in Definition 4 in [40].

Definition 5. [41] Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the variance of it is defined as:

D(A) =
|h(p)|

∑
i=1

(γi − E(A))2 pi. (5)

Example 3. Let hA(pA) = {0.5(0.25), 0.6(0.5), 0.7(0.25)} be a PHFE, according to Definition 4 and
Definition 5, we have E(A) = 0.5× 0.25 + 0.6× 0.5 + 0.7× 0.25 = 0.6, D(A) = (0.5− 0.6)2 × 0.25 +

(0.6− 0.6)2 × 0.5 + (0.7− 0.6)2 × 0.25 = 0.005.

Remark 1. If there is only one element in a PHFE, in this case, we have D(A) = 0.

Remark 2. According to statistics knowledge, there is an equivalence formula related to the variance of hA(pA)

in Definition 5, that is:

D(A) =
|h(p)|

∑
i=1

γ2
i pi − E(A)2. (6)

In order to integrate the evaluation information obtained from decision makers in the
decision-making processes, according to the total probability formula in statistics, Li et al. [42]
introduced an information integrate method as follows.

Definition 6. [42] For a reference set X, let P = {〈x, hx(px)|x = 1, 2, · · · , n 〉} be a PHFS, where h(p) =
{γi(pi)|i = 1, 2, · · · , |h(p)|} is the PHFE indicating all possible values in P. Then, the probability of the value
γi can be calculated as follows:

P(x = γi) =
n

∑
i=1

P(x = h(p))P(x = γi/x = h(p)), (7)

where n is the number of all PHFEs in P.

Example 4. Let P = {〈x1, {0.4(0.6), 0.6(0.3), 0.7(0.1)}〉, 〈x2, {0.3(0.7), 0.4(0.3)}〉, 〈x3, {0.8(0.2), 0.9(0.8)}〉}
be a PHFS. The probability of value 0.4 in P is calculated as follows: P(x = 0.4) = 1

3 × 0.6+ 1
3 × 0.3+ 1

3 × 0 = 0.3.

3. The Correlation Coefficient of PHFEs

Since every PHFE has two parts, that is: γi and pi, where γi can be regarded as the condition of a
random variable, pi can be regarded as the corresponding probability of γi. Based on this consideration,
every PHFE can be regarded as a discrete random variable. In the following section, covariance and
the correlation coefficients of PHFEs will be introduced.

In order to obtain the correlation coefficients of PHFEs. First, the standard deviation of it is
calculated. Second, the expect value related to the multiple of two PHFEs is calculated. Then, the
covariance of the PHFEs is obtained. Finally, based on the standard deviation and covariance, the
correlation coefficient of PHFEs can be obtained.

According to the statistics knowledge, the standard deviation of PHFEs can be obtained from the
square of the deviation. And in order to obtain the expect value related to the multiply of AB, that is,
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PHFE hA(pA) multiply PHFE hB(pB). First, the joint distribution law between hA(pA) and hB(pB) will
be determined and then based on the joint distribution law, we can calculate the expect value related
to the multiply of AB. Considering sometimes two PHFEs maybe do not mutual independent, in the
following section, a method to determine the joint distribution law between hA(pA) and hB(pB) will
be introduced.

Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be two
PHFEs, utilizing the northwest corner rule [38], the joint distribution law between hA(pA) and hB(pB)

can be determined and is shown in Table 1.
Where ∑

|l(p)|
j=1 pij = pi, (i = 1, 2, · · · , |h(p)|) and ∑

|h(p)|
i=1 pij = p′j, (j = 1, 2, · · · , |l(p)|) and |h(p)|

and |l(p)| are respectively denotes the number of the elements in hA(pA) and hB(pB).
Base on the joint distribution law, expect value related to the multiply of AB can be obtained

as follows.

Table 1. Joint distribution law between hA(pA) and hB(pB).

γ′1 γ′2 · · · γ′j · · · γ′|l(p)| pi·

γ1 p11 p12 · · · p1j · · · p1|l(p)| p1
γ2 p21 p22 · · · p2j · · · p2|l(p)| p2
...

...
...

...
...

...
...

...
γi pi1 pi2 · · · pij · · · pi|l(p)| pi
...

...
...

...
...

...
...

