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Abstract: Fault diagnosis is an important task for the normal operation and maintenance of equipment.
In many real situations, the diagnosis data cannot provide deterministic values and are usually
imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs) are very suitable for expressing
imprecise or uncertain fault information in real problems. However, existing literature scarcely deals
with fault diagnosis problems, such as gasoline engines and steam turbines with IVFSs. However,
the similarity measure is one of the important tools in fault diagnoses. Therefore, this paper proposes
a new similarity measure of IVFSs based on logarithmic function and its fault diagnosis method
for the first time. By the logarithmic similarity measure between the fault knowledge and some
diagnosis-testing samples with interval-valued fuzzy information and its relation indices, we can
determine the fault type and ranking order of faults corresponding to the relation indices. Then,
the misfire fault diagnosis of the gasoline engine and the vibrational fault diagnosis of a turbine
are presented to demonstrate the simplicity and effectiveness of the proposed diagnosis method.
The fault diagnosis results of gasoline engine and steam turbine show that the proposed diagnosis
method not only gives the main fault types of the gasoline engine and steam turbine but also provides
useful information for multi-fault analyses and predicting future fault trends. Hence, the logarithmic
similarity measure and its fault diagnosis method are main contributions in this study and they
provide a useful new way for the fault diagnosis with interval-valued fuzzy information.

Keywords: interval-valued fuzzy set; logarithmic similarity measure; fault diagnosis; gasoline engine;
steam turbine

1. Introduction

The technique of fault diagnoses has produced substantial economic benefits since various fault
diagnosis methods have been developed and applied in engineering areas. In many real situations,
the diagnosis data cannot provide deterministic values because the fault testing data obtained by
experts are usually imprecise or uncertain due to a lack of data, time pressure, or the experts’ limited
attention and knowledge. This kind of uncertainty in fault diagnosis problems can be handled by
using the fuzzy set theory proposed by Zadeh [1]. Fuzzy sets are suitable for solving fault diagnosis
problems with uncertain information. Hence, fuzzy approaches have been widely applied to fault
diagnosis processes [2–6]. However, it may be difficult to exactly quantify the membership degree
in the fuzzy set as an exact value in the interval [0, 1]. Usually, it is more suitable to represent its
membership degree by an interval. Therefore, Zadeh [7] further extended fuzzy sets to interval-valued
fuzzy sets (IVFSs). IVFSs are very suitable for expressing imprecise or uncertain fault information in
real problems. After that, fuzzy sets were also extended to extension sets [8], intuitionistic fuzzy sets
(IFSs) [9], vague sets (VSs) [10] and so on, and then they have been applied to various fault diagnoses.
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For instance, Wang [11] applied extension theory to the vibration fault diagnosis of generator sets.
Then, Ye [12] applied extension theory to the misfire fault diagnosis of gasoline engines. Under VS
environment, Ye et al. [13] presented the vibrational fault diagnosis method of steam turbine based
on the similarity measure of VSs. Further, Ye [14] proposed a vibrational fault diagnosis method of
steam turbine based on the fuzzy cross entropy measure of VSs. Based on the cosine of the included
angle between two vectors, Lu and Ye [15] put forward a similarity measure with the weight of cosine
similarity measures (CSMs) between VSs and applied it to the vibrational fault diagnosis of steam
turbine. Furthermore, Shi and Ye [16] indicated some insufficiency of existing CSMs and further
presented an improved CSM of VSs by considering the degree of hesitation and applied it to the
vibrational fault diagnosis of the steam turbine. Because a neutrosophic number [17] is composed of
its determinate and indeterminate parts and considered as a changeable interval number/uncertain
interval number, Kong et al. [17] also put forward the misfire fault diagnosis method of gasoline
engines by using the cosine function-based similarity measures of neutrosophic numbers. Ye [18]
further proposed fault diagnosis methods of steam turbine based on the exponential similarity measure
of neutrosophic numbers. As the extension of IFS, a single-valued neutrosophic set (SVNS) can be
described independently by truth, indeterminacy, and falsity membership degrees. Thus, the cosine
and tangent similarity measures of SVNSs [19,20] have been proposed and applied to the misfire
fault diagnosis of the gasoline engine and the vibrational fault diagnosis of steam turbine under
single-valued neutrosophic environment.

