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Abstract

In many applications involving epistemic uncertainties usually modeled by belief functions, it

is often necessary to approximate general (non-Bayesian) basic belief assignments (BBAs)

to subjective probabilities (called Bayesian BBAs). This necessity occurs if one needs to

embed the fusion result in a system based on the probabilistic framework and Bayesian

inference (e.g. tracking systems), or if one needs to make a decision in the decision making

problems. In this paper, we present a new fast combination method, called modified rigid

coarsening (MRC), to obtain the final Bayesian BBAs based on hierarchical decomposition

(coarsening) of the frame of discernment. Regarding this method, focal elements with prob-

abilities are coarsened efficiently to reduce computational complexity in the process of com-

bination by using disagreement vector and a simple dichotomous approach. In order to

prove the practicality of our approach, this new approach is applied to combine users’ soft

preferences in recommender systems (RSs). Additionally, in order to make a comprehen-

sive performance comparison, the proportional conflict redistribution rule #6 (PCR6) is

regarded as a baseline in a range of experiments. According to the results of experiments,

MRC is more effective in accuracy of recommendations compared to original Rigid Coarsen-

ing (RC) method and comparable in computational time.

Introduction

The theory of belief functions, known as Dempster-Shafer Theory (DST) was developed by

Shafer [1] in 1976 from Dempster’s works [2]. Belief functions allow one to model epistemic

uncertainty [3] and they have been already used in many applications since the 1990’s [4],

mainly those relevant to expert systems, decision-making support and information fusion. To

palliate some limitations (such as high computational compelxity) of DST, Dezert and Smar-

andache proposed an extended mathematical framework of belief functions with new efficient

quantitative and qualitative rules of combinations, which was called DSmT (Dezert and Smar-

andache Theory) in literature [5, 6] with applications listed in [7]. One of the major drawbacks

of DST and DSmT is their high computational complexities, on condition that the fusion
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space (i.e. frame of discernment—FoD) and the number of sources to combine are large.

DSmT is more complex than DST, and the Proportional Conflict Redistribution rule #6

(PCR6 rule) becomes computationally intractable in the worst case as soon as the cardinality

of the Frame of Discernment (FoD) is greater than six.

To reduce the computational cost of operations with belief functions when the number of

focal elements is very large, several approaches have been proposed by different authors. Basi-

cally, the existing approaches rely either on efficient implementations of computations as pro-

posed for instance in [8, 9], or on approximation techniques of original Basic Belief

Assignment (BBA) to combine [10–14], or both. From a fusion standpoint, two approaches

are usually adopted: 1) one can approximate at first each BBA in subjective probabilities and

use Bayes fusion rule to get the final Bayesian BBA [11, 12], or 2) one can fuse all the BBAs

with a fusion rule, typically Dempster-Shafer’s, or proportional conflict redistribution rule #6

(PCR6) rules (which is very costly in computations), and convert the combined BBA in a sub-

jective probability measure [10, 14]. The former method is the simplest method but it gener-

ates a high loss of information included in the original BBAs, whereas the latter method is

intractable for high dimension issues.

This paper presents a new combination method, called modified rigid coarsening (MRC),

to get the final Bayesian BBAs based on hierarchical decomposition (coarsening) of the frame

of discernment, which can be seen as an intermediary approach between the two aforemen-

tioned methods. This hierarchical structure allows to encompass bintree decomposition and

mass of coarsening FoD on it. To prove the practicality of our proposed method, MRC is

applied to combine users’ preferences so as to provide the suitable recommendation for RSs.

Preliminary work on original rigid coarsening (RC) has been published in our recent work

[15] (This is an extended version of the paper presented at the 20th IEEE International Confer-

ence on Information Fusion, XIAN, China). In this paper, more detailed analyses of this new

combination method are provided. More importantly, this innovative method is also applied

into the real application. These are all added values (contributions) of this paper.

The main contributions of this paper are:

1. the presentation of the FoD bintree decomposition on which will be done the BBAs

approximations;

2. user preferences in Recommender Systems (RSs) are modeled by DSmT-Modeling

Function.

In order to measure the efficiency and effectiveness of the MRC, it is integrated in the RSs

based on DSmT and compared to traditional methods in the experiments. The results show

that regarding the accuracy of recommendations, MRC is extremely close to classical PCR6;

and the computational time of MRC can be obviously superior to that of PCR6.

The remainder of this paper is organized as follows. In section 2, we review relevant prior

work on DST and DSmT first. In section 3, MRC is presented. In section 4, a recommendation

system based on DSmT, that employs MRC to combine users’ preferences, is shown. In section

5, we evaluate our proposed algorithm based on two public datasets: Movielens and Flixster.

Finally, we conclude and discuss future work.

Mathematical background

This section provides a brief reminder of the basics of DST and DSmT, which is necessary for

the presentation and understanding of the more general MRC of Section 3.

In DST framework, the frame of discernment (Here, we use the symbol ≜ to mean equals

by definition.) Y≜ fy1; . . . ; yng (n� 2) is a set of exhaustive and exclusive elements
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(hypotheses) which represents the possible solutions of the problem under consideration and

thus Shafer’s model assumes θi\ θj = ; for i 6¼ j in {1, . . ., n}. A basic belief assignment (BBA)

m(�) is defined by the mapping: 2Θ 7! [0, 1], verifying m(;) = 0 and ∑A22Θ m(A) = 1. In DSmT,

one can abandon Shafer’s model (if Shafer’s model doesn’t fit with the problem) and refute the

principle of the third excluded middle. The third excluded middle principle assumes the exis-

tence of the complement for any elements/propositions belonging to the power set 2Θ. Instead

of defining the BBAs on the power set 2Y ≜ ðY; [ Þ of the FoD, the BBAs are defined on the

so-called hyper-power set (or Dedekind’s lattice) denoted DY ≜ ðY; [ ; \ Þ whose cardinalities

follows Dedekind’s numbers sequence, see [6], Vol.1 for details and examples. A (generalized)

BBA, called a mass function, m(�) is defined by the mapping: DΘ 7! [0, 1], verifying m(;) = 0

and ∑A2DΘ m(A) = 1. The DSmT framework encompasses DST framework because 2Θ� DΘ.