...
γ|h(p)| p|h(p)|1 p|h(p)|2 · · · p|h(p)|j · · · p|h(p)||l(p)| p|h(p)|

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

Definition 7. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, then expect value related to the multiply of AB is calculated as:

E(AB) =
|h(p)|

∑
i=1

|l(p)|

∑
j=1

γiγ
′
j pij. (8)

Example 5. Let hA(pA) = {0.5(0.25), 0.6(0.5), 0.7(0.25)} and hB(pB) = {0.2(0.25), 0.3(0.75)} be two
PHFEs, utilizing the northwest corner rule, the joint distribution law between hA(pA) and hB(pB) can be
determined and is shown in Table 2.

Table 2. Joint distribution law between hA(pA) and hB(pB) of Example 5.

0.2 0.3 pi·
0.5 0.25 0 0.25
0.6 0 0.5 0.5
0.7 0 0.25 0.25
p·j 0.25 0.75 1

According to Definition 8, we have E(AB) = 0.5 × 0.2 × 0.25 + 0.6 × 0.3 × 0.5 + 0.7 × 0.3 ×
0.25 = 0.64.

Remark 3. If hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be two
mutual independent PHFEs, according to statistics knowledge (the properties of mutual independent discrete
random variable), the joint distribution law between hA(pA) and hB(pB) can be determined and is shown in
Table 3.
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Table 3. Joint distribution law between hA(pA) and hB(pB) of Remark 3.

γ′1 γ′2 · · · γ′j · · · γ′|l(p)| pi·

γ1 p1 p′1 p1 p′2 · · · p1 p′j · · · p1 p′|l(p)| p1

γ2 p2 p′1 p2 p′2 · · · p2 p′j · · · p2 p′|l(p)| p2
...

...
...

...
...

...
...

...
γi pi p′1 pi p′2 · · · pi p′j · · · pi p′|l(p)| pi
...

...
...

...
...

...
...

...
γ|h(p)| p|h(p)|p

′
1 p|h(p)|p

′
2 · · · p|h(p)|p

′
j · · · p|h(p)|p

′
|l(p)| p|h(p)|

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

Example 6. Let hA(pA) and hB(pB) be two PHFEs are shown in Example 5, if hA(pA) and hB(pB) are mutual
independent, according to Remark 3, the joint distribution law between them can be determined and is shown in
Table 4.

Table 4. Joint distribution law between hA(pA) and hB(pB) of Example 6.

0.2 0.3 pi·
0.5 0.0625 0.1875 0.25
0.6 0.125 0.375 0.5
0.7 0.0625 0.1875 0.25
p·j 0.25 0.75 1

According to Definition 8, we have E(AB) = 0.0625× 0.5× 0.2 + 0.1875× 0.5× 0.3 + 0.125×
0.6× 0.2 + 0.375× 0.6× 0.3 +0.0625× 0.7× 0.2 + 0.1875× 0.7× 0.3 = 0.165.

Utilizing Definitions 4 and 7, the covariance between hA(pA) and hB(pB) is obtained as follows.

Definition 8. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, the covariance between them is obtained as:

Cov(A, B) = E(A− E(A))(B− E(B)). (9)

The covariance defined in Equation (9) has the following properties.

Property 1. For any PHFEs hA(pA) and hB(pB), the covariance defined in Equation (9) satisfies:

(1) Cov(A, A) = D(A);
(2) Cov(A, B) = Cov(B, A);
(3) Cov(A, B) = E(AB)− E(A)E(B);
(4) If one of the PHFEs has only one element in it, in this case, we have Cov(A, B) = 0.

The proof of Property 1 is shown in Appendix A.
Utilizing Definitions 5 and 8, correlation coefficient between two PHFEs is obtained as follows.

Definition 9. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, the correlation coefficient between them is obtained as:

ρ(A, B) =
E(A− E(A))(B− E(B))√

D(A)
√

D(B)
. (10)

The correlation coefficient obtained in Equation (10) has the following properties.
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Property 2. For any PHFEs hA(pA) and hB(pB), the correlation coefficient obtained in Equation (10) satisfies:

(1) ρ(A, B) = ρ(B, A);
(2) −1 ≤ ρ(A, B) ≤ 1;
(3) if hA(pA) = hB(pB)⇒ ρ(A, B) = 1 ;
(4) if hB(pB) = hA(pA)

c ⇒ ρ(A, Ac) = −1 .