It is clear that the similarity measure is one of important tools in pattern recognition and fault
diagnoses. However, existing literature scarcely deals with fault diagnosis problems, such as the
gasoline engine and steam turbine, under interval-valued fuzzy environment. Furthermore, there is
not any logarithmic similarity measure in existing research. Since IVFSs are more suitable for the
expression of fault information in fault diagnosis problems, such as the misfire fault diagnosis of
gasoline engine and the vibrational fault diagnosis of steam turbine with interval-valued fuzzy
information [14,16,17]. Motivated by both logarithmic function and a distance measure, this paper
proposes a new similarity measure of IVFSs by combining the logarithmic function with the distance
measure (so-called logarithmic similarity measure) and its fault diagnosis method for both the misfire
fault diagnosis of the gasoline engine and the vibrational fault diagnosis of the steam turbine under
interval-valued fuzzy environment.

Since the logarithmic similarity measure and its fault diagnosis method are presented for the first
time, they are the main contributions in this study. However, the proposed fault diagnosis method
provides a new way for the fault diagnosis with interval-valued fuzzy information.

The remainder of this paper is structured as follows. Section 2 presents a new similarity measure
of IVFSs based on logarithmic function and a distance measure, which is called the logarithmic
similarity measure (LSM) of IVFSs, and investigates its properties. In Section 3, a fault diagnosis
method is established based on the proposed LSM of IVFSs and used for the misfire fault diagnosis
of the gasoline engine and the vibrational fault diagnosis of the steam turbine under interval-valued
fuzzy environment to demonstrate the simplicity and effectiveness of the developed fault diagnosis
method. Section 4 gives conclusions and a future research direction.

2. LSM between IVFSs

In this section, we propose the similarity measure of IVFSs based on the logarithmic function and
distance measure.

In the real world, it is difficult for an expert to exactly quantify the membership degree of the fuzzy
set as an exact number in the interval [0, 1]. Usually, it is more suitable to represent its membership
degree by an interval. Thus, Zadeh [7] proposed the concept of an IVFS.



Information 2018, 9, 36 3 of 12

Definition 1 [7]. An IVFS A in the universe of discourse X is given by

A =
{〈

x,
[
µL

A(x), µU
A(x)

]〉∣∣∣x ∈ X
}

,

where µL
A(x): X → [0, 1] and µU

A(x): X → [0, 1] are called the lower limit of membership degree and
the upper limit of membership degree of the element x to the set A, respectively, such that the condition
0 ≤ µL

A(x) ≤ µU
A(x) ≤ 1. For convenience, a basic element in the IVFS A is denoted by ã =

[
µL

A(x), µU
A(x)

]
for short, which is called an interval-valued fuzzy element (IVFE).

Let two IVFSs be A =
{〈

xi,
[
µL

A(xi), µU
A(xi)

]〉∣∣xi ∈ X
}

and B =
{〈

xi,
[
µL

B(xi), µU
B (xi)

]〉∣∣xi ∈ X
}

in the universe of discourse X = {x1, x2, . . . , xn}. Then, LSM between A and B can be defined as follows:

M(A, B) =
1
n

n

∑
i=1

log2

[
2−

(∣∣µL
A(xi)− µL

B(xi)
∣∣+ ∣∣µU

A(xi)− µU
B (xi)

∣∣)
2

]
. (1)

Obviously, LSM should satisfy the following properties (P1)–(P4):

(P1) 0 ≤M(A, B) ≤ 1;
(P2) M(A, B) = 1 if and only if A = B;
(P3) M(A, B) = M(B, A);
(P4) If C is an IVFS in X and A ⊆ B ⊆ C, then M(A, C) ≤M(A, B) and M(A, C) ≤M(B, C).

Proof
(P1) Since the value of log2(x) for x ∈ [1, 2] lies within [0, 1], the similarity measure value based on the

logarithmic function also lies within [0, 1]. Hence, there is 0 ≤M(A, B) ≤ 1.
(P2) For any two IVFSs A and B, if A = B, this implies µL

A(xi) = µL
B(xi) and µU

A(xi) = µU
B (xi)

for i = 1, 2, . . . , n and xi ∈ X. Thus, there are
∣∣µL

A(xi)− µL
B(xi)

∣∣ = 0 and
∣∣µU

A(xi)− µU
B (xi)

∣∣ = 0.
Hence M(A, B) = 1.