In DSmT, we can take into account also a set of integrity constraints on the FoD (if known), by

specifying all the pairs of elements which are really disjoint. Stated otherwise, Shafer’s model is

a specific DSm model where all elements are deemed to be disjoint. A 2 DΘ is called a focal ele-

ment of m(.) if m(A)> 0. A BBA is called a Bayesian BBA if all of its focal elements are single-

tons and Shafer’s model is assumed, otherwise it is called non-Bayesian [1]. A full ignorance

source is represented by the vacuous BBA mv(Θ) = 1. The belief (or credibility) and plausibility

functions are respectively defined by BelðXÞ≜
P

Y2DYjY�X mðYÞ and

PlðXÞ≜
P

Y2DY jY \X 6¼; mðYÞ. BIðXÞ≜ ½BelðXÞ; PlðXÞ� is called the belief interval of X. Its length

UðXÞ≜PlðXÞ � BelðXÞmeasures the degree of uncertainty of X.

In 1976, Shafer did propose Dempster’s rule and we use DS index to refer to Dempster-Sha-

fer’s rule (DS rule) because Shafer did really promote Dempster’s rule in in his milestone book

[1]) to combine BBAs in DST framework. DS rule is defined by mDS(;) = 0 and 8A 2 2Θ \{;},

mDSðAÞ ¼
P

B;C22Y jB\C¼Am1ðBÞm2ðCÞ
1 �

P
B;C22Y jB\C¼;m1ðBÞm2ðCÞ

ð1Þ

The DS rule formula is commutative and associative and can be easily extended to the fusion

of S> 2 BBAs. Unfortunately, DS rule has been highly disputed during the last decades by

many authors because of its counter-intuitive behavior in high or even low conflict situations,

and that is why many rules of combination were proposed in literature to combine BBAs [16].

To palliate DS rule drawbacks, the very interesting PCR6 was proposed in DSmT and it is usu-

ally adopted (PCR6 rule coincides with PCR5 when combining only two BBAs [6]) in recent

applications of DSmT. The fusion of two BBAs m1(.) and m2(.) by the PCR6 rule is obtained by

mPCR6(;) = 0 and 8A 2 DΘ \{;}

mPCR6ðAÞ ¼ m12ðAÞ

þ
X

B2DYnfAgjA\ B¼;

m1ðAÞ
2m2ðBÞ

m1ðAÞ þm2ðBÞ
þ

m2ðAÞ
2m1ðBÞ

m2ðAÞ þm1ðBÞ

� �
ð2Þ

where m12(A) = ∑B,C2DΘ|B\C=A m1(B)m2(C) is the conjunctive operator, and each element A
and B are expressed in their disjunctive normal form. If the denominator involved in the frac-

tion is zero, then this fraction is discarded. The general PCR6 formula for combining more

than two BBAs altogether is given in [6], Vol. 3. We adopt the generic notation mPCR6
12
ð:Þ ¼

PCR6ðm1ð:Þ;m2ð:ÞÞ to denote the fusion of m1(.) and m2(.) by PCR6 rule. PCR6 is not associa-

tive and PCR6 rule can also be applied in DST framework (with Shafer’s model of FoD) by

replacing DΘ by 2Θ in Eq (2).
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Modified rigid coarsening for fusion of Bayesian BBAs

Here, we introduce the principle of MRC of FoD to reduce the computational complexity of

PCR6 combination of original Bayesian BBAs. Considering the case of non-Bayesian BBAs, it

requires decoupling all non-singletons in these BBAs in advance, The fusion of original non-

Bayesian BBAs needs to be decoupled by using DSmP in advance, which will explain in

Section 4.

Rigid coarsening

This proposal was initially called rigid coarsening (RC) in our previous works [17–19] and cur-

rently improved in our recent work [15]. The goal of this coarsening is to replace the original

(refined) FoD Θ by a set of coarsened ones to make computation of the PCR6 rule tractable.

Because we consider here only Bayesian BBA to combine, their focal elements are only single-

tons of the FoD Y≜ fy1; . . . ; yng, with n� 2, and we assume Shafer’s model of the FoD Θ. A

coarsening of the FoD Θ means to replace it with another FoD less specific of smaller dimen-

sion O = {ω1, . . ., ωk} with k< n from the elements of Θ. This can be done in many ways

depending the problem under consideration. Generally, the elements of O are singletons of Θ,

and disjunctions of elements of Θ. For example, if Θ = {θ1, θ2, θ3, θ4}, then a possible coarsened

frame built from Θ could be, for instance, O = {ω1 = θ1, ω2 = θ2, ω3 = θ3[ θ4}, or O = {w1 =

θ1[ θ2, ω2 = θ3[ θ4}, etc.

Definition 1: When dealing with Bayesian BBAs, the projection (For clarity and convenience,
we put explicitly as upper index the FoD for which the belief mass refers) mO(.) of the original
BBA mΘ(.) is simply obtained by taking

mOðoiÞ ¼
X

yj�oi

mYðyjÞ ð3Þ

The rigid coarsening process is a simple dichotomous approach of coarsening obtained as

follows:

• If n = |Θ| is an even number:

The disjunction of the n/2 first elements θ1 to yn
2

of Θ define the element ω1 of O, and the last

n/2 elements yn
2
þ1 to θn of Θ define the element ω2 of O, that is

O≜ fo1 ¼ y1 [ . . . [ yn
2
;o2 ¼ yn

2
þ1 [ . . . [ yng

and based on Eq (3), one has

mOðo1Þ ¼
X

j¼1;...;n
2

mYðyjÞ ð4Þ

mOðo2Þ ¼
X

j¼n
2
þ1;...;n

mYðyjÞ ð5Þ

For example, if Θ = {θ1, θ2, θ3, θ4}, and one considers the Bayesian BBA mΘ(θ1) = 0.1,

mΘ(θ2) = 0.2, mΘ(θ3) = 0.3 and mΘ(θ4) = 0.4, then O = {ω1 = θ1[ θ2, ω2 = θ3[ θ4} and

mO(ω1) = 0.1 + 0.2 = 0.3 and mO(ω2) = 0.3 + 0.4 = 0.7.