The proof of Property 2 is shown in Appendix B.

Remark 4. In Property 2, if hA(pA) = hB(pB)⇒ ρ(A, B) = 1 , conversely, it is not hold. That is, if
ρ(A, B) = 1, ; hA(pA) = hB(pB).

4. Weighted Correlation Coefficient of PHFEs

Considering in some situations, the objects may be assigned with different weights. In this section,
the weighted form of the expect mean, variance, covariance and correlation coefficient of PHFEs will
be introduced.

Let w = (w1, w2, · · · , wn) be the weight vector of xi ∈ X, (i = 1, 2, · · · , n) with wi ∈
[0, 1] and ∑n

i=1 wi = 1. For two PHFEs hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) ={
γ′j(p′j)|j = 1, 2, · · · , |l(p)|

}
, the following definitions can be developed.

Definition 10. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the weighted probabilistic hesitant
fuzzy element (WPHFE) on X is obtained as:

Aw = {(wiγi)(pi)|i = 1, 2, · · · , h(p)}. (11)

Definition 11. Let Aw be a WPHFE, the weighted expect mean of it is obtained as:

Ew(A) =
|h(p)|

∑
i=1

wiγi pi. (12)

Definition 12. Let Aw be a WPHFE, the weighted variance of it is obtained as:

Dw(A) =
|h(p)|

∑
i=1

(wiγi − Ew(A))2 pi. (13)

Let Aw and Bw′ be two WPHFEs, utilizing the northwest corner rule, the weight joint distribution
law between them can be determined and is shown in Table 5.

Where ∑
|l(p)|
j=1 p′ij = pi, (i = 1, 2, · · · , |h(p)|) and ∑

|h(p)|
i=1 p′ij = p′j, (j = 1, 2, · · · , |l(p)|).

Base on the weight joint distribution law, the weighted except mean Ew(AB) related to the
multiply of AB can be obtained as follows.

Table 5. Weight joint distribution law between Aw and Bw′ .

w′1γ′1 w′2γ′2 · · · w′jγ
′
j · · · w′|l(p)|γ

′
|l(p)| pi·

w1γ1 p′11 p′12 · · · p′1j · · · p′1|l(p)| p1

w2γ2 p′21 p′22 · · · p′2j · · · p′2|l(p)| p2
...

...
...

...
...

...
...

...
wiγi p′i1 p′i2 · · · p′ij · · · p′i|l(p)| pi

...
...

...
...

...
...

...
...

w|h(p)|γ|h(p)| p′|h(p)|1 p′|h(p)|2 · · · p′|h(p)|j · · · p′|h(p)||l(p)| p|h(p)|
p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1
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Definition 13. Let Aw and Bw′ be two WPHFEs, the weighted expect mean between them is obtained as:

Ew(AB) =
|h(p)|

∑
i=1

|l(p)|

∑
j=1

wiw′jγiγ
′
j p
′
ij. (14)

Using Definitions 11 and 13, the weighted covariance between two WPHFEs can be derived
as follows.

Definition 14. Let Aw and Bw′ be two WPHFEs, the weighted covariance between them is obtained as:

Covw(A, B) = E(A− Ew(A))(B− Ew′(B)). (15)

Using Definitions 13 and 15, the weighted correlation coefficient between two WPHFEs can be
calculated as follows.

Definition 15. Let Aw and Bw′ be two WPHFEs, the weighted correlation coefficient between them is
obtained as:

ρw(A, B) =
E(A− Ew(A))(B− Ew′(B))√

Dw(A)
√

Dw′(B)
. (16)

The weighted correlation coefficient obtained in Equation (16) has the following properties.

Property 3. For any WPHFEs Aw and Bw′ , the weighted correlation coefficient obtained in
Equation (16) satisfies:

(1) ρw(A, B) = ρw(B, A);
(2) −1 ≤ ρw(A, B) ≤ 1;
(3) if Aw = Bw′ ⇒ ρw(A, B) = 1 .

The proof of Property 3 is similar to the proof of Property 2, so it has been omitted here.