If M(A, B) = 1, this implies
∣∣µL

A(xi)− µL
B(xi)

∣∣ = 0 and
∣∣µU

A(xi)− µU
B (xi)

∣∣ = 0 for i = 1, 2, . . . , n
and xi ∈ X since log2(2) = 1. Then, there are µL

A(xi) = µL
B(xi) and µU

A(xi) = µU
B (xi) for i = 1, 2, . . . ,

n and xi ∈ X. Hence A = B.
(P3) The proof is straightforward.
(P4) If A ⊆ B ⊆ C, then this implies µL

A(xi) ≤ µL
B(xi) ≤ µL

C(xi) and µU
A(xi) ≤ µU

B (xi) ≤ µU
C (xi) for

i = 1, 2, . . . , n and xi ∈ X. Then, we have the following relations:∣∣µL
A(xi)− µL

B(xi)
∣∣ ≤ ∣∣µL

A(xi)− µL
C(xi)

∣∣, ∣∣µL
B(xi)− µL

C(xi)
∣∣ ≤ ∣∣µL

A(xi)− µL
C(xi)

∣∣,∣∣µU
A(xi)− µU

B (xi)
∣∣ ≤ ∣∣µU

A(xi)− µU
C (xi)

∣∣ and
∣∣µU

B (xi)− µU
C (xi)

∣∣ ≤ ∣∣µU
A(xi)− µU

C (xi)
∣∣.

Hence, M(A, C) ≤ M(A, B) and M(A, C) ≤ M(B, C) since the logarithmic measure function is
a decreasing function with the increase of the distance

(∣∣µL
A(xi)− µL

B(xi)
∣∣+ ∣∣µU

A(xi)− µU
B (xi)

∣∣)/2.

Therefore, the proofs of these properties are finished. �

Usually, one considers the importance of each element xi for xi ∈ X. Assume that the weight
of an element xi is wi (i = 1, 2, . . . , n) with wi ∈ [0, 1] and ∑n

i=1 wi = 1. Thus, we can introduce the
following weighted LSM between IVFSs A and B:

Mw(A, B) =
n

∑
i=1

wi log2

[
2−

(∣∣µL
A(xi)− µL

B(xi)
∣∣+ ∣∣µU

A(xi)− µU
B (xi)

∣∣)
2

]
. (2)

Especially when wi = 1/n for i = 1, 2, . . . , n, Equation (2) is reduced to Equation (1).
Similarly, the weighted LSM also satisfies the following properties (P1)–(P4):
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(P1) 0 ≤Mw(A, B) ≤ 1;
(P2) Mw(A, B) = 1 if and only if A = B;
(P3) Mw(A, B) = Mw(B, A);
(P4) If C is an IVFS in X and A ⊆ B ⊆ C, then Mw(A, C) ≤Mw(A, B) and Mw(A, C) ≤Mw(B, C).

By the above similar proofs, we can verify these properties (P1)–(P4), which are not repeated here.

3. Fault Diagnosis Method Based on the Proposed LSM and Its Applications

3.1. Fault Diagnosis Method

In this subsection, we develop a fault diagnosis method by using the proposed LSM of IVFSs.
For a fault diagnosis problem, assume that a set of m fault patterns (fault knowledge) is K = {K1,

K2, . . . , Km} and a set of n fault characteristics (attributes) is A = {A1, A2, . . . , An}. Then the fault
information of a fault pattern Kk (k = 1, 2, . . . , m) with respect to a fault characteristic Ai (i = 1, 2, . . . , n)
is represented by an IVFS Kk (k = 1, 2, . . . , m):

Kk =
{〈

Ai,
[
µL

Kk
(Ai), µU

Kk
(Ai)

]〉∣∣∣Ai ∈ A
}

.

Then, the information of a testing sample is represented by an IVFS Kts:

Kts =
{〈

Ai,
[
µL

Kts
(Ai), µU

Kts
(Ai)

]〉∣∣∣Ai ∈ A
}

.

The similarity measure value Sk (k = 1, 2, . . . , m) can be obtained by the following LSM between
Kts and Kk:

Sk = Mw(Kts, Kk) =
n

∑
i=1

wi log2

2−

(∣∣∣µL
Kts

(Ai)− µL
Kk
(Ai)

∣∣∣+ ∣∣∣µU
Kts

(Ai)− µU
Kk
(Ai)

∣∣∣)
2

 (3)

For easy fault diagnosis judgment, the LSM values of Sk (k = 1, 2, . . . , m) are normalized into the
values of relation indices within the interval [−1, 1] by the following formula:

ηk =
2Sk − Smin − Smax

Smax − Smin
, k = 1, 2, . . . , m, (4)

where Smax = max
1≤k≤m

{Sk} and Smin = min
1≤k≤m

{Sk}.
Thus, the relation indices can be ranked to determine the fault type or to predict a possible fault

trend for the tested equipment. If the maximum value of the relation indices is ηk = 1, then we can
determine that the testing sample Kts should belong to the fault pattern Kk.

