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Abstract. Neutrosophic set (NS) was originally proposed by Smarandache to handle indeterminate and
inconsistent information. It is a generalization of fuzzy sets and intuitionistic fuzzy sets. Wang and Smaran-
dache proposed interval neutrosophic sets (INS) which is a special case of NSs and would be extensively
applied to resolve practical issues. In this paper, we put forward generalized interval neutrosophic rough
sets based on interval neutrosophic relations by combining interval neutrosophic sets with rough sets. We
explore the hybrid model through constructive approach as well as axiomatic approach. On one hand, we
define generalized interval neutrosophic lower and upper approximation operators through constructive
approach. Moreover, we investigate the relevance between generalized interval neutrosophic lower (up-
per) approximation operators and particular interval neutrosophic relations. On the other hand, we study
axiomatic characterizations of generalized interval neutrosophic approximation operators, and also show
that different axiom sets of theoretical interval neutrosophic operators make sure the existence of different
classes of INRs that yield the same interval neutrosophic approximation operators. Finally, we introduce
generalized interval neutrosophic rough sets on two universes and a universal algorithm of multi-attribute
decision making based on generalized interval neutrosophic rough sets on two universes. Besides, an
example is given to demonstrate the validity of the new rough set model.

1. Introduction

Smarandache [24, 25] introduced neutrosophic sets (NSs) by combining non-standard analysis and a
tri-component set. A NS includes three membership functions (truth-membership function, indeterminacy
membership function and falsity-membership function), where every function value is a real standard or
non-standard subset of the nonstandard unit interval ]0−, 1+[. In a NS, indeterminacy is quantified explicitly,
and the three membership functions are independent from each other. Riverain [19] initiated neutrosophic
logics by applying the neutrosophic idea to logics. Guo et al. [9, 10] successfully applied NSs to image
processing and cluster analysis. Ali and Smarandache [1] studied complex neutrosophic sets.
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For the sake of conveniently applying NSs into real world, Wang et al. [28] proposed single valued
neutrosophic sets (SVNSs) which is a subclass of neutrosophic sets. Yang et al. [33] studied the single
valued neutrosophic relations in detail. Biswas et al. [2] studied TOPSIS method for multi-attribute group
decision-making under single-valued neutrosophic environment. Majumdar and Samanta [14] explored
distance, similarity, and entropy of SVNSs. A subsethood measure of SVNSs based on distance was studied
by Şahin and Küçük [22]. Peng et al. [18] proposed some operations of SVNSs from a new point of view
and further gave a novel approach to solve decision-making problems based on outranking relations of
simplified neutrosophic numbers. Based on the combination of trapezoidal fuzzy numbers and a single
valued neutrosophic set, Ye [39] introduced trapezoidal neutrosophic set and explored its application to
multiple attribute decision-making. At the same time, Ye [40] also presented a simplified neutrosophic
harmonic averaging projection measure and its multiple attribute decision making method with simplified
neutrosophic information.

To deal with more complex problems, Wang et al. [27] introduced interval neutrosophic sets (INSs)
that take values on the subinterval of [0, 1]. Zhang et al. [44] studied some properties about INSs and
their application in multicriteria decision making problems. Subsequently, Zhang et al. [45] proposed an
outranking approach for multi-criteria decision-making problems with INSs. Ye [38] proposed correlation
coefficients of INSs, and applied it to interval neutrosophic decision-making problems. Liu and Shi [11] gave
a generalized hybrid weighted average operator based on interval neutrosophic hesitant set and studied
its application to multiple attribute decision making. Liu and Wang [12] proposed interval neutrosophic
prioritized OWA operator on the basis of prioritized aggregated operator and prioritized ordered weighted
average (POWA) operator and further studied its application to multiple attribute decision making. Ma
et al. [13] proposed an interval neutrosophic linguistic multi-criteria group decision-making method and
explored its application in selecting medical treatment options. Yang et al. [32] studied linear assignment
method for INSs. Şahin [21] introduced cross-entropy measure on INSs and applied it to multicriteria
decision making.

Rough set theory was established by Pawlak and it has been proved to be an efficient tool to handle
imprecise information. In the development of rough set theory, there are two main methods—constructive
approach and axiomatic approach. In the constructive approach, there are many primitive notions such as
arbitrary binary relations on the universe, partitions or coverings of the universe, neighborhood systems
and so on, then the lower and upper approximation operators can be constructed based on these existed
structures [7, 8, 35, 37, 41]. On the other hand, in the axiomatic approach, one always can characterize
rough approximation operators by a set of axioms [15, 26, 29, 36, 42, 43, 46].

In recent years, many scholars have focused on the research of combining neutrosophic sets with rough
sets. Salama and Broumi [20] investigated the roughness of neutrosophic sets. Broumi and Smarandache
[3] put forward rough neutrosophic sets as well as interval neutrosophic rough sets [4]. Yang et al. [34]
proposed single valued neutrosophic rough sets which is a hybrid model of single valued neutrosophic sets
and rough sets. The study of generalized interval neutrosophic rough sets based on interval neutrosophic
relations is still a blank. In the present paper, we shall introduce generalized neutrosophic rough sets based
on interval neutrosophic relations and explore the model from both constructive and axiomatic approaches.
We also apply the new model to multi-attribute decision making problems.

The rest of the paper is organized as follows. In the next section, we briefly recall some basic notions
and operations. In Section 3, we propose generalized interval neutrosophic rough sets based on interval
neutrosophic relations through constructive method and some basic properties are explored. We investi-
gate the connection between special interval neutrosophic relations and generalized interval neutrosophic
lower (upper) approximation operators. Section 4 illustrates the axiomatic characterizations of generalized
interval neutrosophic approximation operators. In Section 5, we introduce generalized interval neure-
osophic rough sets on two universes and an algorithm of multi-attribute decision making based on the
generalized model. Furthermore, we use an example to demonstrate the validity of the generalized interval
neutrosophic rough set model. The last section summarizes the conclusion and gives an outlook for future
research.
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2. Preliminaries

In this section, we recall some basic notions and propositions which will be used in the paper.

2.1. Interval Numbers and their Operations

Definition 2.1. ([5, 23, 30, 31]). Let ã = [aL, aU] = {x|aL
≤ x ≤ aU

}, then ã is said to be an interval number. If
0 ≤ aL

≤ x ≤ aU, then ã is called a positive interval number.

For any two interval numbers ã = [aL, aU] and b̃ = [bL, bU], the operations between them are given as follows:
(1) ã = b̃⇐⇒ aL = bL, aU = bU;
(2) ã + b̃ = [aL + bL, aU + bU];
(3) ã − b̃ = [aL

− bU, aU
− bL].

Definition 2.2. ([6]). Let LI = {[u, v] ∈ [0, 1] × [0, 1]|u ≤ v} and ∀ [u1, v1], [u2, v2] ∈ LI, [u1, v1] ≤LI [u2, v2] ⇐⇒
u1 ≤ u2 and v1 ≤ v2. The tuple (LI,≤LI ) is referred to as a complete bounded lattice.

It is obvious that the elements in LI are all interval numbers, so we can apply the operations of interval
numbers to the elements of LI. Thus, the smallest element of LI is 0LI = [0, 0] and the greatest element of LI

is 1LI = [1, 1]. Besides, the operators Z and Y on (LI,≤LI ) are defined as follows:

[u1, v1] Z [u2, v2] = [min{u1,u2}, min{v1, v2}],
[u1, v1] Y [u2, v2] = [max{u1,u2}, max{v1, v2}],

for any [u1, v1], [u2, v2] ∈ LI.

Definition 2.3. ([30]). Let ã = [aL, aU] and b̃ = [bL, bU] be two interval numbers, lã = aU
− aL and lb̃ = bU

− bL,
then the degree of possibility of ã ≥LI b̃ is defined as follows:

p(ã ≥LI b̃) = max{1− max( bU
−aL

lã+lb̃
, 0), 0}.

2.2. Neutrosophic Sets and Interval Neutrosophic Sets

Definition 2.4. ([24]). Let U be a space of points (objects), with a generic element in U denoted by x. A NS A in U is
characterized by a truth-membership function TA, an indeterminacy-membership function IA and a falsity-membership
function FA, where ∀x ∈ U, TA(x), IA(x) and FA(x) are real standard or non-standard subsets of ]0−, 1+[.

Definition 2.5. ([24]). Let A and B be two NSs in U. If ∀x ∈ U, inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x), inf
IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x), sup FA(x) ≥ sup FB(x), then we say that A is contained
in B, denoted by A b B.

In order to apply NSs conveniently, Wang et al. proposed INSs as follows.

Definition 2.6. ([27]). Let U be a space of points (objects), with a generic element in U denoted by x, and Int[0, 1]
be the set of all closed subintervals of [0, 1]. An INS A in U is characterized by a truth-membership function TA, an
indeterminacy-membership function IA and a falsity-membership function FA, where ∀x ∈ U, TA(x) = [inf TA(x),
sup TA(x)], IA(x) = [inf IA(x), sup IA(x)] and FA(x) = [inf FA(x), sup FA(x)] ∈ Int[0, 1], and 0 ≤ sup TA(x)+ sup
IA(x)+ sup FA(x) ≤ 3.