5. Multi-Criteria Decision-Making Based on Probabilistic Hesitant Fuzzy Information

In this section, a MCDM problems within probabilistic hesitant fuzzy environment is adopted to
demonstrate how to apply the proposed method.

5.1. Problems Description

For a MCDM problems, let A = {A1, A2, · · · , An} be a set of alternatives, G = {G1, G2, · · · , Gm}
be a set of criteria, the criteria weights are completely unknown. Assume the criteria are independent
to each other. D = {D1, D2, · · · , Dt} be a set of decision makers. And the evaluation of the alternative
Aj with respect to the criterion Gi is represent in PHFEs.

The MCDM processes designed to find the best alternative is given by the following steps:

Step 1: Construct individual probabilistic hesitant fuzzy decision matrix

The individual probabilistic hesitant fuzzy decision matrix can be constructed and denoted as
Dk = (γij(pij)

k)m×n;

Step 2: Integrate individual probabilistic hesitant fuzzy decision matrix into one

Use Equation (6) to integrate individual probabilistic hesitant fuzzy decision matrix into an overall
decision matrix and denotes as D = (γij(pij))m×n;

Step 3: Derive the criteria weights
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The criteria weights can be derived utilizing the following formula:

wi =

n
∑

j=1
E
(
γij(pij)

)
n
∑

j=1

m
∑

i=1
E
(
γij(pij)

) , (i = 1, 2, · · · , m). (17)

Step 4: Calculate the weighted correlation coefficient

By applying Equation (12), the ideal alternative A∗ under the criterion Gi can be obtained
as follows:

A∗ = max
{

Aj
∣∣wiγij pij, i = 1, 2, · · · , m; j = 1, 2, · · · , n

}
. (18)

Here, the weighted of wi is obtained from Equation (17).
And then calculate the weighted correlation coefficient between any alternative A and ideal

alternative A∗.
Use Equation (16), calculate the weighted correlation coefficient between A and A∗ as follows:

ρw(A, A∗) =
E(A− Ew(A))(A∗ − Ew′(A∗))√

Dw(A)
√

Dw′(A∗)
. (19)

Step 5: Rank all alternatives

Since the higher the score of the weighted correlation coefficient obtain from Equation (19),
means that the more similarity between any alternative A and the ideal alternative A∗, the better the
alternative A is. Based on this consideration, the ranking result of the alternatives Aj, (j = 1, 2, · · · , n)
can be obtained according to the following formula:

rj =
m

∑
i=1

βij, (j = 1, 2, · · · , n). (20)

Here, βij is the value of weighted correlation coefficient, obtained from Step 4.

5.2. Illustrative Example

Suppose there is an investment company, which wants to invest a sum of money in the best
option, there is a panel with four possible alternatives to invest: (1) A1 is a car company; (2) A2 is a
food company; (3) A3 is a computer company; (4) A4 is an arms company. The investment company
must take a decision according to the following five criteria: (1) G1 is the productivity; (2) G2 is the
technological innovation capability; (3) G3 is the marketing capability; (4) G4 is the management; (5) G5

is the risk avoidance.
An expert group is formed which consists of four experts Dt (t = 1, 2, 3, 4) from each strategic

decision area (whose weight vector is equally). Suppose each expert consulted 10 people in the same
industry through online questionnaire and the 10 people they consulted were not exactly similar.
Four experts provided their preference evaluations on alternatives in the form of PHFEs, as shown
in Tables 6–9, respectively. Take the evaluation values {0.6(0.4), 0.7(0.6)} from Expert 1, for example,
evaluation information is obtained from 10 people related to computer company A3 with respect to
productivity G1. Four of them set a value of 0.6, whereas six of them set a value 0.7 and thus, the
probability of the vale 0.6 is 0.4 and the probability of the vale 0.7 is 0.6. Other entries, that is, other
PHFEs, in Tables 6–9 can be similarly explained. Because four experts consulted the people in the same
industry may be communicate with each other, in this case, the evaluation information obtained from
four experts are interact with each other.
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Table 6. The evaluation information provided from D1.