The fault diagnosis process based on the LSM of IVFSs and relation indices are shown in Figure 1.
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Figure 1. Block diagram of fault diagnosis corresponding to the LSM of IVFSs and relation indices.

3.2. The Proposed Fault Diagnosis Method for Misfire Fault Diagnosis of Gasoline Engine

To demonstrate the application and effectiveness of the proposed fault diagnosis method,
we introduce the misfire fault diagnosis of the gasoline engine as a practical example, which is
discussed in [12,17].

Because burning quality of mixture gases descend in the combustion chamber of the gasoline
engine, it can descend its power, increase its fuel consumption, and aggravate its pollution of exhaust
emission. Therefore, we must find out bad burning status and eliminate the affected factors of
low burning quality in the engine so as to keep better operating performance of the engine. Then,
the components of the exhaust emission of engines mainly contains HC, NOx, CO, CO2, O2, water
vapor, etc., which can affect the burning quality of mixture gases in gasoline engines. The content of
the components under different burning conditions can be changed in some range with the change of
operating status or the occurrences of various mechanical and electronic faults in gasoline engines.
Hence, one can identify the operating status of gasoline engines by analyzing the change of exhaust
emission content.

Investigating the misfire fault diagnosis problem of the gasoline engine EQ6102, we can classify
the misfire faults of the engine into three kinds of fault forms: no misfire (normal work), slight misfire,
and severe misfire to indicate the operating status of the gasoline engine, where slight misfire indicates
the decline in the performance of ignition capacitance or the ignition delay, or the spark plug misfire
in a cylinder, and severe misfire implies the spark plug misfire in two cylinders of six cylinders.
According to field-test data of the gasoline engine, we can obtain the fault knowledge corresponding
to a set of the three kinds of fault forms K = {K1, K2, K3} with respect to a set of five characteristics
(five components) A = {A1, A2, A3, A4, A5}, which is shown in Table 1.

Table 1. Three kinds of fault forms for the engine EQ6102.

Kk
(Fault Knowledge) A1 (φHC × 10−2) A2 (φCO2 × 10−1) A3 (φNOx × 10) A4 (φCO × 10−1) A5 (φO2 )

K1 (Normal work) [0.03, 0.08] [0.51, 0.95] [0.03, 0.08] [0.3, 0.5] [0.062, 0.09]
K2 (Slight misfire) [0.01, 0.046] [0.426, 0.84] [0.04, 0.12] [0.29, 0.5] [0.04, 0.11]
K3 (Severe misfire) [0.2, 0.5] [0.3, 0.7] [0.1, 0. 3] [0.1, 0.3] [0.07, 0.15]

In Table 1, φHC × 10−2, φCO2 × 10−1, φNOx × 10, φCO × 10−1 and φO2 in the characteristic set
A = {A1, A2, A3, A4, A5} indicate the exhaust emission concentration in HC, CO2, NOx, CO and
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O2 expressed by volume percentage and the characteristic values of Ai are represented by IVFEs
(interval values).

To verify the effectiveness of the proposed fault diagnosis method, we introduce the nine sets of
real-testing samples (Kts for s = 1, 2, . . . , 9) for the engine EQ6102 from Ye [12] and Kong et al. [17],
which are shown in Table 2.

Table 2. Tasting samples of exhaust emission for the engine EQ6102.

Real-Tasting
Sample (Kts)

A1
(φHC × 10−2)

A2
(φCO2 × 10−1)

A3
(φNOx × 10)

A4
(φCO × 10−1) A5 (φO2 ) Actual Fault Form

Kt1 0.0455 0.47 0.033 0.48 0.0527 K2
Kt2 0.0572 0.75 0.062 0.42 0.0751 K1
Kt3 0.0261 0.65 0.086 0.453 0.0431 K2
Kt4 0.0312 0.62 0.051 0.287 0.1064 K2
Kt5 0.3761 0.45 0.139 0.179 0.1025 K3
Kt6 0.4220 0.52 0.188 0.194 0.0931 K3
Kt7 0.0189 0.81 0.091 0.459 0.0377 K2
Kt8 0.0555 0.86 0.057 0.39 0.0736 K1
Kt9 0.0551 0.85 0.050 0.386 0.0789 K1

Considering the importance of the five characteristics (five components), we introduce the weight
vector w = (w1, w2, w3, w4, w5)T = (0.05, 0.35, 0.3, 0.2, 0.1)T [7,12]. In Table 2, the characteristic values
can be considered as the interval value of the equality of its lower limit and upper limit.