• If n = |Θ| is an odd number:

In this case, the element ω1 of the coarsened frame O is the disjunction of the [n/2 + 1] (The

notation [x] means the integer part of x) first elements of Θ, and the element ω2 is the
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disjunction of other elements of Θ. That is

O≜ fo1 ¼ y1 [ . . . [ y n
2
þ1½ �;o2 ¼ y n

2
þ1½ �þ1

[ . . . [ yng

and based on Eq (3), one has

mOðo1Þ ¼
X

j¼1;...; n
2
þ1½ �

mYðyjÞ ð6Þ

mOðo2Þ ¼
X

j¼ n
2
þ1½ �þ1;...;n

mYðyjÞ ð7Þ

For example, if Θ = {θ1, θ2, θ3, θ4, θ5}, and one considers the Bayesian BBA mΘ(θ1) = 0.1,

mΘ(θ2) = 0.2, mΘ(θ3) = 0.3, mΘ(θ4) = 0.3 and mΘ(θ5) = 0.1, then O = {ω1 = θ1[ θ2[ θ3, ω2 =

θ4[ θ5} and mO(ω1) = 0.1 + 0.2 + 0.3 = 0.6 and mO(ω2) = 0.3 + 0.1 = 0.4.

Of course, the same coarsening strategy applies to all original BBAs mY
s ð:Þ, s = 1, . . .S of the

S> 1 sources of evidence to work with less specific BBAs mO
s ð:Þ, s = 1, . . .S. The less specific

BBAs (called coarsened BBAs by abuse of language) can then be combined with the PCR6 rule

of combination according to formula Eq (2). This dichotomous coarsening method is repeated

iteratively l times as schematically represented by a bintree. Here, we consider bintree only for

simplicity, which means that the coarsened frame O consists of two elements only. Of course a

similar method can be used with tri-tree, quad-tree, etc. The last step of this hierarchical pro-

cess is to calculate the combined (Bayesian) BBA of all focal elements according to the connec-

tion weights of the bintree structure, where the number of layers l of the tree depends on the

cardinality |Θ| of the original FoD Θ. Specifically, the mass of each focal element is updated

depending on the connection weights of link paths from root to terminal nodes. This principle

is illustrated in details in the following example.

Example 1: Let’s consider Θ = {θ1, θ2, θ3, θ4, θ5}, and the following three Bayesian BBAs can

be seen in Table 1:

The rigid coarsening and fusion of BBAs is deduced from the following steps:

Step 1: We define the bintree structure based on iterative half split of FoD as shown in Fig 1.

The connecting weights are denoted as λ1, . . ., λ8. The elements of the frames Ol are defined

as follows:

• At layer l = 1: O1 ¼ fo1 ≜ y1 [ y2 [ y3;o2 ≜ y4 [ y5g

• At layer l = 2:

O2 ¼ fo11 ≜ y1 [ y2;o12 ≜ y3;o21 ≜ y4;o22 ¼ y5g

• At layer l = 3: O3 ¼ fo111 ≜ y1;o112 ≜ y2g

Table 1. Three Bayesian BBAs for Example 1.

Focal elem. mY
1
ð:Þ mY

2
ð:Þ mY

3
ð:Þ

θ1 0.1 0.4 0

θ2 0.2 0 0.1

θ3 0.3 0.1 0.5

θ4 0.3 0.1 0.4

θ5 0.1 0.4 0

https://doi.org/10.1371/journal.pone.0189703.t001
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Step 2: The BBAs of elements of the (sub-) frames Ol are obtained as follows:

• At layer l = 1, we use Eqs (6) and (7) because |Θ| = 5 is an odd number. Therefore, we get the

BBAs in Table 2:

• At layer l = 2: We work with the two subframes O21 ≜ fo11;o12g and O22 ≜ fo21;o22g of O2

with the BBAs in Tables 3 and 4:

These mass values are obtained by the proportional redistribution of the mass of each focal

element with respect to the mass of its parent focal element in the bin tree. For example,

mO21
2 ðo11Þ ¼ 4=5 is derived by taking

mO21
2 ðo11Þ ¼

mY
2
ðy1Þ þmY

2
ðy2Þ

mY
2
ðy1Þ þmY

2
ðy2Þ þmY

2
ðy3Þ
¼

0:4

0:5
¼

4

5

Other masses of coarsening focal elements are computed similarly using this proportional

redistribution method.

• At layer l = 3: We use again the proportional redistribution method which gives us the BBAs

of the sub-frames O3 in Table 5:

Step 3: The connection weights λi are computed from the assignments of coarsening ele-

ments. In each layer l, we fuse sequentially the three BBAs using PCR6 formula Eq (2). Because

PCR6 fusion is not associative, we should apply the general PCR6 formula to get best results.

Here we use sequential fusion to reduce the computational complexity even if the fusion result

is approximate. More precisely, we compute at first mPCR6;Ol
12 ð:Þ ¼ PCR6ðmOl

1 ð:Þ;m
Ol
2 ð:ÞÞ and

then mPCR6;Ol
ð12Þ3 ð:Þ ¼ PCR6ðmPCR6;Ol

12 ð:Þ;mOl
3 ð:ÞÞ. Hence, we obtain the following connecting

weights in the bintree:

Fig 1. Fusion of Bayesian BBAs using bintree coarsening for Example 1.

https://doi.org/10.1371/journal.pone.0189703.g001

Table 2. The BBAs of elements of the sub-frames O1 for Example 1.

Focal elem. mY
1
ð:Þ mY

2
ð:Þ mY

3
ð:Þ

o1 ≜ y1 [ y2 [ y3 0.6 0.5 0.6

o2 ≜ y4 [ y5 0.4 0.5 0.4

https://doi.org/10.1371/journal.pone.0189703.t002
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• At layer l = 1:

λ1 ¼ mPCR6;O1

ð12Þ3 ðo1Þ ¼ 0:6297

λ2 ¼ mPCR6;O1

ð12Þ3 ðo2Þ ¼ 0:3703

• At layer l = 2:

λ3 ¼ mPCR6;O21

ð12Þ3 ðo11Þ ¼ 0:4137

λ4 ¼ mPCR6;O21

ð12Þ3 ðo12Þ ¼ 0:5863

λ5 ¼ mPCR6;O22

ð12Þ3 ðo21Þ ¼ 0:8121

λ6 ¼ mPCR6;O22

ð12Þ3 ðo22Þ ¼ 0:1879

• At layer l = 3:

λ7 ¼ mPCR6;O3

ð12Þ3 ðo111Þ ¼ 0:3103

λ8 ¼ mPCR6;O3

ð12Þ3 ðo112Þ ¼ 0:6897

Step 4: The final assignments of elements in original FoD Θ are calculated using the prod-

uct of the connection weights of link paths from root (top) node to terminal nodes (leaves).