A1 A2 A3 A4

G1 0.5 0.3 {0.6(0.4), 0.7(0.6)} 0.4
G2 0.7 0.4 {0.4(0.5), 0.5(0.5)} 0.3
G3 {0.4(0.4), 0.3(0.6)} {0.6(0.5), 0.5(0.5)} 0.3 0.5
G4 0.6 0.7 0.3 0.5
G5 0.5 0.6 0.4 {0.4(0.5), 0.5(0.5)}

Table 7. The evaluation information provided from D2.

A1 A2 A3 A4

G1 0.5 0.4 0.6 0.3
G2 0.6 0.5 0.6 0.4
G3 0.4 0.4 0.5 0.5
G4 0.7 0.6 0.3 0.5
G5 0.3 0.6 0.4 0.7

Table 8. The evaluation information provided from D3.

A1 A2 A3 A4

G1 0.5 {0.2(0.4), 0.3(0.6)} {0.6(0.4), 0.7(0.6)} 0.6
G2 {0.8(0.4), 0.7(0.6)} 0.4 {0.4(0.5), 0.5(0.5)} 0.3
G3 0.4 0.5 0.6 {0.4(0.5), 0.3(0.5)}
G4 0.7 0.4 0.5 {0.4(0.7), 0.5(0.3)}
G5 0.4 0.6 0.7 0.2

Table 9. The evaluation information provided from D4.

A1 A2 A3 A4

G1 0.7 0.3 0.4 0.2
G2 0.7 0.5 0.5 0.6
G3 0.6 0.8 0.2 {0.4(0.5), 0.3(0.5)}
G4 {0.4(0.5), 0.3(0.5)} {0.7(0.5), 0.6(0.5)} 0.1 0.6
G5 0.8 0.4 {0.7(0.5), 0.6(0.5)} 0.5

The processes are designed to find the best alternative is given by the following steps:

Step 1: Construct individual probabilistic hesitant fuzzy decision matrix

The individual probabilistic hesitant fuzzy decision matrix has been constructed and is shown in
Tables 6–9.

Step 2: Integrate individual probabilistic hesitant fuzzy decision matrix

Use Equation (7) to integrate individual probabilistic hesitant fuzzy decision matrix into an overall
decision matrix and is shown in Table 10.

Step 3: Derive the criteria weights

By applying Equation (17), the weights of criteria are calculated as follows:

w1 = 0.19, w2 = 0.21, w3 = 0.19, w4 = 0.20 and w5 = 0.21.

Step 4: Calculate the weighted correlation coefficient
By applying Equation (19), the weighted correlation coefficient can be obtained and is shown in

Table 11.
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Table 10. Integrate individual evaluation information.

A1 A2 A3 A4

G1 {0.5(0.75), 0.7(0.25)}
{

0.2(0.1), 0.3(0.65)
0.4(0.25)

} {
0.4(0.25), 0.6(0.45)

0.7(0.3)

} {
0.2(0.25), 0.3(0.25)
0.4(0.25), 0.6(0.25)

}
G2

{
0.6(0.25), 0.7(0.65)

0.8(0.1)

}
{0.4(0.5), 0.5(0.5)}

{
0.4(0.25), 0.5(0.5)

0.6(0.25)

} {
0.3(0.5), 0.4(0.25)

0.6(0.25)

}
G3

{
0.3(0.15), 0.4(0.6)

0.6(0.25)

} {
0.4(0.25), 0.5(0.375)
0.6(0.125), 0.8(0.25)

} {
0.2(0.25), 0.3(0.25)
0.5(0.25), 0.6(0.25)

} {
0.3(0.25), 0.4(0.25)

0.5(0.5)

}
G4

{
0.3(0.125), 0.4(0.125)

0.6(0.25), 0.7(0.5)

} {
0.4(0.25), 0.6(0.375)

0.7(0.375)

} {
0.1(0.25), 0.3(0.5)

0.5(0.25)

} {
0.4(0.175), 0.6(0.25)

0.5(0.575)

}
G5

{
0.3(0.25), 0.4(0.25)
0.5(0.25), 0.8(0.25)

}
{0.6(0.75), 0.4(0.25)}

{
0.4(0.5), 0.6(0.125)

0.7(0.375)

} {
0.2(0.25), 0.5(0.325)
0.4(0.125), 0.7(0.25)

}

Table 11. Weight correlation coefficient.