First, the LSM values between Kts (s = 1, 2, . . . , 9) and Kk (k = 1, 2, 3) are calculated by use of
Equation (3). For example, the calculating process of Sk = Mw(Kt1, Kk) for k = 1, 2, 3 is presented
as follows:

S1 = Mw(Kt1, K1) =
5
∑

i=1
wi log2

[
2−

(∣∣∣µL
Kt1

(Ai)− µL
K1
(Ai)

∣∣∣+ ∣∣∣µU
Kt1

(Ai)− µU
K1
(Ai)

∣∣∣)/2
]

= 0.05 log2[2− (|0.0455− 0.03|+ |0.0455− 0.08|)/2 + 0.35 log2[2− (|0.47− 0.51|+ |0.47− 0.95|)/2
+0.3 log2[2− (|0.033− 0.03|+ |0.033− 0.08|)/2 + 0.2 log2[2− (|0.48− 0.3|+ |0.48− 0.5|)/2
+0.1 log2[2− (|0.0527− 0.062|+ |0.0527− 0.09|)/2 = 0.9069,

S2 = Mw(Kt1, K2) =
5
∑

i=1
wi log2

[
2−

(∣∣∣µL
Kt1

(Ai)− µL
K2
(Ai)

∣∣∣+ ∣∣∣µU
Kt1

(Ai)− µU
K2
(Ai)

∣∣∣)/2
]

= 0.05 log2[2− (|0.0455− 0.01|+ |0.0455− 0.046|)/2 + 0.35 log2[2− (|0.47− 0.426|+ |0.47− 0.84|)/2
+0.3 log2[2− (|0.033− 0.04|+ |0.033− 0.12|)/2 + 0.2 log2[2− (|0.48− 0.29|+ |0.48− 0.5|)/2
+0.1 log2[2− (|0.0527− 0.04|+ |0.0527− 0.11|)/2 = 0.9158,

S3 = Mw(Kt1, K3) =
5
∑

i=1
wi log2

[
2−

(∣∣∣µL
Kt1

(Ai)− µL
K3
(Ai)

∣∣∣+ ∣∣∣µU
Kt1

(Ai)− µU
K3
(Ai)

∣∣∣)/2
]

= 0.05 log2[2− (|0.0455− 0.2|+ |0.0455− 0.5|)/2 + 0.35 log2[2− (|0.47− 0.3|+ |0.47− 0.7|)/2
+0.3 log2[2− (|0.033− 0.1|+ |0.033− 0.3|)/2 + 0.2 log2[2− (|0.48− 0.1|+ |0.48− 0.3|)/2
+0.1 log2[2− (|0.0527− 0.07|+ |0.0527− 0.15|)/2 = 0.8494.

Using the similar calculation, we can obtain all the LSM values in Table 3.

Table 3. LSM values between Kts (s = 1, 2, . . . , 9) and Kk (k = 1, 2, 3) for the engine EQ6102.

Real-Tasting Sample (Kts)
LSM (Sk)

K1 K2 K3

Kt1 0.9069 0.9158 0.8494
Kt2 0.9189 0.9169 0.8537
Kt3 0.9162 0.9173 0.8647
Kt4 0.9157 0.9169 0.8831
Kt5 0.8569 0.8826 0.9013
Kt6 0.8641 0.8719 0.9013
Kt7 0.9145 0.9172 0.8323
Kt8 0.9189 0.9113 0.8245
Kt9 0.9189 0.9142 0.8265
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Then, the values of relation indices are calculated by Equation (4). For example, the calculating
process of the relation indices ηk (k = 1, 2, 3) is presented below:

η1 =
2S1 − Smin − Smax

Smax − Smin
=

2× 0.9069− 0.8494− 0.9158
0.9158− 0.8494

= 0.7318,

η2 =
2S2 − Smin − Smax

Smax − Smin
=

2× 0.9158− 0.8494− 0.9158
0.9158− 0.8494

= 1.0000,

η3 =
2S3 − Smin − Smax

Smax − Smin
=

2× 0.8494− 0.8494− 0.9158
0.9158− 0.8494

= −1.0000.

Using the similar calculation, the relation indices and diagnosis results of the proposed method
are obtained and shown in Table 4. From Tables 2 and 4, we can see that fault diagnosis results are the
same as actual fault types.