The INS A can be denoted by A = {〈x,TA(x), IA(x),FA(x)〉 | x ∈ U} or A = (TA, IA,FA). ∀x ∈ U, A(x) =
(TA(x), IA(x),FA(x)), and (TA(x), IA(x),FA(x)) is called an interval neutrosophic number.

In this paper, the family of all INSs in U will be denoted by INS(U). Let A be an INS in U. If ∀x ∈ U, inf
TA(x) = sup TA(x) = 0, inf IA(x) = sup IA(x) = 1 and inf FA(x) = sup FA(x) = 1, then we say A is an empty INS,
denoted by ∅. If ∀x ∈ U, inf TA(x) = sup TA(x) = 1, inf IA(x) = sup IA(x) = 0 and inf FA(x) = sup FA(x) = 0,
then we say A is a full INS, denoted by U. ∀ α, β, γ ∈ Int[0, 1], α̂, β, γ represents a constant INS satisfying
Tα̂,β,γ(x) = α, Iα̂,β,γ(x) = β,Fα̂,β,γ(x) = γ for all x ∈ U.
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Definition 2.7. ([27]). Let A and B be two INSs in U. If ∀x ∈ U, TA(x) ≤LI TB(x), IA(x) ≥LI IB(x), and
FA(x) ≥LI FB(x), then we say that A is contained in B, denoted by A b B.

Definition 2.8. ([27]). Let A be an INS in U. The complement of A is denoted by Ac and is defined as TAc (x) = FA(x),
IAc (x) = [1, 1] − IA(x) and FAc (x) = TA(x).

For any y ∈ U, an INS 1y and its complement 1U−{y} are given as follows: ∀x ∈ U,

T1y (x) =

{
[1, 1], x = y
[0, 0], x , y , I1y (x) = F1y (x) =

{
[0, 0], x = y
[1, 1], x , y ;

T1U−{y} (x) =

{
[0, 0], x = y
[1, 1], x , y , I1U−{y} (x) = F1U−{y} (x) =

{
[1, 1], x = y
[0, 0], x , y .

Definition 2.9. ([27]). Let A and B be two INSs in U.
(1) The union of A and B is an INS C, denoted by C = A d B, where

TC(x) = TA(x) Y TB(x),
IC(x) = IA(x) Z IB(x),

FC(x) = FA(x) Z FB(x),

for all x in U.
(2) The intersection of A and B is an INS D, denoted by D = A e B, where

TD(x) = TA(x) Z TB(x),
ID(x) = IA(x) Y IB(x),

FD(x) = FA(x) Y FB(x),

for all x in U.

It is obvious that A d B is the smallest INS which contains both A and B, and A e B is the largest INS
which is contained in both A and B.

Proposition 2.10. Let A and B be two INSs in U, the following properties can be obtained:
(1) A b A d B and B b A d B;
(2) A e B b A and A e B b B;
(3) (Ac)c = A;
(4) (A d B)c = Ac e Bc;
(5) (A e B)c = Ac d Bc.

Proof. The results are straightforward by Definitions 2.7–2.9.

2.3. Operations for INNs

Definition 2.11. ([44]). Let A = 〈[inf TA, sup TA], [inf IA, sup IA], [inf FA, sup FA]〉 and B = 〈[inf TB, sup TB], [inf
IB, sup IB], [inf FB, sup FB]〉 be two INNs. The operations for A and B are defined based on the Archimedean t-norm
and t-conorm as follows:

A ⊕ B = 〈[l−1(l(inf TA) + l(inf TB)), l−1(l(sup TA) + l(sup TB))],
[k−1(k(inf IA) + k(inf IB)), k−1(k(sup IA) + k(sup IB))],
[k−1(k(inf FA) + k(inf FB)), k−1(k(sup FA) + k(sup FB))]〉.

Definition 2.12. ([44]). Let A = 〈[inf TA, sup TA], [inf IA, sup IA], [inf FA, sup FA]〉 be an INN. The score function
s(A), accuracy function a(A), and certainty function c(A) of the INN A are defined as follows, respectively:

(1) s(A) = [ inf TA + 1− sup IA + 1− sup FA, sup TA + 1− inf IA + 1− inf FA],
(2) a(A) = [ min {inf TA− inf FA, sup TA− sup FA}, max {inf TA− inf FA, sup TA− sup FA}],
(3) c(A) = [ inf TA, sup TA].
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Definition 2.13. ([44]). Let A and B be two INNs. The order between them is defined as follows:
(1) If p(s(A) ≥LI s(B)) > 0.5, then A is greater than B which means A is superior to B, denoted by A � B.
(2) If p(s(A) ≥LI s(B)) = 0.5 and p(a(A) ≥LI a(B)) > 0.5, then A is greater than B which means A is superior to B,

denoted by A � B.
(3) If p(s(A) ≥LI s(B)) = 0.5, p(a(A) ≥LI a(B)) = 0.5 and p(c(A) ≥LI c(B)) > 0.5, then A is greater than B which

means A is superior to B, denoted by A � B.
(4) If p(s(A) ≥LI s(B)) = 0.5, p(a(A) ≥LI a(B)) = 0.5 and p(c(A) ≥LI c(B)) = 0.5, then A is equal to B which means

A and B are indiscernible, denoted by A ∼ B.

2.4. Pawlak rough sets and single valued neutrosophic rough sets

Definition 2.14. ([16, 17]). Let R be an equivalence relation on a non-empty finite universe U. Then the pair (U,R)
is referred as to a Pawlak approximation space. ∀X ⊆ U, the lower and upper approximations of X w.r.t. (U,R) are
defined as follows:

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ X , ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}. The pair (R(X),R(X)) is called a Pawlak rough set. R and R are called lower and
upper approximation operators, respectively.

Definition 2.15. ([28]). Let U be a space of points (objects), with a generic element in U denoted by x. A SVNS A
in U is described by three membership functions—a truth-membership function TA, an indeterminacy membership
function IA, and a falsity-membership function FA, where ∀x ∈ U, TA(x), IA(x),FA(x) ∈ [0, 1]. The SVNS A can be
expressed as A= {〈x,TA(x), IA(x),FA(x)〉 | x ∈ U} or A= (TA, IA,FA). ∀x ∈ U, A(x) = (TA(x), IA(x),FA(x)), and
(TA(x), IA(x),FA(x)) is referred as to a single valued neutrosophic number.

A SVNS R in U × U is referred to as a single valued neutrosophic relation (SVNR) in U, denoted by
R= {〈(x, y),TR(x, y), IR(x, y),FR(x, y)〉 | (x, y) ∈ U × U}, where TR : U × U −→ [0, 1], IR : U × U −→ [0, 1], and
FR : U × U −→ [0, 1] represent the truth-membership function, indeterminacy membership function, and
falsity-membership function of R, respectively.

Definition 2.16. ([34]). Let R be a SVNR in U, the tuple (U,R) is called a single valued neutrosophic approximation
space. ∀A ∈ SVNS(U), the lower and upper approximations of A w.r.t. (U,R), denoted by R(A) and R(A), are two
SVNSs whose membership functions are defined as: ∀x ∈ U,

TR(A)(x) =
∧

y∈U(FR(x, y) ∨ TA(y)),
IR(A)(x) =

∨
y∈U((1 − IR(x, y)) ∧ IA(y)),

FR(A)(x) =
∨

y∈U(TR(x, y) ∧ FA(y));
TR(A)(x) =

∨
y∈U(TR(x, y) ∧ TA(y)),

IR(A)(x) =
∧

y∈U(IR(x, y) ∨ IA(y)),
FR(A)(x) =

∧
y∈U(FR(x, y) ∨ FA(y)).

The pair (R(A),R(A)) is called a single valued neutrosophic rough set of A w.r.t. (U,R). R and R are referred to as the
single valued neutrosophic lower and upper approximation operators, respectively.

3. The Constructive Approach of Generalized Interval Neutrosophic Rough Sets Based on Interval
Neutrosophic Relations

3.1. The notion of generalized interval neutrosophic rough sets based on interval neutrosophic relations

Broumi and Smarandache [4] put forward interval neutrosophic rough sets in which the based-relations
are equivalence relations. Yang et al. [34] proposed single valued neutrosophic rough set model which is a
hybrid model of single valued neutrosophic sets and rough sets. In this subsection, we will present interval
neutrosophic relations and generalized interval neutrosophic rough sets based on interval neutrosophic
relations.
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Definition 3.1. ([27]). An INS in U ×U is referred to as an interval neutrosophic relation (INR) in U, denoted by
R = {〈(x, y),TR(x, y), IR(x, y),FR(x, y)〉 | (x, y) ∈ U ×U}, where TR : U ×U −→ Int[0, 1], IR : U ×U −→ Int[0, 1],
and FR : U × U −→ Int[0, 1] represent the truth-membership function, indeterminacy-membership function, and
falsity-membership function of R, respectively.