ρw(A1, A∗) ρw(A2, A∗) ρw(A3, A∗) ρw(A4, A∗)

G1 0.62 0.75 1 0.28
G2 1 0.61 0.86 0.64
G3 0.94 1 0.9 −0.03
G4 0.95 1 0.91 0.27
G5 −0.93 1 −0.67 −0.74

Step 5: Rank all alternatives.

The ranking result of the alternatives Aj (j = 1, 2, · · · , 4) can be obtained according to the
Formula (20) as follows:

r1 = 2.28, r2 = 4.36, r3 = 3, r4 = 0.42.

Since r2 > r3 > r1 > r4, then A2 � A3 � A1 � A4. Hence, the most desirable alternative is A2.
That is, the food company is the best option to invest.

It is stated that in this example, the correlation coefficient is proposed in this paper lies in the
interval [−1, 1], which not only consider the strength of relationship between the PHFSs but also
whether the PHFSs are positively or negatively related. In this illustrative example, we can also use
the methods proposed in [8,36] to solve the problem illustrative in the example. However, the method
proposed in [36] directly integrated the probability part into the membership degree part, this make
cause a lot of information loss. For example, the positively or negatively related obtained from the
proposed method. And the method proposed in [8] fail in the condition when two PHFEs are not
mutual independent.

6. Conclusions

This article puts forward a framework to tackle MCDM problems within probabilistic hesitant
fuzzy environments with completely unknown criteria weight information. Since every PHFE
consists of two parts, that is, the membership degree of the element to the set and the corresponding
probability of the membership degree, this information can be treated as a probabilistic distribution
function, inspired by statistics knowledge, each PHFE can be regarded as a discrete random variable.
The primary contributions of this paper are summarized as follows. (1) The correlation coefficient is
proposed in this paper adopt the knowledge of statistics, the significant characteristic of the proposed
formula is that it lies in the interval [−1, 1]. The proposed formula not only consider the strength of
the PHFSs but also whether the PHFSs are positively or negatively related, it avoids the inconsistency
of the decision-making result due to the loss of information; (2) The existing decision-making methods
related to probabilistic hesitant fuzzy environments, very few papers discussed the condition when two
random variables are not mutual independent. In this paper, the northwest corner rule to obtain the
expected mean of two PHFEs multiply is introduced; (3) A novel MCDM method with the probabilistic
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hesitant fuzzy environment is introduced based on the proposed weighted correlation coefficient and
this proposed method is applied to practical decision-making processes.

In this paper, we have applied the proposed correlation coefficient in evaluation of the alternatives.
In the future, we will apply it in other aspects, such as, pattern recognition and cluster analysis. In
addition, in this paper, we only discuss the correlation coefficients between two PHFSs, in future
study, the proposed correlation coefficients will be extended to other extension of PHFSs, such as,
interval-valued probabilistic hesitant fuzzy sets, probabilistic linguistic term sets and so on.
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Author Contributions: All authors have contributed equally to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Property 1

Proof. The proof of (1), (2) and (3) is obvious, so it has been omitted here. And the proof of (4) will be
demonstrated as follows:

Suppose hA(pA) has only one element in it, denoted by hA(pA) = {h1(p1)}, according to
Definition 3, we have p1 = 1. Let hB(pB) =

{
γ′j(p′j)|j = 1, 2, · · · , |l(p)|

}
, utilizing the northwest

corner rule, the joint distribution law between them can be determined and is shown in Table A1.

Table A1. Joint distribution law between hA(pA) and hB(pB) in Property 1.

γ′1 γ′2 · · · γ′j · · · γ′|l(p)| pi·

γ1 p′1 p′2 · · · p′j · · · p′|l(p)| p1

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

According to Definition 8, we have

E(AB) = γ1γ′1 p′1 + γ1γ′2 p′2 + · · ·+ γ1γ′|l(p)|p
′
|l(p)|

= γ1

(
γ′1 p′1 + γ′2 p′2 + · · ·+ γ′|l(p)|p

′
|l(p)|

)
= γ1 p1

(
γ′1 p′1 + γ′2 p′2 + · · ·+ γ′|l(p)|p

′
|l(p)|

)
= E(A)E(B).

Therefore, we have Cov = E(A− E(A))(B− E(B)) = E(AB)− E(A)E(B) = 0.
The similar proof can be obtained if hB(pB) has only one element in it.
This completes the proof.