We eventually get the combined and normalized Bayesian BBA:

mYðy1Þ ¼ λ1 � λ3 � λ7 ¼ 0:6297 � 0:4137 � 0:3103 ¼ 0:0808

mYðy2Þ ¼ λ1 � λ3 � λ8 ¼ 0:6297 � 0:4137 � 0:6897 ¼ 0:1797

mYðy3Þ ¼ λ1 � λ4 ¼ 0:6297 � 0:5863 ¼ 0:3692

mYðy4Þ ¼ λ2 � λ5 ¼ 0:3703 � 0:8121 ¼ 0:3007

mYðy5Þ ¼ λ2 � λ6 ¼ 0:3703 � 0:1879 ¼ 0:0696

Table 3. The BBAs of elements of the sub-frames O21 for Example 1.

Focal elem. mO21
1 ð:Þ mO21

2 ð:Þ mO21
3 ð:Þ

o11 ≜ y1 [ y2
1

2

4

5

1

6

o12 ≜ y3
1

2

1

5

5

6

https://doi.org/10.1371/journal.pone.0189703.t003

Table 4. The BBAs of elements of the sub-frames O22 for Example 1.

Focal elem. mO22
1 ð:Þ mO22

2 ð:Þ mO22
3 ð:Þ

o21 ≜ y4
3

4

1

5
1

o22 ≜ y5
1

4

4

5
0

https://doi.org/10.1371/journal.pone.0189703.t004

Table 5. The BBAs of elements of the sub-frames O3 for Example 1.

Focal elem. mO3

1 ð:Þ mO3

2 ð:Þ mO3

3 ð:Þ

o111 ≜ y1
1

3
1 0

o112 ≜ y2
2

3
0 1

https://doi.org/10.1371/journal.pone.0189703.t005
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Modified rigid coarsening

One of the issues with RC described in the previous section is that no extra self-information of
focal elements is embedded into the coarsening process. In this paper, the elements θi selected to

belong to the same group are determined using the consensus information drawn from the

BBAs provided by the sources. Specifically, the degrees of disagreement between the provided

sources on decisions (θ1, θ2, � � �, θn) are first calculated using the belief-interval based distance

dBI [20] to obtain disagreement vector. And then all focal elements in FoD are sorted in an

ascending order. Finally, the simple dichotomous approach is utilized to hierarchical coarsen

those Re-sorted focal elements.

Calculating the disagreement vector. Let us consider several BBAs mY
s ð�Þ, (s = 1, . . ., S)

defined on same FoD Θ of cardinality |Θ| = n. The specific BBAs mθi(.), i = 1, . . ., n entirely

focused on θi are defined by mθi(θi) = 1, and for X 6¼ θi mθi(X) = 0.

Definition 2: The disagreement of opinions of two sources about θi is defined as the L1-dis-
tance between the dBI distances of the BBAs mY

s ð:Þ, s = 1, 2 to mθi(.), which is expressed by

D12ðyiÞ≜ jdBIðmY
1
ð�Þ;myi

ð�ÞÞ � dBIðmY
2
ð�Þ;myi

ð�ÞÞj ð8Þ

Definition 3: The disagreement of opinions of S� 3 sources about θi, is defined as

D1� SðyiÞ≜
1

2

XS

i¼1

XS

j¼1

jdBIðm
Y

i ð�Þ;myi
ð:ÞÞ � dBIðm

Y

j ð�Þ;myi
ð:ÞÞj ð9Þ

where dBI distance is defined by [20] and proof of Definition 3 is given in S1 Appendix. For sim-
plicity, we assume Shafer’s model so that |2Θ| = 2n, otherwise the number of elements in the sum-
mation of Eq (10) should be |DΘ| − 1 with another normalization constant nc.

dE
BIðm1;m2Þ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc �
X2n � 1

i¼1

½dIðBI1ðyiÞ;BI2ðyiÞÞ�
2

s

ð10Þ

Here, nc = 1/2n−1 is the normalization constant and dI([a, b], [c, d]) is the Wasserstein’s distance

defined by dIð½a; b�; ½c; d�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþb

2
� cþd

2

� �2
þ 1

3

b� a
2
� d� c

2

� �2
q

. And BI(θi) = [Bel(θi), Pl(θi)].
The disagreement vector D1−S is defined by

D1� S≜ ½D1� Sðy1Þ; . . . ;D1� SðynÞ� ð11Þ

Modified rigid coarsening by using the disagreement vector. Once D1−S is derived, all

focal elements {θ1, θ2, � � �, θn} are sorted according to their corresponding values in D1−S.

Let us revisit example 1 presented in the previous section. It can be verified in applying for-

mula Eq (9) that the disagreement vector D1−3 for this example is equal to

D1� 3 ¼ ½0:4085; 0:2156; 0:3753; 0:2507; 0:4086�

The derivation of D1−3(θ1) is given below for convenience.

D1� 3ðy1Þ ¼ jdBIðmY
1
ð�Þ;my1

ðy1ÞÞ � dBIðmY
2
ð�Þ;my1

ðy1ÞÞj

þjdBIðmY
2
ð�Þ;my1

ðy1ÞÞ � dBIðmY
3
ð�Þ;my1

ðy1ÞÞj

þjdBIðmY
1
ð�Þ;my1

ðy1ÞÞ � dBIðmY
3
ð�Þ;my1

ðy1ÞÞj

¼ 0:4085:

Based on the disagreement vector, a new bintree structure is obtained and shown in Fig 2.

Compared with Fig 1, the elements in FoD Θ are grouped more reasonably. In vector D1−3, θ1

Modified rigid coarsening (MRC) method
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and θ5 lie in similar degree of disagreement so that they are put in the same group. Similarly

for θ2 and θ4. However, element θ3 seems weird, which is put alone in the process of coarsen-

ing. Once this new bintree decomposition is obtained, other steps can be implemented which

are identical to rigid coarsening in section to get the final combined BBA.