Let R be an INR in U. If TR(x, x) = [1, 1] and IR(x, x) = FR(x, x) = [0, 0] for all x ∈ U, then we
say R is reflexive. If TR(x, y) = TR(y, x), IR(x, y) = IR(y, x) and FR(x, y) = FR(y, x) for all x, y ∈ U, then
we say R is symmetric. If

∨
y∈U

TR(x, y) = [1, 1] and
∧

y∈UIR(x, y) =
∧

y∈UFR(x, y) = [0, 0] for all x ∈ U,

then we say R is serial. If
∨

y∈U
(TR(x, y) Z TR(y, z)) ≤LI TR(x, z), IR(x, z) ≤LI

∧
y∈U(IR(x, y) Y TR(y, z)) and

FR(x, z) ≤LI
∧

y∈U(FR(x, y) Y FR(y, z)) for all x, y, z ∈ U, then we say R is transitive.

Definition 3.2. Let R be an INR in U, the tuple (U,R) is referred to as an interval neutrosophic approximation space.
∀A ∈ INS(U), the generalized lower and upper approximations of A w.r.t. (U,R) are two INSs, denoted by R(A) and
R(A), whose membership functions are defined as follows: ∀x ∈ U,

TR(A)(x) =
∧

y∈U
(FR(x, y) Y TA(y)),

IR(A)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y)),

FR(A)(x) =
∨

y∈U

(TR(x, y) Z FA(y));

TR(A)(x) =
∨

y∈U

(TR(x, y) Z TA(y)),

IR(A)(x) =
∧

y∈U
(IR(x, y) Y IA(y)),

FR(A)(x) =
∧

y∈U
(FR(x, y) Y FA(y)).

The pair (R(A),R(A)) is called a generalized interval neutrosophic rough set of A w.r.t. (U,R). R and R are called the
generalized interval neutrosophic lower and upper approximation operators, respectively.

Table 1: The interval neutrosophic relation R.

R x1 x2

x1 〈[0.1, 0.4], [0.2, 0.3], [0.7, 0.9]〉 〈[0.2, 0.4], [0.1, 0.2], [0.9, 1]〉
x2 〈[0.4, 0.6], [0.3, 0.4], [0.2, 0.4]〉 〈[0.8, 0.9], [0.2, 0.3], [0, 0.1]〉
x3 〈[0.8, 0.9], [0.1, 0.2], [0.1, 0.3]〉 〈[0.7, 0.9], [0.1, 0.3], [0.1, 0.2]〉
x4 〈[0.5, 0.8], [0.3, 0.4], [0.2, 0.3]〉 〈[0, 0.1], [0, 0.2], [0.8, 1]〉

R x3 x4

x1 〈[0.8, 1], [0.2, 0.4], [0, 0.1]〉 〈[0.1, 0.3], [0.3, 0.4], [0.8, 1]〉
x2 〈[0.9, 1], [0.1, 0.3], [0, 0.1]〉 〈[0, 0.1], [0.2, 0.3], [0.9, 1]〉
x3 〈[0.7, 0.8], [0.4, 0.6], [0.2, 0.3]〉 〈[0.9, 1], [0.4, 0.6], [0.1, 0.3]〉
x4 〈[0, 0.1], [0.3, 0.4], [0.8, 0.9]〉 〈[0, 0.2], [0.1, 0.2], [0.8, 0.9]〉

Example 3.3. Let U = {x1, x2, x3, x4}. R ∈ INS(U ×U) is an INR given in Table 1. Assume an INS
A = {〈x1, [0.5, 0.8], [0.2, 0.4], [0.1, 0.3]〉, 〈x2, [0.7, 0.9], [0.2, 0.4], [0.5, 0.6]〉,

〈x3, [0.1, 0.2], [0.4, 0.6], [0.3, 0.7]〉, 〈x4, [0.2, 0.6], [0.3, 0.5], [0.1, 0.4]〉}.
By Definition 3.2, we can obtain the lower and upper approximations of A w.r.t. (U,R) as follows:

R(A)(x1) = 〈[0.1, 0.2], [0.4, 0.6], [0.3, 0.7]〉, R(A)(x1) = 〈[0.2, 0.4], [0.2, 0.4], [0.3, 0.7]〉,

R(A)(x2) = 〈[0.1, 0.2], [0.4, 0.6], [0.5, 0.7]〉, R(A)(x2) = 〈[0.7, 0.9], [0.2, 0.4], [0.2, 0.4]〉,

R(A)(x3) = 〈[0.2, 0.3], [0.4, 0.6], [0.5, 0.7]〉, R(A)(x3) = 〈[0.7, 0.9], [0.2, 0.4], [0.1, 0.3]〉,

R(A)(x4) = 〈[0.5, 0.8], [0.4, 0.6], [0.1, 0.3]〉, R(A)(x4) = 〈[0.5, 0.8], [0.2, 0.4], [0.2, 0.3]〉.
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Remark 3.4. (1) If R in Definition 3.2 is an equivalence relation, then

TR(x, y) =

{
[1, 1], y ∈ [x]R
[0, 0], y < [x]R

, IR(x, y) = FR(x, y) =

{
[0, 0], y ∈ [x]R
[1, 1], y < [x]R

.

By Definition 3.2, we have

TR(A)(x) =
∧

y∈U
(FR(x, y) Y TA(y)) =

∧
y∈[x]R

TA(y),

IR(A)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y)) =
∨

y∈[x]R

IA(y),

FR(A)(x) =
∨

y∈U

(TR(x, y) Z FA(y)) =
∨

y∈[x]R

FA(y),

TR(A)(x) =
∨

y∈U

(TR(x, y) Z TA(y)) =
∨

y∈[x]R

TA(y),

IR(A)(x) =
∧

y∈U
(IR(x, y) Y IA(y)) =

∧
y∈[x]R

IA(y),

FR(A)(x) =
∧

y∈U
(FR(x, y) Y FA(y)) =

∧
y∈[x]R

FA(y),

which means that the interval neutrosophic rough sets proposed in [4] is a special case of the generalized interval
neutrosophic rough sets.

(2) If R in Definition 3.2 is degenerated to a single interval neutrosophic relation and A is degenerated to a
single valued neutrosophic set, then Definition 3.2 is consistent to the notion of single valued neutrosophic rough sets
proposed in [34], which means that the single valued neutrosophic rough sets proposed in [34] is a special case of the
generalized interval neutrosophic rough sets.

3.2. The properties of generalized interval neutrosophic approximation operators

Next, we explore the properties of generalized interval neutrosophic lower and upper approximation
operators.

Theorem 3.5. Let (U,R) be an interval neutrosophic approximation space. The interval neutrosophic lower and
upper approximation operators defined in Definition 3.2 have the following properties: ∀A,B ∈ INS(U), ∀α, β, γ ∈
Int[0, 1],

(1) R(U) = U, R(∅) = ∅;
(2) If A b B, then R(A) b R(B) and R(A) b R(B);
(3) R(A e B) = R(A) e R(B), R(A d B) = R(A) d R(B);
(4) R(A) d R(B) b R(A d B), R(A e B) b R(A) e R(B);
(5) R(Ac) = (R(A))c,R(Ac) = (R(A))c;
(6) R(A d α̂, β, γ) = R(A) d α̂, β, γ, R(A e α̂, β, γ) = R(A) e α̂, β, γ;
(7) R(∅) = ∅ ⇐⇒ R(α̂, β, γ) = α̂, β, γ, R(U) = U⇐⇒ R(α̂, β, γ) = α̂, β, γ.

Proof. (2) and (4) can be obtained straightforwardly from Definition 3.2. We just need to verify (1), (3) and
(5)-(7).

(1) By Definition 3.2, we have ∀x ∈ U,
TR(U)(x) =

∧
y∈U

(FR(x, y) Y TU(y)) =
∧

y∈U
(FR(x, y) Y [1, 1]) = [1, 1],

IR(U)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IU(y)) =
∨

y∈U

(([1, 1] − IR(x, y)) Z [0, 0]) = [0, 0],

FR(U)(x) =
∨

y∈U

(TR(x, y) Z FU(y)) =
∨

y∈U

(TR(x, y) Z [0, 0]) = [0, 0],

Thus, R(U) = U.
TR(∅)(x) =

∨
y∈U

(TR(x, y) Z T∅(y)) =
∨

y∈U

(TR(x, y) Z [0, 0]) = [0, 0],
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IR(∅)(x) =
∧

y∈U
(IR(x, y)) Y I∅(y)) =

∧
y∈U

(IR(x, y)) Y [1, 1]) = [1, 1],

FR(∅)(x) =
∧

y∈U
(FR(x, y) Y F∅(y)) =

∧
y∈U

(FR(x, y) Y [1, 1]) = [1, 1].