Table 4. Relation indices and fault diagnosis results of the engine EQ6102.

Real-Tasting Sample (Kts)
Relation Index (ηk)

Fault Diagnosis Result
K1 K2 K3

Kt1 0.7318 1.0000 −1.0000 K2
Kt2 1.0000 0.9387 −1.0000 K1
Kt3 0.9581 1.0000 −1.0000 K2
Kt4 0.9332 1.0000 −1.0000 K2
Kt5 −1.0000 0.1573 1.0000 K3
Kt6 −1.0000 −0.5807 1.0000 K3
Kt7 0.9365 1.0000 −1.0000 K2
Kt8 1.0000 0.8390 −1.0000 K1
Kt9 1.0000 0.8972 −1.0000 K1

Furthermore, one can easily diagnose or predict fault forms of the engine EQ6102 from Table 4.
For instance, for the real-tasting sample Kt2, the relation index regarding the fault form K1 is equal to 1,
which indicates the fault form K1 (no misfire), and then one can predict that the engine has the slight
misfire trend since the relation index regarding K2 is 0.9387 and the fault form K3 implies a very low
possibility of severe misfire due to the negative relation index (−1). Similarly, one can also diagnose
and predict fault forms corresponding to the relation indices for other testing samples in Table 4.

Obviously, the proposed fault diagnosis method can not only diagnose the main fault type of the
engine, but it can also predict the future fault trend of the engine by the relation indices.

3.3. The Proposed Fault Diagnosis Method for Vibrational Fault Diagnosis of Steam Turbine

In this subsection, the proposed fault diagnosis method is applied to the vibrational fault diagnosis
of the steam turbine to illustrate its effectiveness.

The vibration of huge steam turbine-generator sets suffer the influence of a lot of factors like the
mechanical structure, load, vacuum degree, hot inflation of cylinder body and rotor, fluctuation of
network load, temperature of lubricant oil, ground and so on. In generator sets, interactive effects in
these factors show the vibration of the generator sets. In the vibration fault diagnosis of the generator
sets, the relation between the cause and the fault symptom of the steam turbine has been established
in [14,16]. Now, we investigate the vibrational fault diagnosis of steam turbine by use of the proposed
fault diagnosis method to demonstrate its effectiveness.

Let us consider a set of 10 fault samples K = {K1(Unbalance), K2(Pneumatic force couple), K3(Offset
center), K4(Oil-membrane oscillation), K5(Radial impact friction of rotor), K6(Symbiosis looseness),
K7(Damage of antithrust bearing), K8(Surge), K9(Looseness of bearing block), K10(Non-uniform
bearing stiffness)} as the fault knowledge and a set of nine frequency ranges for different frequency
spectrum A = {A1(0.01–0.39f ), A2(0.4–0.49f ), A3(0.5f ), A4(0.51–0.99f ), A5(f ), A6(2f ), A7(3–5f ), A8(Odd
times of f ), A9(High frequency > 5f )} under operating frequency f as a characteristic set. Then,
the fault information of the fault knowledge Kk (k = 1, 2, . . . , 10) with respect to the frequency range
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(characteristic) Ai (i = 1, 2, . . . , 9) can be expressed by the form of IVFSs and is shown in Table 5 [14,16].
For convenient comparison with [14,16], assume that the weight of each characteristic Ai is wi = 1/9
for i = 1, 2, . . . , 9.

In the vibrational fault diagnosis of the steam turbine, two real-testing samples in [14,16] are
introduced as IVFSs:

Kt1 = {(A1, [0.0, 0.0]), (A2, [0.00, 0.00]), (A3, [0.1, 0.1]), (A4, [0.9, 0.9]),
(A5, [0.0, 0.0]), (A6, [0.0, 0.0]), (A7, [0.0, 0.0]), (A8, [0.0, 0.0]), (A9, [0.0, 0.0])},

Kt2 = {(A1, [0.39, 0.39]), (A2, [0.07, 0.07]), (A3, [0.00, 0.00]), (A4, [0.06, 0.06]),
(A5, [0.00, 0.00]), (A6, [0.13, 0.13]), (A7, [0.00, 0.00]), (A8, [0.00, 0.00]), (A9, [0.35, 0.35])}.

For the fault diagnoses of the testing samples Kt1 and Kt2, the LSM values and relation indices
between Kk (k = 1, 2, . . . , 10) and Kts (s = 1, 2) are calculated by Equations (3) and (4) based on the
above similar calculating processes; all of the LSM values and the relation indices and fault diagnosis
results are shown in Tables 6 and 7 respectively.