Step 1: According to Fig 2, the elements of the frames Ol are defined as follows:

• At layer l = 1: O1 ¼ fo1 ≜ y2 [ y4 [ y3;o2 ≜ y1 [ y5g

• At layer l = 2: O2 ¼ fo11 ≜ y2 [ y4;o12 ≜ y3;o21 ≜ y1;o22 ≜ y5g

• At layer l = 3: O3 ¼ fo111 ≜ y2;o112 ≜ y4g

Step 2: The BBAs of elements of the (sub-) frames Ol are obtained as follows:

• At layer l = 1, we use Eqs (6) and (7) and we get (Table 6)

• At layer l = 2: We use again the proportional redistribution method which gives us Tables 7

and 8. Here, masses of ω21, ω22 in mO22
3 ð:Þ are not considered because the mass of their parent

focal element (mO1
3 ðo2Þ) in bintree is 0.

• At layer l = 3: We work with the two subframes O3 ≜ fo111;o112g of O3 with the BBAs in

Table 9:

Fig 2. Fusion of Bayesian BBAs using MRC for Example 1.

https://doi.org/10.1371/journal.pone.0189703.g002

Table 6. The BBAs of elements of the sub-frames O1 Using MRC for Example 1.

Focal elem. mO1
1 ð:Þ mO1

2 ð:Þ mO1
3 ð:Þ

o1 ≜ y2 [ y4 [ y3 0.8 0.2 1.0

o2 ≜ y1 [ y5 0.2 0.8 0.0

https://doi.org/10.1371/journal.pone.0189703.t006
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Step 3: The connection weights λi are computed from the assignments of coarsening ele-

ments. Hence, we obtain the following connecting weights in the bintree:

• At layer l = 1:

λ1 ¼ 0:8333; λ2 ¼ 0:1667:

• At layer l = 2:

λ3 ¼ 0:5697; λ4 ¼ 0:4303;

λ5 ¼ 0:5000; λ6 ¼ 0:5000:

• At layer l = 3:

λ7 ¼ 0:0669; λ8 ¼ 0:9331;

Step 4: We finally get the following combined and normalized Bayesian BBA

mYð�Þ ¼ f0:0833; 0:0318; 0:3586; 0:4430; 0:0834g:

Summary of the proposed method

The fusion method of BBAs to get a combined Bayesian BBA based on hierarchical decompo-

sition of the FoD consists of several steps (Algorithm 1) below illustrated in Fig 3. It is worth

noting that when the given BBAs are not Bayesian, the first step is to use the existing Probabi-

listic Transformation (PT) to transform them to Bayesian BBAs. In order to use the proposed

combination method in the RSs, modified rigid coarsening is mathematically denoted as
L

in

the following sections.

Table 7. The BBAs of elements of the sub-frames O21 Using MRC for Example 1.

Focal elem. mO21
1 ð:Þ mO21

2 ð:Þ mO21
3 ð:Þ

o11 ≜ y2 [ y4
5

8

1

2

1

2

o12 ≜ y3
3

8

1

2

1

2

https://doi.org/10.1371/journal.pone.0189703.t007

Table 8. The BBAs of elements of the sub-frames O22 Using MRC for Example 1.

Focal elem. mO22
1 ð:Þ mO22

2 ð:Þ mO22
3 ð:Þ

o21 ≜ y1
1

2

1

2
–

o22 ≜ y5
1

2

1

2
–

https://doi.org/10.1371/journal.pone.0189703.t008

Table 9. The BBAs of elements of the sub-frames O3 Using MRC for Example 1.

Focal elem. mO3

1 ð:Þ mO3

2 ð:Þ mO3

3 ð:Þ

o111 ≜ y2
2

5
0.0 1

5

o112 ≜ y4
3

5
1.0 4

5

https://doi.org/10.1371/journal.pone.0189703.t009
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Algorithm 1: Modified Rigid Coarsening Method

Input: All original BBAs mY
1
ð�Þ; � � � ;mY

s ð�Þ, s = 1, 2, � � �, s
Output: The final combined BBA mΘ(�)
1 if Compound focal elements in Θ: θi[θj 6¼ ; or θi\θj 6¼ ; then
2 Probabilistic transformation: DSmPðmY

1
ð�ÞÞ;DSmPðmY

2
ð�ÞÞ; � � � ;DSmPðmY

s ð�ÞÞ

3 end
4 for i � n do
5 for s � S do
6 Calculate D1� SðyiÞ≜ 1

2

PS
i¼1

PS
j¼1
jdBIðmY

i ð�Þ;myi
ð:ÞÞ � dBIðmY

j ð�Þ;myi
ð:ÞÞj

7 end
8 end
9 for i � n do
10 Sorting D1−S(θi) in an ascending order.
11 end
12 while |Θ| � 2 do
13 if n is an even number then
14 mOl ðo1Þ ¼

P
j¼1;...;n

2
mYðyjÞ;

15 mOl ðo2Þ ¼
P

j¼n
2
þ1;...;nm

YðyjÞ;

16 else
17 mOl ðo1Þ ¼

P
j¼1;...; n

2
þ1½ �m

YðyjÞ;

18 mOl ðo2Þ ¼
P

j¼ n
2
þ1½ �þ1;...;nm

YðyjÞ;

19 end
20 Then connection weights λ is calculated: PCR6(mΩ(ω1), mΩ(ω2))
21 end
22 foreach focal element θi, i 2 1, � � �, n do
23 mΘ(θi) equals to the product of path link weights from root to ter-

minal nodes.
24 end

Fig 3. Modified rigid coarsening of FoD for fusion.

https://doi.org/10.1371/journal.pone.0189703.g003
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Simulation considering accuracy and computational efficiency

• Accuracy:

Assuming that the FoD is Θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14, θ15, θ16, θ17,

θ18, θ19, θ20}, then 1000 BBAs are randomly generated to be fused with three methods: modi-

fied rigid coarsening, rigid coarsening and also PCR6. And then distances of fusion results

are computed using dBI between two pairs: modified rigid coarsening and PCR6; rigid coars-

ening and PCR6. Comparisons are made in Fig 4, which show the superiority of our new

approach proposed in this paper (The average value of the approximation of modified rigid

coarsening is 97.5% and original rigid coarsening is 94.5%). Here, similarity represents the

approximate degree between fusion results using hierarchical approximate method (both

rigid and modified rigid coarsening) and PCR6.