Consequently, R(∅) = ∅.
(3) By Definitions 2.9 and 3.2, we have ∀x ∈ U,
TR(AeB)(x) =

∧
y∈U

(FR(x, y) Y TAeB(y))

=
∧

y∈U
(FR(x, y) Y (TA(y) Z TB(y)))

= (
∧

y∈U
(FR(x, y) Y (TA(y)))) Z (

∧
y∈U

(FR(x, y) Y (TB(y))))

= TR(A)(x) Z TR(B)(x)
= TR(A)eR(B)(x),

IR(AeB)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IAeB(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z (IA(y) Y IB(y)))

= (
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y))) Y (
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y)))

= IR(A)(x) Y IR(B)(x)
= IR(A)eR(B)(x),

FR(AeB)(x) =
∨

y∈U

(TR(x, y) Z FAeB(y))

=
∨

y∈U

(TR(x, y) Z (FA(y) Y FB(y)))

= (
∨

y∈U

(TR(x, y) Z FA(y))) Y (
∨

y∈U

(TR(x, y) Z FB(y)))

= FR(A)(x) Y FR(B)(x)
= FR(A)eR(B)(x).

Therefore, R(A e B) = R(A) e R(B).
Similarly, we can prove that R(A d B) = R(A) d R(B).

(5) By Definitions 2.8 and 3.2, we have
TR(Ac)(x) =

∧
y∈U

(FR(x, y) Y TAc (y))

=
∧

y∈U
(FR(x, y) Y FA(y))

= FR(A)(x)
= T(R(A))c (x),

IR(Ac)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IAc (y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z ([1, 1] − IA(y)))

= [1, 1] −
∧

y∈U
(IR(x, y) Y IA(y))

= [1, 1] − IR(A)(x)
= I(R(A))c (x),

FR(Ac)(x) =
∨

y∈U

(TR(x, y) Z FAc (y))

=
∨

y∈U

(TR(x, y) Z TA(y))

= TR(A)(x)
= F(R(A))c (x).
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(6) TR(Adα̂,β,γ)(x) =
∧

y∈U
(FR(x, y) Y TAdα̂,β,γ(y))

=
∧

y∈U
(FR(x, y) Y TA(y) Y Tα̂,β,γ(y))

=
∧

y∈U
(FR(x, y) Y TA(y) Y α)

=
∧

y∈U
(FR(x, y) Y TA(y)) Y α

= TR(A)(x) Y Tα̂,β,γ(x)
= TR(A)dα̂,β,γ(x),

IR(Adα̂,β,γ)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IAdα̂,β,γ(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y) Z Iα̂,β,γ(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y) Z β)

=
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y)) Z β

= IR(A)(x) Z Iα̂,β,γ(x)
= IR(A)dα̂,β,γ(x),

FR(Adα̂,β,γ)(x) =
∨

y∈U

(TR(x, y) Z FAdα̂,β,γ(y))

=
∨

y∈U

(TR(x, y) Z FA(y) Z Fα̂,β,γ(y))

=
∨

y∈U

(TR(x, y) Z FA(y) Z γ)

=
∨

y∈U

(TR(x, y) Z FA(y)) Z γ

= FR(A)(x) Z Fα̂,β,γ(x)
= FR(A)dα̂,β,γ(x).

Similarly, we can prove that R(A e α̂, β, γ) = R(A) e α̂, β, γ.
(7) On one hand, if R(∅) = ∅, then by (6), we have R(α̂, β, γ) = R(∅d α̂, β, γ) = R(∅)d α̂, β, γ = α̂, β, γ.On the

other hand, assume R(α̂, β, γ) = α̂, β, γ, take α = [0, 0] and β = γ = [1, 1], i.e. α̂, β, γ = ∅, then we get R(∅) = ∅.

So R(∅) = ∅ ⇐⇒ R(α̂, β, γ) = α̂, β, γ. Similarly, we can prove that R(U) = U⇐⇒ R(α̂, β, γ) = α̂, β, γ.

Theorem 3.6. Let R1 and R2 be two INRs in U. ∀A ∈ INS(U), we have
(1) R1 d R2(A) = R1(A) e R2(A);

(2) R1 d R2(A) = R1(A) d R2(A).

Proof. (1) According to Definitions 2.9 and 3.2, ∀x ∈ U,
TR1dR2(A)(x) =

∧
y∈U

(FR1dR2 (x, y) Y TA(y))

=
∧

y∈U
((FR1 (x, y) Z FR2 (x, y)) Y TA(y))

=
∧

y∈U
((FR1 (x, y) Y TA(y)) Z (FR2 (x, y) Y TA(y)))

= (
∧

y∈U
(FR1 (x, y) Y TA(y))) Z (

∧
y∈U

(FR2 (x, y) Y TA(y)))

= TR1(A)(x) Z TR2(A)(x)
= TR1(A)eR2(A)(x),

IR1dR2(A)(x) =
∨

y∈U

(([1, 1] − IR1dR2 (x, y)) Z IA(y))
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=
∨

y∈U

(([1, 1] − (IR1 (x, y) Z IR2 (x, y))) Z IA(y))

=
∨

y∈U

((([1, 1] − IR1 (x, y)) Y ([1, 1] − IR2 (x, y))) Z IA(y))

= (
∨

y∈U

(([1, 1] − IR1 (x, y)) Z IA(y))) Y (
∨

y∈U

(([1, 1] − IR2 (x, y)) Z IA(y)))

= IR1(A)(x) Y IR2(A)(x)
= IR1(A)eR2(A)(x),

FR1dR2(A)(x) =
∨

y∈U

(TR1dR2 (x, y) Z FA(y))

=
∨

y∈U

((TR1 (x, y) Y TR2 (x, y)) Z FA(y))

=
∨

y∈U

((TR1 (x, y) Z FA(y)) Y (TR2 (x, y) Z FA(y)))

= (
∨

y∈U

(TR1 (x, y) Z FA(y))) Y (
∨

y∈U

(TR2 (x, y) Z FA(y)))

= FR1(A)(x) Y FR2(A)(x)
= FR1(A)eR2(A)(x).

Consequently, R1 d R2(A) = R1(A) e R2(A).
(2) According to Proposition 2.10 (5) and Theorem 3.5 (5), we have
R1 d R2(A) = (R1 d R2(Ac))c

= (R1(Ac) e R2(Ac))c

= (R1(Ac))c d (R2(Ac))c

= R1(A) d R2(A).

Theorem 3.7. Let R1 and R2 be two INRs in U. ∀A ∈ INS(U), we have
(1) R1(A) e R2(A) b R1(A) d R2(A) b R1 e R2(A);

(2) R1 e R2(A) b R1(A) e R2(A) b R1(A) d R2(A).

Proof. (1) According to Definition 3.2, ∀x ∈ U,
TR1eR2(A)(x) =

∧
y∈U

(FR1eR2 (x, y) Y TA(y))

=
∧

y∈U
((FR1 (x, y) Y FR2 (x, y)) Y TA(y)))

=
∧

y∈U
((FR1 (x, y) Y TA(y)) Y (FR2 (x, y) Y TA(y)))

≥LI (
∧

y∈U
(FR1 (x, y) Y TA(y))) Y (

∧
y∈U

(FR2 (x, y) Y TA(y)))

= TR1(A)(x) Y TR2(A)(x)
= TR1(A)dR2(A)(x),

IR1eR2(A)(x) =
∨

y∈U

(([1, 1] − IR1eR2 (x, y)) Z IA(y))

=
∨

y∈U

(([1, 1] − (IR1 (x, y) Y IR2 (x, y))) Z IA(y))

=
∨

y∈U

(([1, 1] − IR1 (x, y)) Z ([1, 1] − IR2 (x, y)) Z IA(y))

=
∨

y∈U

((([1, 1] − IR1 (x, y)) Z IA(y)) Z (([1, 1] − IR2 (x, y)) Z IA(y)))

≤LI (
∨

y∈U

(([1, 1] − IR1 (x, y)) Z IA(y))) Z (
∨

y∈U

(([1, 1] − IR2 (x, y)) Z IA(y)))

= IR1(A)(x) Z IR2(A)(x)
= IR1(A)dR2(A)(x),
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FR1eR2(A)(x) =
∨

y∈U

(TR1eR2 (x, y) Z FA(y))

=
∨

y∈U

((TR1 (x, y) Z TR2 (x, y)) Z FA(y))

=
∨

y∈U

((TR1 (x, y) Z FA(y)) Z (TR2 (x, y) Z FA(y)))

≤LI (
∨

y∈U

(TR1 (x, y) Z FA(y))) Z (
∨

y∈U

(TR2 (x, y) Z FA(y)))

= FR1(A)(x) Z FR2(A)(x)
= FR1(A)dR2(A)(x).

It is obvious that R1(A) e R2(A) b R1(A) d R2(A). Hence, we get that R1(A) e R2(A) b R1(A) d R2(A) b
R1 e R2(A).

(2) According to (1) and Theorem 3.5 (5), we have
R1 e R2(A) = (R1 e R2(Ac))c

b (R1(Ac) d R2(Ac))c

= (R1(Ac))c e (R2(Ac))c

= R1(A) e R2(A).
Consequently, R1 e R2(A) b R1(A) e R2(A) b R1(A) d R2(A).