Appendix B. Proof of Property 2

Proof.

(1) It is straightforward.
(2) According to Property 1, we have

Cov(A, B) = E(AB)− E(A)E(B) = E(A− E(A))(B− E(B)),



Symmetry 2017, 9, 259 14 of 18

and

E(A− E(A))(B− E(B)) =
|h(p)|

∑
i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

= ∑
|l(p)|
j=1 (γ1 − E(A))(γ′j − E(B))p1j + ∑

|l(p)|
j=1 (γ2 − E(A))(γ′j − E(B))p2j

+ · · ·+ ∑
|l(p)|
j=1 (γ|h(p)| − E(A))(γ′j − E(B))p|h(p)|j

= ∑
|l(p)|
j=1 (γ1 − E(A))

√p1j(γ
′
j − E(B))√p1j + ∑

|l(p)|
j=1 (γ2 − E(A))

√p2j(γ
′
j − E(B))√p2j

+ · · ·+ ∑
|l(p)|
j=1 (γ|h(p)| − E(A))

√p|h(p)|j(γ
′
j − E(B))√p|h(p)|j.

Using the Cauchy-Schwarz inequality: (a1b1 + a2b2 + · · ·+ anbn)
2 ≤

(a2
1 + a2

2 + · · ·+ a2
n)(b2

1 + b2
2 + · · ·+ b2

n), it follows that

[Cov(A, B)]2 =

[
|h(p)|

∑
i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

]2

≤
[
∑
|l(p)|
j=1 (γ1 − E(A))2 p1j + ∑

|l(p)|
j=1 (γ2 − E(A))2 p2j + · · ·+ ∑

|l(p)|
j=1 (γ|h(p)| − E(A))2 p|h(p)|j

]
×
[
∑
|l(p)|
j=1 (γ′j − E(B))2 p1j + ∑

|l(p)|
j=1 (γ′j − E(B))2 p2j + · · ·+ ∑

|l(p)|
j=1 (γ′j − E(B))2 p|h(p)|j

]
=
[
(γ1 − E(A))2∑

|l(p)|
j=1 p1j + (γ2 − E(A))2∑

|l(p)|
j=1 p2j + · · ·+ (γ|h(p)| − E(A))2∑

|l(p)|
j=1 p|h(p)|j

]
×
[
(γ′1 − E(B))2∑

|h(p)|
i=1 pi1 + (γ′2 − E(B))2∑

|h(p)|
i=1 pi2 + · · ·+ (γ′|l(p)| − E(B))2∑

|h(p)|
i=1 pi|l(p)|

]
=
[
(γ1 − E(A))2 p1 + (γ2 − E(A))2 p2 + · · ·+ (γ|h(p)| − E(A))2 p|h(p)|

]
×
[
(γ′1 − E(B))2 p′1 + (γ′2 − E(B))2 p′2 + · · ·+ (γ′|l(p)| − E(B))2 p′|l(p)|

]
=
[
∑
|h(p)|
i=1 (γi − E(A))2 pi

]
×
[
∑
|l(p)|
j=1 (γ′j − E(B))2 p′j

]
.

Taking the square root of both sides, this inequality reduces to:

∣∣∣∣∣|h(p)|

∑
i=1

|l(p)|

∑
j=1

(γi − E(A))(γ′j − E(B))pij

∣∣∣∣∣ ≤
[|h(p)|

∑
i=1

(γi − E(A))2 pi

] 1
2

×
[|l(p)|

∑
j=1

(γ′j − E(B))2 p′j

] 1
2

Therefore, this inequality can be rewritten as:∣∣∣∣∣|h(p)|
∑

i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

∣∣∣∣∣√
∑
|h(p)|
i=1 (γi − E(A))2 pi ×

√
∑
|l(p)|
j=1 (γ′j − E(B))2 p′j

≤ 1.

Therefore, we have −1 ≤ ρ(A, B) ≤ 1.

(3) if hA(pA) = hB(pB)⇒ γi = γ′j , pi = p′j and |h(p)| = |l(p)|, utilizing the northwest corner rule,
the joint distribution law between them can be determined and is shown in Table A2.



Symmetry 2017, 9, 259 15 of 18

Table A2. Joint distribution law between hA(pA) and hA(pA) in Property 2.