• Computational efficiency:

As we mentioned before, another advantage of the hierarchical combination method is the

computational efficiency. Here, two experiments are conducted (All experiments are imple-
mented on a PC with I3 CPU, Integrated graphics chipsets and 4G DDR): 1) the number of sin-

gletons is unchanged while the number of BBAs to be fused is increasing; 2) the number of

BBAs is unchanged while the number of singletons in FoD is increasing. The results are illus-

trated in Fig 5 and 6. From experiment 1, all these three methods (classical PCR6, rigid

coarsening and also modified rigid coarsening) calculate quickly (less than 1.2s) even the

number of BBAs increases from 100 to 1000. However, such situation deteriorates when the

number of focal elements increases. In Fig 6, when the number of focal elements increases to

500, time consumption of three combinations is: PCR6: 20.6857s; modified rigid coarsening:

7.3320s; rigid coarsening: 5.9748s. This phenomenon also proves that it is reasonable to map

original FoD to the coarsening FoD, with the aim of reducing the number of focal elements

at the time of fusion. But in any case, computing efficiency of rigid coarsening or modified

rigid coarsening is still better than PCR6. On the other hand, modified rigid coarsening

makes a significant improvement (accuracy) at the expense of parts of the computational

efficiency.

Fig 4. Accuracy comparisons between MRC and PCR6 (Only Singletons).

https://doi.org/10.1371/journal.pone.0189703.g004
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A recommender system integrating with hierarchical coarsening

combination method

In today’s e-commerce, online providers often recommend proper goods or services to each

consumer based on their personal opinions or preferences [21], [22]. However, it is a tough

task to provide appropriate recommendation which may confront several difficulties. One dif-

ficulty is that users’ preferences are usually characterized as uncertain, imprecise or incomplete

[23], [24], which cannot be used directly in RSs. Besides, it is easy to understand that when the

more information about user preferences are, the more accurate prediction of RSs will be [25],

[26]. But, the problem is that which method we adopt to integrate multi-source uncertain

information?

As a general framework for information fusion, DST can not only model uncertain infor-

mation, but also provide an efficient way to combine multi-source information. These

Fig 6. Efficiency comparisons between MRC, RC and PCR6 (With the number of focal elements increasing).

https://doi.org/10.1371/journal.pone.0189703.g006

Fig 5. Efficiency comparisons between MRC, RC and PCR6 (With the number of BBAs increasing).

https://doi.org/10.1371/journal.pone.0189703.g005
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mentioned features make this theory a wide range of applications [27–29], especially in RSs

[23, 25, 30–32]. According to DST, users’ comments on products in RSs are described by using

mass functions and rules of combination method are used frequently in order to provide

appropriate recommendation.

As mentioned in previous sections, both the performances of combination rules in DST or

in DSmT suffer from computational complex which is obviously ignored in [23, 25]. Thus, in

this paper, modified rigid coarsening method is applicable to combine the imprecise users’

preferences in RSs. First, we are required to introduce the relevant knowledge of RSs. Actually,

almost all characteristics of RSs have been introduced in [23, 25, 30–32].

First, we give the corresponding representation of the mathematical notation in RSs based

on DSmT. RSs usually contain two objects: {Users, Items}. A set of M users and a set containing

N items is respectively denoted by U = {U1, U2, � � �, UM} and I = {I1, I2, � � �, IN}. Besides, we

assume that users can give the corresponding ratings to the items, which include L rating levels

(Θ = {θ1, θ2, � � �, θL}.). Here, L preference levels means multi-level evaluation results. For exam-

ple, four-levels of user evaluation on the product are {Excellent, Good, Fair, Poor}. ri,k means a

rating of user Ui on item Ik and a rating matrix R = {ri,k} comprises all the ratings of users on

items. It should be noted that ri,k is originally modeled as a mass function mi,k: DΘ! [0, 1].

Additionally, let IRi and UR
k denote the set of items rated by user Ui and the set of users having

rated item Ik, respectively.

Contextual information can often be summarized into several genres that significantly

affect user’s rating of items. Normally, we represent contextual information by a set containing

P genres, denoted by S = {S1, S2, � � �, SP}. And each genre Sp, with 1� p� P contains at most Q
groups, denoted by Sp = {gp,1, gp,2, � � �, gp,q, � � �, gp,Q}, 1� q� Q. For a genre Sp 2 S, a user

Ui 2 U can be interested in several groups and also an item Ii 2 I can belong to one or some

groups of this genre, which can be seen in Fig 7.

Fig 7. Contextual information.

https://doi.org/10.1371/journal.pone.0189703.g007
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Definition 4: In order to facilitate such expression, two functions κ(�) and φ(�) are defined to
determine the groups in which user Ui is interested and the groups to which item Ik belongs,
respectively:

kp : Ui 7! kpðUiÞ � Sp ð12Þ

φp : Ik 7! φpðIkÞ � Sp ð13Þ

Generally, the main steps of a recommendation system is illustrated in Fig 8, which will be

presented in details as follows:

1. DSmT-Modeling Function

Regarding the DS-partial probability models proposed in [23], the existing ratings ri,k, of

user Ui on item Ik, are modeled by DSmT-modeling function M(�) in order to transform

such hard ratings into the corresponding soft ratings represented as mi,k as below:

Definition 5:

mi;k ¼

ai;kð1 � si;kÞ; for A ¼ yl;

1

2
ai;ksi;k; for A ¼ B;

1

2
ai;ksi;k; for A ¼ C;

1 � ai;k; for A ¼ Y;

0; otherwise:

ð14Þ

8
>>>>>>>>>><

>>>>>>>>>>:

Fig 8. General process of recommendations.

https://doi.org/10.1371/journal.pone.0189703.g008
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with

B ¼

y1 [ y2; if l ¼ 1;

yL� 1 [ yL; if l ¼ L;

yl� 1 [ yl [ ylþ1; otherwise:

8
><

>:

C ¼

y1 \ y2; if l ¼ 1;

yL� 1 \ yL; if l ¼ L;

ðyl� 1 \ yl; yl \ ylþ1Þ; otherwise:

8
><

>:

where αi,k 2 [0, 1] and σi,k are a trust factor and a dispersion factor, respectively [23].