Remark 3.8. Let R1 and R2 be two INRs in U. ∀A ∈ INS(U). If R1 b R2, then
R2(A) b R1(A) and R1(A) b R2(A).

Next, we study the relationships between special INRs and generalized interval neutrosophic approxi-
mation operators.

Theorem 3.9. Let (U,R) be an interval neutrosophic approximation space. R and R are the lower and upper
approximation operators defined in Definition 3.2, then we have the following results:

(1) R is serial⇐⇒ R(α̂, β, γ) = α̂, β, γ,∀α, β, γ ∈ Int[0, 1],
⇐⇒ R(∅) = ∅,

⇐⇒ R(α̂, β, γ) = α̂, β, γ,∀α, β, γ ∈ Int[0, 1],
⇐⇒ R(U) = U;

(2) R is reflexive⇐⇒ R(A) b A, ∀A ∈ INS(U),
⇐⇒ A b R(A), ∀A ∈ INS(U);

(3) R is symmetric⇐⇒ R(1U−{x})(y) = R(1U−{y})(x), ∀x, y ∈ U,
⇐⇒ R(1x)(y) = R(1y)(x), ∀x, y ∈ U;

(4) R is transitive⇐⇒ R(A) b R(R(A)), ∀A ∈ INS(U),
⇐⇒ R(R(A)) b R(A), ∀A ∈ INS(U).

Proof. According to Theorem 3.5 (5), we can see that R and R are a pair of dual operators. Thus, we need
only to consider the properties of the lower approximation operator.

(1) By Theorem 3.5 (7), it suffices to verify that
R is serial⇐⇒ R(α̂, β, γ) = α̂, β, γ, ∀α, β, γ ∈ Int[0, 1].
“ =⇒ ” If R is serial, then for any x ∈ U,

∨
y∈U

TR(x, y) = [1, 1] and
∧

y∈UIR(x, y) =
∧

y∈UFR(x, y) = [0, 0].

∀α, β, γ ∈ Int[0, 1], ∀x ∈ U, by Definition 3.2,
TR(α̂,β,γ)(x) =

∧
y∈U

(FR(x, y) Y Tα̂,β,γ(y))

=
∧

y∈U
(FR(x, y) Y α)

=
∧

y∈U
FR(x, y) Y α

= [0, 0] Y α
= α,
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IR(α̂,β,γ)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z Iα̂,β,γ(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z β)

=
∨

y∈U

(([1, 1] − IR(x, y))) Z β

= ([1, 1] −
∧

y∈U
IR(x, y)) Z β

= [1, 1] Z β
= β,

FR(α̂,β,γ)(x) =
∨

y∈U

(TR(x, y) Z Fα̂,β,γ(y))

=
∨

y∈U

(TR(x, y) Z γ)

=
∨

y∈U

TR(x, y) Z γ

= [1, 1] Z γ
= γ.

Therefore, R(α̂, β, γ) = α̂, β, γ for any α, β, γ ∈ Int[0, 1].
“⇐= ” If R(α̂, β, γ) = α̂, β, γ for any α, β, γ ∈ Int[0, 1]. Take α = [0, 0], β = γ = [1, 1], then we have∨
y∈U

TR(x, y) =
∨

y∈U

(TR(x, y) Z [1, 1])

=
∨

y∈U

(TR(x, y) Z F∅(y))

= FR(∅)(x)
= [1, 1],

[1, 1] −
∧

y∈U
IR(x, y) =

∨
y∈U

(([1, 1] − IR(x, y)) Z [1, 1])

=
∨

y∈U

(([1, 1] − IR(x, y)) Z I∅(y))

= IR(∅)(x)
= [1, 1],

which implies that
∧

y∈U
IR(x, y) = [0, 0].∧

y∈U
FR(x, y) =

∧
y∈U

(FR(x, y) Y [0, 0]

=
∧

y∈U
(FR(x, y) Y T∅(y))

= TR(∅)(x)
= [0, 0].

Thus, R is serial.
(2) “ =⇒ ” If R is reflexive, then TR(x, x) = [1, 1] and IR(x, x) = FR(x, x) = [0, 0] hold for any x ∈ U. By

Definition 3.2, ∀A ∈ INS(U),∀x ∈ U,
TR(A)(x) =

∧
y∈U

(FR(x, y) Y TA(y))

≤LI FR(x, x) Y TA(x)
= [0, 0] Y TA(x)
= TA(x),

IR(A)(x) =
∨

y∈U

(([1, 1] − IR(x, y)) Z IA(y))

≥LI ([1, 1] − IR(x, x)) Z IA(x)
= ([1, 1] − [0, 0]) Z IA(x)
= IA(x),
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FR(A)(x) =
∨

y∈U

(TR(x, y) Z FA(y))

≥LI TR(x, x) Z FA(x)
= [1, 1] Z FA(x)
= FA(x).

Therefore, R(A) b A.
“⇐= ” If R(A) b A for any A ∈ INS(U), then ∀x ∈ U, by taking A = 1U−{x}, we have
TR(x, x) = (TR(x, x) Z [1, 1]) Y [0, 0]

= (TR(x, x) Z F1U−{x} (x)) Y (
∨

y∈U−{x}

(TR(x, y) Z F1U−{x} (y)))

=
∨

y∈U

(TR(x, y) Z F1U−{x} (y))

= FR(1U−{x})(x)
≥LI F1U−{x} (x)
= [1, 1],

[1, 1] − IR(x, x) = (([1, 1] − IR(x, x)) Z [1, 1]) Y [0, 0]
= (([1, 1] − IR(x, x)) Z IU−{x}(x)) Y (

∨
y∈U−{x}

(([1, 1] − IR(x, y)) Z I1U−{x} (y)))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z I1U−{x} (y))

= IR(1U−{x})(x)
≥LI I1U−{x} (x)
= [1, 1],

which implies that IR(x, x) = [0, 0],
FR(x, x) = (FR(x, x) Y [0, 0]) Z [1, 1]

= (FR(x, x) Y T1U−{x} (x)) Z (
∧

y∈U−{x}
(FR(x, y) Y T1U−{x} (y)))

=
∧

y∈U
(FR(x, y) Y T1U−{x} (y))

= TR(1U−{x})(x)
≤LI T1U−{x} (x)
= [0, 0].

Thus, R is reflexive.
Consequently, R is reflexive⇐⇒ R(A) b A, ∀A ∈ INS(U).

(3) According to Definition 3.2, ∀x, y ∈ U,

TR(1U−{x})(y) =
∧

z∈U
(FR(y, z) Y T1U−{x} (z))

= (FR(y, x) Y T1U−{x} (x)) Z (
∧

z∈U−{x}
(FR(y, z) Y T1U−{x} (z)))

= (FR(y, x) Y [0, 0]) Z [1, 1]
= FR(y, x),

TR(1U−{y})(x) =
∧

z∈U
(FR(x, z) Y T1U−{y} (z))

= (FR(x, y) Y T1U−{y} (y)) Z (
∧

z∈U−{y}
(FR(x, z) Y T1U−{y} (z)))

= (FR(x, y) Y [0, 0]) Z [1, 1]
= FR(x, y),

IR(1U−{x})(y) =
∨

z∈U

(([1, 1] − IR(y, z)) Z I1U−{x} (z))

= (([1, 1] − IR(y, x)) Z I1U−{x} (x)) Y (
∨

z∈U−{x}

(([1, 1] − IR(y, z)) Z I1U−{x} (z)))

= (([1, 1] − IR(y, x)) Z [1, 1]) Y [0, 0]
= [1, 1] − IR(y, x),
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IR(1U−{y})(x) =
∨

z∈U

(([1, 1] − IR(x, z)) Z I1U−{y} (z))

= (([1, 1] − IR(x, y)) Z I1U−{y} (y)) Y (
∨

z∈U−{y}

(([1, 1] − IR(x, z)) Z I1U−{y} (z)))

= (([1, 1] − IR(x, y)) Z [1, 1]) Y [0, 0]
= [1, 1] − IR(x, y),

FR(1U−{x})(y) =
∨

z∈U

(TR(y, z) Z F1U−{x} (z))

= (TR(y, x) Z F1U−{x} (x)) Y (
∨

z∈U−{x}

(TR(y, z) Z F1U−{x} (z)))

= (TR(y, x) Z [1, 1]) Y [0, 0]
= TR(y, x),

FR(1U−{y})(x) =
∨

z∈U

(TR(x, z) Z F1U−{y} (z))

= (TR(x, y) Z F1U−{y} (y)) Z (
∨

z∈U−{y}

(TR(x, z) Y F1U−{y} (z)))

= (TR(x, y) Z [1, 1]) Y [0, 0]
= TR(x, y),

Since R is symmetric iff ∀x, y ∈ U,TR(x, y) = TR(y, x), IR(x, y) = IR(y, x) and FR(x, y) = FR(y, x), R is symmetric
iff ∀x, y ∈ U,TR(1U−{x})(y) = TR(1U−{y})(x), IR(1U−{x})(y) = IR(1U−{y})(x), and FR(1U−{x})(y) = FR(1U−{y})(x), which means that
R is symmetric iff ∀x, y ∈ U, R(1U−{x})(y) = R(1U−{y})(x).