γ1 γ2 · · · γi · · · γ|h(p)| pi·

γ1 p1 0 · · · 0 · · · 0 p1
γ2 0 p2 · · · 0 · · · 0 p2
...

...
...

...
...

...
...

...
γi 0 0 · · · pi · · · 0 pi
...

...
...

...
...

...
...

...
γ|h(p)| 0 0 · · · 0 · · · p|h(p)| p|h(p)|

p·j p1 p2 · · · pi · · · p|h(p)| 1

And
E(A2) = γ2

1 p1 + γ2
2 p2 + · · ·+ γ2

|h(p)|p|h(p)|,

E(A) = γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|

Thus, we have

Cov(A, A) = E(A2)− E(A)2

= γ2
1 p1 + γ2

2 p2 + · · ·+ γ2
|h(p)|p|h(p)| − (γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|)

2

= D(A).

Thus, we have
ρ(A, A) = 1.

(4) If hB(pB) = hA(pA)
c, according to the supplement operation law was introduced in [41], we

obtain: hA(pA)
c = {(1− γi)(pi)| i = 1, 2, · · · , |h(p)|}, utilizing the northwest corner rule, the

joint distribution law between them can be determined and is shown in Table A3.

And

E(AAc) = γ1(1− γ1)p1 + γ2(1− γ2)p2 + · · ·+ γ|h(p)|

(
1− γ|h(p)|

)
p|h(p)|

= γ1 p1 − γ2
1 p1 + γ2 p2 − γ2

2 p2 + · · ·+ γ|h(p)|p|h(p)| − γ2
|h(p)|p|h(p)|

= γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)| −
(

γ2
1 p1 + γ2

2 p2 + · · ·+ γ2
|h(p)|p|h(p)|

)
= E(A)− E(A2).

Since
E(Ac) = (1− γ1)p1 + (1− γ2)p2 + · · ·+

(
1− γ|h(p)|

)
p|h(p)|

= p1 − γ1 p1 + p2 − γ2 p2 + · · ·+ p|h(p)| − γ|h(p)|p|h(p)|

= p1 + p2 + · · ·+ p|h(p)| −
(

γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|

)
= 1− E(A).

Thus, we have
Cov(A, Ac) = E(AAc)− E(A)E(Ac)

= E(A)− E(A2)− E(A)(1− E(A))

= −E(A2) + E(A)2.
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for D(A) = γ2
1 p1 + γ2

2 p2 + · · ·+ γ2
|h(p)|p|h(p)| − E(A)2 = E(A2)− E(A)2.

D(Ac) = (1− γ1)
2 p1 + (1− γ2)

2 p2 + · · ·+
(

1− γ|h(p)|

)2
p|h(p)| − (1− E(A))2

= p1 − 2γ1 p1 + γ2
1 p1 + p2 − 2γ2 p2 + γ2

2 p2 + · · ·+ p|h(p)| − 2γ|h(p)|p|h(p)| + γ2
|h(p)|p|h(p)| − (1− E(A))2

= p1 + p2 + · · ·+ p|h(p)| − 2
(

γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|

)
+ γ2

1 p1 + γ2
2 p2 + · · ·+ γ2

|h(p)|p|h(p)| − (1− E(A))2

= 1− 2E(A) + E(A2)− (1− E(A))2

= E
(

A2)− E(A)2.

Thus, we have

ρ(A, Ac) =
Cov(A, Ac)√

D(A)
√

D(Ac)
=

−E2(A) + E(A)2√
E(A2) − E(A)2

√
E(A2) − E(A)2

= −1.

This completes the proof. �

Table A3. Joint distribution law between hA(pA) and hA(pA)
c in Property 2.

1− γ1 1− γ2 · · · 1− γi · · · 1− γ|h(p)| pi·

γ1 p1 0 · · · 0 · · · 0 p1
γ2 0 p2 · · · 0 · · · 0 p2
...

...
...

...
...

...
...

...
γi 0 0 · · · pi · · · 0 pi
...

...
...

...
...

...
...

...
γ|h(p)| 0 0 · · · 0 · · · p|h(p)| p|h(p)|

p·j p1 p2 · · · pi · · · p|h(p)| 1
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