Referring to the partial probability model analysis in [23], we also give the corresponding

user profiles which can be seen in Fig 9. Compared to [23], the difference is that we not

only consider the union (black and gray rectangle), but also consider the intersection (red
rectangle) of the hard ratings, which is also the distinction between DS theory and DSmT

theory.

Fig 9. DSmT modeling function.

https://doi.org/10.1371/journal.pone.0189703.g009
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Lemma 1: Referring to Definition 5, we can also generate the relative refined BBA in the

framework of DS theory:

mRefined
i;k ¼

ai;kð1 � si;kÞ; for A ¼ yl;

ai;ksi;k; for A ¼ B;

1 � ai;k; for A ¼ Y;

0; otherwise:

ð15Þ

8
>>>>>>><

>>>>>>>:

with

B ¼

y1 [ y2; if l ¼ 1;

yL� 1 [ yL; if l ¼ L;

yl� 1 [ yl [ ylþ1; otherwise:

8
><

>:

where αi,k 2 [0, 1] and σi,k are a trust factor and a dispersion factor, respectively [23].

After soft ratings are generated, DSmP [33] is applied to decouple non-Bayesian mi,k, since

the hierarchical fusion algorithm is currently just available for Bayesian BBAs.

Definition 6: DSmP is a new generalized pignistic transformation defined by DSmPε(;) = 0

and for any singleton θi 2 Θ by

DSmPεðyiÞ≜mðyiÞ þ ðmðyiÞ þ εÞ

�
X

A22Y ;yN�A;jAj�2

mðAÞ
P

B22Y ;B�A;jBj¼1
mðBÞ þ ε � jAj

8
<

:

9
=

;

ð16Þ

As shown in [33], DSmP makes a remarkable improvement compared with BetP and

CuzzP, since a more judicious redistribution of the ignorance masses to the singletons has

been adopted by DSmP.

2. Predicting unrated items:

Assuming that users who are keen on the similar groups tend to have common preferences.

In this RS, it is necessary to predict the unrated items first. Considering a group gp,q 2 Sp
with gp,q 2 φ(Ik), every soft rating, mi,k, of user Ui, who is keen on group gp,q, on item Ik is

regarded as a block of common preference for group gp,q. Thus, Gmp,q,k
: DΘ! [0, 1] which

represents all users’ group preferences on item Ik regarding group gp,q, is computed as fol-

lows

Gmp;q;k
¼

M

fjjIk2IRj ;gp;q2kpðUjÞ;gp;q2φpðIkÞg

mj;k ð17Þ

Supposing that item Ik has not been rated by user Ui, it usually contains three steps to gener-

ate unprovided rating ri,k of user Ui which are shown as below

• Step one: Considering a concept Sp, for each group gp,q 2 κp(Ui)\φp(Ik), it is assumed that

all users’ group preferences on item Ik regarding group gp,q imply common preference of

Ui on Ik regarding group gp,q. Furthermore, this group preference is regarded as a piece of

user Ui’s concept preference on item Ik regarding concept Sp. Therefore, concept prefer-

ence of user Ui on item Ik regarding concept Sp, denoted by mass function Smp,q,k
: DΘ!
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[0, 1], can be computed as below

Smp;q;k
¼

M

fqjgp;q2kpðUiÞ;gp;q2φpðIkÞg

Gmp;q;k ð18Þ

• Step two: If there exists at least one common group in concept Sp which item Ik belongs to

and also user Ui is interested in, then Ui’s concept preference on item Ik regarding concept

Sp is regarded as a piece of context preference. Therefore, this user’s contextual preference

on item Ik, denoted by mass function Smi,k
: DΘ! [0, 1], is achieved as follows

Smi;k
¼
M

p¼1;���;P

Smp;i;k ð19Þ

• Step three: Context preference of Ui on item Ik is assigned to unprovided rating �mi;k as

below

�mi;k ¼ Smi;k ð20Þ

So far, all unprovided ratings are predicted in this RS. Subsequently, user-user similarities

are computed depending on both provided and predicted ratings in the following steps.

3. Computing user-user similarities:

Here, we use the distance measure proposed in [34] to calculate distances between two

users Ui and Uj with i 6¼ j, which is defined as below

DðUi;UjÞ ¼
XN

k¼1

ln max
y2Y

mj;kðyÞ

mi;kðyÞ
� ln min

y2Y

mj;kðyÞ

mi;kðyÞ

 !

ð21Þ

where mi,k and mj,k are the soft ratings of user Ui and user Uj on item Ik respectively. After-

wards, the degree of similarity between Ui and Uj, denoted by si,j, is calculated as follows

si;j ¼ e� g�DðUi ;UjÞ;where g 2 ð0;1Þ: ð22Þ

Obviously, if the value of si,j is high, it means the user Ui and user Uj are very close, and vice

versa. Eventually, a mathematical matrix S = {si,j|Ui, Uj 2 U, i 6¼ j} is employed to represent

the similarities among all users.

4. Selecting neighbors based on user-user similarities:

Taking into account an active user Ui, for each unrated item Ik by user Ui, a set containing

K nearest neighborhoods, denoted by Ni;k, is chosen by using the method proposed in [35].

Two simple steps of this method are shown below

• Step one: the process of such selection depends on two criteria: 1. Those users who rated Ik
and 2. The corresponding user-user similarities with user Ui are equal or greater than the

threshold τ. Ni;k denotes the selected set, which is acquired as follows:

Ni;k ¼ fUj 2 UjIk 2 IRj ; si;j � tg ð23Þ
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• Step two: all of members in Ni;k is descending sorted by si,j and top K members are selected

as the neighborhood set Ni;k.

5. Estimating ratings according to neighborhoods:

Supposing that item Ik has not been rated by user Ui. The predicted rating of Ui on item Ik
is denoted as m̂i;k. Thus, m̂i;k is calculated according to the ratings of user Ui’s nearest users.