(4) “ =⇒ ” If R is transitive, then
∨

y∈U
(TR(x, y) Z TR(y, z)) ≤LI TR(x, z), IR(x, z) ≤LI

∧
y∈U(IR(x, y) Y IR(y, z))

and FR(x, z) ≤LI
∧

y∈U(FR(x, y) Y FR(y, z)) for all x, y, z ∈ U. According to Definition 3.2, ∀x ∈ U, we have

TR(R(A))(x) =
∧

y∈U
(FR(x, y) Y TR(A)(y))

=
∧

y∈U
(FR(x, y) Y (

∧
z∈U

(FR(y, z) Y TA(z))))

=
∧

z∈U

∧
y∈U

(FR(x, y) Y FR(y, z) Y TA(z))

=
∧

z∈U
(
∧

y∈U
(FR(x, y) Y FR(y, z) Y TA(z)))

≥LI
∧

z∈U
(FR(x, z) Y TA(z))

= TR(A)(x),
IR(R(A))(x) =

∨
y∈U

(([1, 1] − IR(x, y)) Z IR(A)(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z (
∨

z∈U

(([1, 1] − IR(y, z)) Z IA(z)))

=
∨

z∈U

∨
y∈U

(([1, 1] − IR(x, y)) Z ([1, 1] − IR(y, z)) Z IA(z))

=
∨

z∈U

(([1, 1] −
∧

y∈U
(IR(x, y)) Y IR(y, z)) Z IA(z))

≤LI
∨

z∈U

(([1, 1] − IR(x, z)) Z IA(z))

= IR(A)(x),
FR(R(A))(x) =

∨
y∈U

(TR(x, y) Z FR(A)(y))

=
∨

y∈U

(TR(x, y) Z (
∨

z∈U

(TR(y, z) Z FA(z)))

=
∨

z∈U

∨
y∈U

(TR(x, y) Z TR(y, z) Z FA(z))

=
∨

z∈U

(
∨

y∈U

(TR(x, y) Z TR(y, z)) Z FA(z))
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≤LI
∨

z∈U

(TR(x, z) Z FA(z))

= FR(A)(x).
Therefore, R(A) b R(R(A)).

“⇐= ” Assume R(A) b R(R(A)) for all A ∈ INS(U). ∀x, y, z ∈ U, let A = 1U−{z}, from the proving process
of (3), we have

TR(x, z) = FR(1U−{z})(x)
≥LI FR(R(1U−{z}))(x)
=
∨

y∈U

(TR(x, y) Z FR(1U−{z})(y))

=
∨

y∈U

(TR(x, y) Z TR(y, z)),

[1, 1] − IR(x, z) = IR(1U−{z})(x)
≥LI IR(R(1U−{z}))(x)
=
∨

y∈U

(([1, 1] − IR(x, y)) Z IR(1U−{z})(y))

=
∨

y∈U

(([1, 1] − IR(x, y)) Z ([1, 1] − IR(y, z)))

= [1, 1] −
∧

y∈U
(IR(x, y) Y IR(y, z)),

hence, IR(x, z) ≤LI
∧

y∈U
(IR(x, y) Y IR(y, z)),

FR(x, z) = TR(1U−{z})(x)
≤LI TR(R(1U−{z}))(x)
=
∧

y∈U
(FR(x, y) Y TR(1U−{z})(y))

=
∧

y∈U
(FR(x, y) Y FR(y, z)).

Therefore, R is transitive.

4. Axiomatic Characterizations of Generalized Interval Neutrosophic Approximation Operators

In this section, we will study the axiomatic characterizations of generalized interval neutrosophic lower
and upper approximation operators by restricting a pair of abstract theoretical interval neutrosophic set
operators.

Theorem 4.1. Let L: INS(U) −→ INS(U) be an interval neutrosophic set operator. Then, there exists an INR R in
U such that L(A) = R(A) for all A ∈ INS(U) iff L satisfies the following axioms (INSL1) and (INSL2) : ∀A,B ∈
INS(U), α, β, γ ∈ Int[0, 1],

(INSL1) L(A d α̂, β, γ) = L(A) d α̂, β, γ;
(INSL2) L(A e B) = L(A) e L(B).

Proof. “ =⇒ ” It is straightforward from Theorem 3.5.
“⇐= ” Suppose L satisfies axioms (INSL1) and (INSL2). By using L, we define an INR R = {〈(x, y),TR(x, y),

IR(x, y),FR(x, y)〉} as follows:
∀x, y ∈ U,TR(x, y) = FL(1U−{y})(x), IR(x, y) = [1, 1] − IL(1U−{y})(x),

FR(x, y) = TL(1U−{y})(x).
Moreover, we can obtain that for all A ∈ INS(U),

A = e
y∈U

(1U−{y} d Â(y)), where A(x) = 〈TA(x), IA(x),FA(x)〉.

In fact, for all x ∈ U, we have
T
e

y∈U
(1U−{y}dÂ(y))(x) =

∧
y∈U

T(1U−{y}dÂ(y))(x)

=
∧

y∈U
(T1U−{y} (x) Y TÂ(y)(x))
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= T1U−{x} (x) Y TÂ(x)(x) Z
∧

y∈U−{x}
(T1U−{y} (x) Y TÂ(y)(x))

= TA(x) Z [1, 1]
= TA(x),

I
e

y∈U
(1U−{y}dÂ(y))(x) =

∨
y∈U

I(1U−{y}dÂ(y))(x)

=
∨

y∈U

(I1U−{y} (x) Z IÂ(y)(x))

= I1U−{x} (x) Z IÂ(x)(x) Y
∨

y∈U−{x}

(I1U−{y} (x) Z IÂ(y)(x))

= IA(x) Y [0, 0]
= IA(x),

and

F
e

y∈U
(1U−{y}dÂ(y))(x) =

∨
y∈U

F(1U−{y}dÂ(y))(x)

=
∨

y∈U

(F1U−{y} (x) Z FÂ(y)(x))

= F1U−{x} (x) Z FÂ(x)(x) Y
∨

y∈U−{x}

(F1U−{y} (x) Z FÂ(y)(x))

= FA(x) Y [0, 0]
= FA(x),

So, A = e
y∈U

(1U−{y} d Â(y)).

By Definition 3.2, (INSL1) and (INSL2), we have

TR(A)(x) =
∧

y∈U
(FR(x, y) Y TA(y))

=
∧

y∈U
(TL(1U−{y})(x) Y TA(y))

=
∧

y∈U
(TL(1U−{y})(x) Y TÂ(y)(x))

=
∧

y∈U
(TL(1U−{y})dÂ(y)(x))

=
∧

y∈U
(TL(1U−{y}dÂ(y))(x))

= T
e

y∈U
(L(1U−{y}dÂ(y)))(x)

= TL( e
y∈U

(1U−{y}dÂ(y)))(x)

= TL(A)(x),

IR(A)(x) =
∨

y∈U

(([1, 1] − ([1, 1] − IL(1U−{y})(x))) Z IA(y))

=
∨

y∈U

(IL(1U−{y})(x) Z IÂ(y)(x))

=
∨

y∈U

(IL(1U−{y})dÂ(y)(x))

= I
e

y∈U
(L(1U−{y})dÂ(y))(x)

= I
e

y∈U
(L(1U−{y}dÂ(y)))(x)

= IL( e
y∈U

(1U−{y}dÂ(y)))(x)

= IL(A)(x),
and

FR(A)(x) =
∨

y∈U

(TR(x, y) Z FA(y))
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=
∨

y∈U

(FL(1U−{y})(x) Z FÂ(y)(x))

=
∨

y∈U

(FL(1U−{y})dÂ(y)(x))

= F
e

y∈U
(L(1U−{y})dÂ(y))(x)

= F
e

y∈U
(L(1U−{y}dÂ(y)))(x)

= FL( e
y∈U

(1U−{y}dÂ(y)))(x)

= FL(A)(x)
Thus, there exists an INR R such that L(A) = R(A).

Theorem 4.2. Let H: INS(U) −→INS(U) be an interval neutrosophic set operator. Then, there exists an INR R in
U such that H(A) = R(A) for all A ∈ INS(U) iff H satisfies the following axioms (INSH1) and (INSH2): ∀A,B ∈
INS(U), α, β, γ ∈ Int[0, 1],

(INSH1) H(A e α̂, β, γ) = H(A) e α̂, β, γ;
(INSH2) H(A d B) = H(A) dH(B).

Proof. “ =⇒ ” It is straightforward from Theorem 3.5.
“ ⇐= ” Suppose H satisfies axioms (INSH1) and (INSH2). By using H, we define an INR R =

{〈(x, y),TR(x, y), IR(x, y),FR(x, y)〉} as follows:
TR(x, y) = TH(1y)(x), IR(x, y) = IH(1y)(x), FR(x, y) = FH(1y)(x).