For the first real-testing sample Kt1, we can see from Table 7 that the fault form of the turbine is
K7 due to the maximum relation index (1.0000), which indicates that the vibration fault of the turbine
results firstly from the damage of antithrust bearing. Then, the fault form of surge contains high
possibility because the relation index of the fault form K8 are more than 0.5 and the fault form of
pneumatic force couple contains some possibility due to the fault form K2 with the positive relation
index of 0.4732. Obviously, the fault forms K5, K4, K6, K3, K10, and K9 contain lower possibility due
to the negative relation indices. Then, the fault form K1 implies a very low possibility due to the
minimum relation index (−1.0000). By actual checking, we discover that one of antithrust bearings is
damage. Therefore, it causes the violent vibration of the turbine. Hereby, all the faults are ranked as
K7→K8→K2→K5→K4→K6→K3→K10→K9→K1.

For the second real-testing sample Kt2, we can see from Table 7 that the vibration fault of the
turbine is firstly resulted from the radial impact friction of rotor (K5) and then the looseness of bearing
block (K9) and the symbiosis looseness (K6) contain high possibility because their relation indices are
more than 0.5. By actual checking, we discover the friction between the rotor and cylinder body in the
turbine, and then the vibration values of four ground bolts of the bearing between the turbine and
the gearbox are very different. We also discover that the gap between the nuts and the bearing block
is oversized. Thus, the looseness of the bearing block also causes the violent vibration of the turbine.
Hereby, all the faults are ranked as K5→K9→K6→K4→K2→K8→K3→K10→K7→K1.

Obviously, the proposed fault diagnosis method can not only diagnose the main fault type of the
steam turbine but it can also predict the future fault trend of the steam turbine by the relation indices.
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Table 5. Fault knowledge of steam turbine.

Kk (Fault Knowledge)
Frequency Range (f : Operating Frequency)

A1 (0.01–0.39f ) A2 (0.4–0.49f ) A3 (0.5f ) A4 (0.51–0.99f ) A5 (f ) A6 (2f ) A7 (3–5f ) A8 (Odd Times of f ) A9 (High Frequency > 5f )

K1 (Unbalance) [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.85, 1.00] [0.04, 0.06] [0.04, 0.07] [0.00, 0.00] [0.00, 0.00]
K2 (Pneumatic force couple) [0.00, 0.00] [0.28, 0.31] [0.09, 0.12] [0.55, 0.70] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.08, 0.13]

K3 (Offset center) [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.30, 0.58] [0.40, 0.62] [0.08, 0.13] [0.00, 0.00] [0.00, 0.00]
K4 (Oil-membrane oscillation) [0.09, 0.11] [0.78, 0.82] [0.00, 0.00] [0.08, 0.11] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]

K5 (Radial impact friction of rotor) [0.09, 0.12] [0.09, 0.11] [0.08, 0.12] [0.09, 0.12] [0.18, 0.21] [0.08, 0.13] [0.08, 0.13] [0.08, 0.12] [0.08, 0.12]
K6 (Symbiosis looseness) [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.18, 0.22] [0.12, 0.17] [0.37, 0.45] [0.00, 0.00] [0.22, 0.28]

K7 (Damage of antithrust bearing) [0.00, 0.00] [0.00, 0.00] [0.08, 0.12] [0.86, 0.93] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
K8 (Surge) [0.00, 0.00] [0.27, 0.32] [0.08, 0.12] [0.54, 0.62] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]

K9 (Looseness of bearing block) [0.85, 0.93] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.08, 0.12] [0.00, 0.00]
K10 (Non-uniform bearing stiffness) [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.77, 0.83] [0.19, 0.23] [0.00, 0.00] [0.00, 0.00]

Table 6. LSM values between Kk (k = 1, 2, . . . , 10) and Kts (s = 1, 2).

Kts

LSM (Sk)

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Kt1 0.7879 0.9409 0.8003 0.8191 0.8501 0.8088 0.9956 0.9449 0.7933 0.7963
Kt2 0.8133 0.8525 0.8415 0.8577 0.9043 0.8907 0.8231 0.8480 0.8935 0.8406

Table 7. Relation indices and fault diagnosis results of steam turbine.