Mathematically, m̂i;k is given as below

m̂i;k ¼ mi;k

L
~mi;k ð24Þ

where ~mi;k is the mass regarding the neighborhoods’ whole preference in the set Eq (23) on

item Ik. Considering user Ui 2 Ni;k, and supposing that si,j is the similarity between user Ui

and user Uj. We use a discount rate 1 − si,j to discount the rating of user Uj on item Ik.
Therefore, ~mi;k is:

~mi;k ¼
M

fjjUj2Ni;kg

_msi;j
j;k ð25Þ

where _msi;j
j;k ¼

si;j �mj;kðAÞ; for A � Y;

si;j �mj;kðYÞ þ ð1 � si;jÞ; if A ¼ Y:

(

6. Generating recommendations:

In order to generate appropriate recommendations for the candidate user Ui, predicted rat-

ings of Ui on all unprovided items are sorted, and then based on the sorted list, the appro-

priate recommendations are generated.

Experiments

To evaluate the performance of modified rigid coarsening in precision of recommendation

and computational time, original rigid coarsening method and also classical PCR6 combina-

tion method are selected to be regarded as baselines. Besides, we use DS-MAE [23] to measure

the precision of recommendations.

Definition 7: DS-MAE is mathematically given as follows

DS� MAEðyjÞ ¼
1

jDjj

X

ði;kÞ2Dj;yl2Y

jm̂i;kðyjÞ � MðyjÞj ð26Þ

where Dj is the testing set identifying the user-item pairs whose true rating is θj 2Θ.

Those specific users’ interested information about genres is unknown. Thus, we define a

rule that if a user has rated an item then this user is interested in all genres to which the item

belongs.

1. Experiment One:

Movielens (http://grouplens.org/datasets/movielens) is a movie recommendation dataset

widely used for benchmarking process. There are nearly 100,000 hard ratings on 19 differ-

ent types of movies (Action, Comedy and so on). The domain of such rating given in

Movielens includes 5 levels, denoted as Θ = {1, 2, 3, 4, 5},. At the same time, each user is

required to evaluate at least 20 movies, so as to ensure adequate rating information.

The relevant parameters used in RSs are setted: γ = 10−4 and 8(i, k){αi,k, σi,k} = {0.9, 2/3}.

However, Setting parameter τ to be a fixed value is obviously unreasonable because the sim-

ilarity between two users is quite different when using different combination methods.

Hence, in this paper, the value of parameter τ will not be setted in advance. Instead, it is
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determined based on the similarity in matrix S. Specifically, the highest value of top 30% in

S is selected for τ.

Additionally, we adopt the robust strategy of 10-fold cross validation to conduct experi-

ments, which is widely applied in experimental verification. Specific steps are as follows:

original ratings in Movielens are first randomly divided into 10-folds and the experiments

are thus carried out 10 times: in each sub-experiment, nine tenths of the ratings are chosen

as training data and the remaining ratings are regarded as testing data. It’s worth noting

that all results illustrated in the following experiments are the average values of 10 times.

Fig 10 demonstrates the values of overall DS-MAE varying with changing neighborhood

size K. And the smaller values of DS-MAE indicate the better ones. As can be seen in Fig 10,

with K� 70 performances of the three methods increase sharply as well as being the same

as each other. With K� 70, performances of both methods become stable. Especially, per-

formance of modified rigid coarsening method is very close to classical PCR6 rules. How-

ever, original rigid coarsening is slightly worse than the other two algorithms.

Fig 11 depicts the computational time varying with changing neighborhood size K. In this

figure, the time taken by hierarchical coarsening combination methods (both rigid coarsen-

ing and modified rigid coarsening method) is quite faster compared to classical PCR6.

Besides, modified rigid coarsening is relatively slower than original rigid coarsening. All

these results illustrate that modified rigid coarsening method sacrifices some of the compu-

tational efficiency, in exchange for upgrading the accuracy of approximation.

2. Experiment Two:

Flixster (http://www.cs.ubc.ca/jamalim/datasets/) is a classical recommendation dataset

which nearly contains 535013 hard ratings on 19 different types of movies (Drama, Comedy

Fig 10. Overall DS-MAE between three combination methods. (Movielens).

https://doi.org/10.1371/journal.pone.0189703.g010
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and so on). The domain of such rating given in Flixster includes 10 levels, denoted as Θ =

{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0},. At the same time, each user is required to evalu-

ate at least 15 movies, so as to ensure adequate rating information. The relevant parameters

used in RSs are setted: γ = 10−4 and 8(i, k){αi,k, σi,k} = {0.9, 2/3}. However, Setting parameter

τ to be a fixed value is obviously unreasonable because the similarity between two users is

quite different when using different combination methods. Hence, in this paper, the value

of parameter τ will not be setted in advance. Instead, it is determined based on the similarity

in matrix S. Specifically, the highest value of top 50% in S is selected for τ.

Fig 12 demonstrates the values of overall DS-MAE varying with changing neighborhood

size K. And the smaller values of DS-MAE indicate the better ones. As can be seen in Fig 12,

we can get a similar result to the previous data set(Movielens). Especially, performance of

modified rigid coarsening method is in the middle of the comparison methods. However,

original rigid coarsening is worse than the other two algorithms. Fig 13 depicts the compu-

tational time varying with changing neighborhood size K. From this figure, we can also get

the same conclusion that the time taken by hierarchical coarsening combination methods

(both rigid coarsening and modified rigid coarsening method) is quite faster compared to

classical PCR6.

Fig 11. Overall computational time between three combination methods. (Movielens).

https://doi.org/10.1371/journal.pone.0189703.g011
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Conclusion

In this paper, we propose a new combination method, called modified rigid coarsening

method. This new method can map the original refined FoD to the new coarsening FoD in the

process of combination. Compared to traditional fusion method PCR6 in DSmT, this

approach can not only reduce computational complexity, but also ensure high approximation

accuracy. Besides, in order to verify the practicality of our approach, we apply this approach to

fuse soft ratings in RSs. To be specific, user preferences are first transformed by DSmT-partial

probability model to accurately represent uncertain information. Then, information about

user preferences from different sources can be easily combined. In the future work, more help-

ful information will be mined to discern focal element in FoD so as to improve the accuracy of

approximation and more data sets will be applied.

Fig 12. Overall DS-MAE between three combination method. (Flixster).

https://doi.org/10.1371/journal.pone.0189703.g012
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