Moreover, we can obtain that for all A ∈ INS(U),
A = d

y∈U
(1y e Â(y)).

In fact, for all x ∈ U, we have
T
d

y∈U
(1yeÂ(y))(x) =

∨
y∈U

T1yeÂ(y)(x)

=
∨

y∈U

(T1y (x) Z TÂ(y)(x))

= T1x (x) Z TÂ(x)(x) Y
∨

y∈U−{x}

(T1y (x) Z TÂ(y)(x))

= TA(x) Y [0, 0]
= TA(x),

I
d

y∈U
(1yeÂ(y))(x) =

∧
y∈U

(I1yeÂ(y)(x))

=
∧

y∈U
(I1y (x) Y IÂ(y)(x))

= I1x (x) Y IÂ(x)(x) Z
∧

y∈U−{x}
(I1y (x) Y IÂ(y)(x))

= IA(x) Z [1, 1]
= IA(x),

and
F
d

y∈U
(1yeÂ(y))(x) =

∧
y∈U

(F1yeÂ(y)(x))

=
∧

y∈U
(F1y (x) Y FÂ(y)(x))

= F1x (x) Y FÂ(x)(x) Z
∧

y∈U−{x}
(F1y (x) Y FÂ(y)(x))

= FA(x) Z [1, 1]
= FA(x),

So, A = d
y∈U

(1y e Â(y)).

By Definition 3.2, (INSH1) and (INSH2), we have
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TR(A)(x) =
∨

y∈U

(TR(x, y) Z TA(y))

=
∨

y∈U

(TH(1y)(x) Z TA(y))

=
∨

y∈U

(TH(1y)(x) Z TÂ(y)(x))

=
∨

y∈U

(TH(1y)eÂ(y)(x))

=
∨

y∈U

(TH(1yeÂ(y))(x))

= T
d

y∈U
(H(1yeÂ(y)))(x)

= TH( d
y∈U

(1yeÂ(y)))(x)

= TH(A)(x),
IR(A)(x) =

∧
y∈U

(IR(x, y) Y IA(y))

=
∧

y∈U
(IH(1y)(x) Y IA(y))

=
∧

y∈U
(IH(1y)(x) Y IÂ(y)(x))

=
∧

y∈U
(IH(1y)eÂ(y)(x))

=
∧

y∈U
(IH(1yeÂ(y))(x))

= I
d

y∈U
(H(1yeÂ(y)))(x)

= IH( d
y∈U

(1yeÂ(y)))(x)

= IH(A)(x),
and

FR(A)(x) =
∧

y∈U
(FR(x, y) Y FA(y))

=
∧

y∈U
(FH(1y)(x) Y FA(y))

=
∧

y∈U
(FH(1y)(x) Y FÂ(y)(x))

=
∧

y∈U
(FH(1y)eÂ(y)(x))

=
∧

y∈U
(FH(1yeÂ(y))(x))

= F
d

y∈U
(H(1yeÂ(y)))(x)

= FH( d
y∈U

(1yeÂ(y)))(x)

= FH(A)(x).
Therefore, there exists an INR R such that H(A) = R(A).

Remark 4.3. If L,H : INS(U) −→ INS(U) satisfy (INSL1), (INSL2) and (INSU1), (INSU2), respectively. Then,
L(A) = (H(Ac))c and H(A) = (L(Ac))c. In this case, L and H are called a pair of dual operators. Furthermore, if L and
H are dual operators, then (INSL1), (INSL2) are equivalent to (INSU1), (INSU2).

Proof. It follows immediately from Theorem 3.5.

Next, we investigate axiomatic characterizations of other special generalized interval neutrosophic
approximation operators.
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Theorem 4.4. Let L,H : INS(U) −→ INS(U) be a pair of dual operators, then there exists a serial INR R in U such
that L(A) = R(A), H(A) = R(A) for all A ∈ INS(U) iff L satisfies axioms (INSL1), (INSL2) and one of the following
equivalent axioms about L, or equivalently H satisfies (INSU1), (INSU2) and one of the following equivalent axioms
about H:

(INSL3) L(∅) = ∅;
(INSU3) H(U) = U;
(INSL4) L(α̂, β, γ) = α̂, β, γ, for all α, β, γ ∈ Int[0, 1];
(INSU4) H(α̂, β, γ) = α̂, β, γ, for all α, β, γ ∈ Int[0, 1].

Proof. It follows immediately from Theorems 3.9 (1), 4.1 and 4.2.

Theorem 4.5. Let L,H : INS(U) −→ INS(U) be a pair of dual operators, then there exists a reflexive INR R in U
such that L(A) = R(A), H(A) = R(A) for all A ∈ INS(U) iff L satisfies axioms (INSL1), (INSL2) and (INSL5), or
equivalently H satisfies (INSU1), (INSU2) and (INSU5):

(INSL5) L(A) b A;
(INSU5) A b H(A).

Proof. It follows immediately from Theorems 3.9 (2), 4.1 and 4.2.

Theorem 4.6. Let L,H : INS(U) −→ INS(U) be a pair of dual operators, then there exists a symmetric INR R in U
such that L(A) = R(A), H(A) = R(A) for all A ∈ INS(U) iff L satisfies axioms (INSL1), (INSL2) and (INSL6), or
equivalently H satisfies (INSU1), (INSU2) and (INSU6):

(INSL6) L(1U−{y})(x) = L(1U−{x})(y), ∀x, y ∈ U;
(INSU6) H(1y)(x) = H(1x)(y), ∀x, y ∈ U.

Proof. It follows immediately from Theorems 3.9 (3), 4.1 and 4.2.

Theorem 4.7. Let L,H : INS(U) −→ INS(U) be a pair of dual operators, then there exists a transitive INR R in U
such that L(A) = R(A), H(A) = R(A) for all A ∈ INS(U) iff L satisfies axioms (INSL1), (INSL2) and (INSL7), or
equivalently H satisfies (INSU1), (INSU2) and (INSU7):

(INSL7) L(A) b L(L(A)), ∀A ∈ INS(U);
(INSU7) H(H(A)) b H(A), ∀A ∈ INS(U).

Proof. It follows immediately from Theorems 3.9 (4), 4.1 and 4.2.

5. An Application of Generalized Interval Neutrosophic Rough Sets in Multi-Attribute Decision Mak-
ing

5.1. An algorithm to medical diagnosis based on generalized interval neutrosophic rough sets

In order to conveniently apply generalized interval neutrosophic rough sets to real world, it is necessary
to extend the generalized interval neutrosophic rough sets on one universe in Section 4 to two universes
case.

Definition 5.1. Let U,V be two spaces of points (objects). An INS R in U × V is referred to as an INR from U to
V, denoted by R = {〈(x, y),TR(x, y), IR(x, y),FR(x, y)〉 | (x, y) ∈ U × V}, where TR, IR,FR : U × V −→ Int [0, 1]
represent the truth-membership function, indeterminacy-membership function and falsity-membership function of R,
respectively.
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Definition 5.2. Let R be an INR from U to V, the tuple (U,V,R) is referred to as an interval neutrosophic approxi-
mation space on two universes. ∀A ∈ INS(V), the lower and upper approximations of A w.r.t. (U,V,R) are two INSs
in U, denoted by R(A) and R(A), where ∀x ∈ U:

TR(A)(x) =
∧
y∈V

(FR(x, y) Y TA(y)),

IR(A)(x) =
∨
y∈V

(([1, 1] − IR(x, y)) Z IA(y)),

FR(A)(x) =
∨
y∈V

(TR(x, y) Z FA(y));

TR(A)(x) =
∨
y∈V

(TR(x, y) Z TA(y),

IR(A)(x) =
∧
y∈V

(IR(x, y) Y IA(y)),

FR(A)(x) =
∧
y∈V

(FR(x, y) Y FA(y)).

The pair (R(A),R(A)) is referred to as a generalized interval neutrosophic rough set on two universes.

Based on Definition 2.11, we can give the sum of two INSs as follows.

Definition 5.3. Let A and B be two INSs in U, the sum of A and B is defined as:
A � B = {〈x,A(x) ⊕ B(x)〉 | x ∈ U}.

Note that we can compare two interval numbers by Definitions 2.12 and 2.13. Moreover, by Definitions
5.2 and 5.3, we can apply generalized interval neutroshophic rough sets on two universes to multi-attribute
decision making problems.

In what follows, we will consider medical diagnosis problems based on generalized interval neutro-
sophic rough sets on two universes. Suppose that the universe U = {x1, x2, · · · , xm} represents a set of
diseases, and the universe V = {y1, y2, · · · , yn} represents a set of symptoms. Let R ∈ INR(U × V) be an
INR from U to V, where ∀(xi, y j) ∈ U × V, R(xi, y j) represents the degree that the disease xi (xi ∈ U) has the
symptom y j (y j ∈ V). Given a patient A, the symptoms of the patient (also denoted by A) are illustrated
by an INS A in the universe V. In the following, we give a six-steps algorithm to diagnose what kind of
disease the patient A is suffering from.