Kts

Relation Index (ηk)
Fault Diagnosis Result

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Kt1 −1 0.4732 −0.8807−0.6993−0.4007−0.79861.0000 0.5117 −0.9476−0.9193 K7
Kt2 −1 −0.1380−0.3789−0.02521.0000 0.7014 −0.7850−0.23720.7612 −0.3993 K5
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3.4. Comparative Analysis with the Related Methods

First, the proposed diagnosis method with the misfire fault diagnosis method of the gasoline
engine EQ6102 based on the CSM of neutrosophic numbers was compared [17]. Based on the fault
diagnosis method introduced in [17], the interval sets expressed as fault information are firstly
transformed into the neutrosophic numbers, and then the CSM of neutrosophic numbers for the
fault diagnosis of the gasoline engine. Then, all the diagnosis results and the actual fault results are
shown in Table 8 for convenient comparison.

Table 8. Various misfire fault diagnoses and actual misfire fault results of the gasoline engine EQ6102.

Real-Tasting Sample (Kts) Fault Diagnosis Result in [17] Fault Diagnosis Result of the
New Diagnosis Method Actual Fault Result

Kt1 K2 K2 K2
Kt2 K1 K1 K1
Kt3 K2 K2 K2
Kt4 K2 K2 K2
Kt5 K3 K3 K3
Kt6 K3 K3 K3
Kt7 K2 K2 K2
Kt8 K1 K1 K1
Kt9 K1 K1 K1

Obviously, the new fault diagnosis method indicates the same fault diagnosis results as the ones
in [17] and actual fault results for the gasoline engine from Table 8. Then, the new fault diagnosis
method contains simpler calculation than the existing diagnosis method [17] because the latter has
to transform interval numbers into neutrosophic numbers, while the former does not have this
transformed process.

Second, the new diagnosis method and the diagnosis methods of the steam turbine based on the
cross entropy and cosine similarity measures of VSs introduced in [14,16] were compared. Based on
the fault diagnosis methods introduced in [14,16], the interval sets expressed as fault information are
firstly transformed into VSs, and then the cross entropy and cosine similarity measures of VSs are
used for the fault diagnosis of the steam turbine occur. For comparative convenience, all the diagnosis
results and the actual fault results are shown in Table 9.

Table 9. Various fault diagnosis results and actual fault results of the steam turbine.

Real-Tasting
Sample (Kts)

Ranking Order of Fault
Diagnoses in [14]

Ranking Order of Fault
Diagnoses in [16]

Ranking Order of Fault
Diagnoses Using the

New Diagnosis Method

Fault Diagnosis
Result

Actual Fault
Result

Kt1
K7→K8→K2→K5→K3→
K4→K6→K10→K9→K1

K7→K2→K8→K5→K6→
K3→K4→K10→K9→K1

K7→K8→K2→K5→K4→
K6→K3→K10→K9→K1

K7 K7

Kt2
K5→K9→K6→K2→K4→
K8→K3→K10→K7→K1

K5→K6→K9→K8→K2→
K3→K4→K10→K7→K1

K5→K9→K6→K4→K2→
K8→K3→K10→K7→K1

K5 K5

In Table 9, the new fault diagnosis method indicates the same fault diagnosis results as the ones
in [14,16] and the actual fault results for the steam turbine; there is little difference in their ranking
orders based on different diagnosis methods. However, the new fault diagnosis method contains
a simpler calculation than the existing methods [14,16] because the existing methods in [14,16] must
transform interval sets into VSs, while the former does not require this transformed process.

The comparative analysis above demonstrates that the new fault diagnosis method in this paper
is not only effective but also simpler than the existing diagnosis methods [14,16]. Therefore, it provides
a useful new way to perform fault diagnosis under an interval-valued fuzzy environment.

4. Conclusions

This paper proposed a LSM between IVFSs and its fault diagnosis method. Furthermore,
the proposed fault diagnosis method was applied to the misfire fault diagnosis of the gasoline engine
and the vibrational fault diagnosis of the steam turbine under an interval-valued fuzzy environment.
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These fault diagnosis results demonstrated the effectiveness and rationality of the proposed diagnosis
method. The proposed diagnosis method can not only diagnose the main fault type but it can also
predict future fault trends according to the relation indices. The proposed fault diagnosis method is
simpler than existing diagnosis methods based on the CSM and cross entropy measures. This method
not only extends existing diagnosis methods but also provides a useful new way for fault diagnoses
to be performed with interval-valued fuzzy information. Since the logarithmic similarity measure
and its fault diagnosis method in this study are presented for the first time, the developed fault
diagnosis technique will be extended to other fault diagnosis problems with single-valued neutrosophic
information [19,20] in the future.
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