Algorithm
Step 1. According to Definition 5.2, we calculate the lower and upper approximations of A, namely R(A)

and R(A).
Step 2. According to Definition 5.3, we calculate R(A) � R(A).
Step 3. According to Definition 2.12, for all i ∈ {1, 2, · · · ,m}, we calculate s((R(A) � R(A))(xi)), a((R(A) �

R(A))(xi)) and c((R(A) � R(A))(xi)), respectively.
Step 4. According to Definition 2.13, for all i ∈ {1, 2, · · · ,m}, we compare all the s((R(A) � R(A))(xi)),

a((R(A) � R(A))(xi)) and c((R(A) � R(A))(xi)).
Step 5. The optimal choice is xk if there doesn’t exist i ∈ {1, 2, · · · , k − 1, k + 1, · · · ,m} such that (R(A) �

R(A))(xi) � (R(A) � R(A))(xk).
Step 6. If k has several values, then we take every xk as the optimal choice which means that the patient

is suffering from all the diseases {xk} at the same time.

5.2. An illustrative example

In this subsection, an example for medical diagnosis is illustrated as the demonstration of the established
algorithm proposed in Subsection 5.1.

We take into account the medical diagnosis problem partly adopted from [43] and adjust the hesitant
fuzzy environment to neutrosophic environment. Let U = {x1, x2, x3, x4} be four diseases (where xi (i =
1, 2, 3, 4) represent “common cold”, “malaria” “typhoid”, and “stomach disease”, respectively), and the
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universe V = {y1, y2, y3, y4, y5} be five symptoms (where y j ( j = 1, 2, 3, 4, 5) represent “fever”, “headache”,
“stomachache”, “cough”, and “chest-pain”, respectively). Let R be an INR from U to V which is actually a
medical knowledge statistic data of the relationship of the disease xi (xi ∈ U) and the symptom y j (y j ∈ V).
The statistic data is provided in Table 2.
Assume that the symptoms of a patient A are illustrated by an INS in the universe V as follows:

A = {〈y1, [0.8, 0.9], [0.2, 0.3], [0.1, 0.3]〉, 〈y2, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2]〉, 〈y3, [0.7, 0.8],
[0.2, 0.4], [0.1, 0.3]〉, 〈y4, [0.1, 0.2], [0.3, 0.4], [0.8, 0.9]〉, 〈y5, [0, 0.1], [0.1, 0.3], [0.8, 1]〉}.

Table 2: The interval neutrosophic relation R between the symptoms and diseases.

R x1 x2

y1 〈[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]〉 〈[0.8, 0.9], [0.1, 0.2], [0, 0.1]〉
y2 〈[0.5, 0.6], [0.3, 0.4], [0.2, 0.3]〉 〈[0.8, 0.9], [0.2, 0.3], [0, 0.1]〉
y3 〈[0, 0.1], [0.1, 0.2], [0.8, 0.9]〉 〈[0, 0.2], [0.1, 0.3], [0.7, 0.9]〉
y4 〈[0.7, 0.8], [0.3, 0.4], [0.2, 0.3]〉 〈[0, 0.1], [0, 0.2], [0.8, 1]〉
y5 〈[0.4, 0.5], [0.5, 0.6], [0.6, 0.7]〉 〈[0, 0.1], [0.1, 0.2], [0.9, 1]〉

R x3 x4

y1 〈[0.8, 1], [0.2, 0.4], [0, 0.1]〉 〈[0.1, 0.3], [0.3, 0.4], [0.8, 1]〉
y2 〈[0.9, 1], [0.1, 0.3], [0, 0.1]〉 〈[0, 0.1], [0.2, 0.3], [0.9, 1]〉
y3 〈[0.7, 0.8], [0.4, 0.6], [0.2, 0.3]〉 〈[0.9, 1], [0.4, 0.6], [0.1, 0.3]〉
y4 〈[0, 0.1], [0.3, 0.4], [0.8, 0.9]〉 〈[0, 0.2], [0.1, 0.2], [0.8, 0.9]〉
y5 〈[0, 0.2], [0.2, 0.4], [0.7, 1]〉 〈[0.1, 0.4], [0.2, 0.5], [0.7, 0.8]〉

According to Definition 5.2, we can obtain that
R(A) = {〈x1, [0.2, 0.3], [0.3, 0.4], [0.7, 0.8]〉, 〈x2, [0.7, 0.9], [0.3, 0.4], [0.1, 0.3]〉,

〈x3, [0.7, 0.8], [0.3, 0.4], [0.1, 0.3]〉, 〈x4, [0.7, 0.8], [0.3, 0.4], [0.1, 0.4]〉},
R(A) = {〈x1, [0.5, 0.6], [0.2, 0.3], [0.2, 0.3]〉, 〈x2, [0.8, 0.9], [0.1, 0.3], [0.1, 0.2]〉,

〈x3, [0.8, 0.9], [0.1, 0.3], [0.1, 0.2]〉, 〈x4, [0.7, 0.8], [0.2, 0.3], [0.1, 0.3]〉}.
Let k(x) = − log(x), then k−1(x) = e−x, l(x) = − log(1 − x), and l−1(x) = 1 − e−1(x). By Definitions 2.11 and 5.3,
we have

R(A) � R(A) = {〈x1, [0.60, 0.72], [0.06, 0.12], [0.14, 0.24]〉, 〈x2, [0.94, 0.99], [0.03, 0.12], [0.01, 0.06]〉,
〈x3, [0.94, 0.98], [0.03, 0.12], [0.01, 0.06]〉, 〈x4, [0.91, 0.96], [0.06, 0.12], [0.01, 0.12]〉}.

According to Definition 2.13, we can calculate the score functions, accuracy functions, and certainty func-
tions of the INN (R(A) � R(A))(xi) (i = 1, 2, 3, 4) as follows:

s((R(A) � R(A))(x1)) = [2.24, 2.52], a((R(A) � R(A))(x1)) = [0.46, 0.48],
c((R(A) � R(A))(x1)) = [0.60, 0.72];

s((R(A) � R(A))(x2)) = [2.76, 2.95], a((R(A) � R(A))(x2)) = [0.93, 0.93],
c((R(A) � R(A))(x2)) = [0.94, 0.99];

s((R(A) � R(A))(x3)) = [2.76, 2.95], a((R(A) � R(A))(x3)) = [0.92, 0.93],
c((R(A) � R(A))(x3)) = [0.94, 0.98];

s((R(A) � R(A))(x4)) = [2.67, 2.89], a((R(A) � R(A))(x4)) = [0.84, 0.90],
c((R(A) � R(A))(x4)) = [0.91, 0.96].

By Definiton 2.13, we can compute that
p(s((R(A) � R(A))(x2)) ≥LI s((R(A) � R(A))(x1))) = 1,

p(s((R(A) � R(A))(x4)) ≥LI s((R(A) � R(A))(x1))) = 1,
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p(s((R(A) � R(A))(x2)) ≥LI s((R(A) � R(A))(x4))) = 1,

p(s((R(A) � R(A))(x2)) ≥LI s((R(A) � R(A))(x3))) = 0.5.

It follows that
s((R(A) � R(A))(x2)) � s((R(A) � R(A))(x4)) � s((R(A) � R(A))(x1)),

s((R(A) � R(A))(x3)) � s((R(A) � R(A))(x4)) � s((R(A) � R(A))(x1)).

In order to compare (R(A) � R(A))(x2) and ((R(A) � R(A))(x3), we calculate
p(a((R(A) � R(A))(x2)) ≥LI a((R(A) � R(A))(x3))) = 1,

which means that (R(A) � R(A))(x2) � (R(A) � R(A))(x3).
Thus, we can conclude

(R(A) � R(A))(x2) � (R(A) � R(A))(x3) � (R(A) � R(A))(x4) � (R(A) � R(A))(x1).
That is to say, the patient A is suffering from malaria x2.

Compared with the model and algorithm given in [34], the proposed model and algorithm in the present
paper is more flexible which means that it can dealt with more complex data and information since single
valued neutrosophic sets is a special case of interval neutrosophic sets. From the analysis above, we can
see that the algorithm based on generalized neutrosophic rough sets on two universes suits more general
decision-making environment.

6. Conclusion

In this paper, we propose the hybrid model—generalized interval neutrosophic rough sets based on
interval neutrosophic relations by combining two powerful tools of handling information—interval neutro-
sophic sets and rough sets. Furthermore, we investigate the generalized interval neutrosophic rough sets
from both constructive and axiomatic approaches in detail. Then, generalized interval neutrosophic rough
sets on two universes are introduced for wider application of generalized interval neutrosophic rough sets.
After that, we provide an algorithm to handle decision making problem in medical diagnosis based on
generalized interval neutrosophic rough sets on two universes. Finally, we present a numerical example
to demonstrate the validness of the proposed generalized interval neutrosophic rough sets. For the future
prospects, we will devote to explore the application of the proposed model to data mining and attribute
reduction.
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