GOLDBACH'S CONJECTURE PROOF.

BADO Olivier Idriss
(ISE 2)
Ecole Nationale Supérieure de Statistique et d'Economie. 08 BP 03 Abidjan 08, COTE D'IVOIRE.
E-mail : olivier. bado@ensea.edu.ci

Abstract

In this paper we are going to give the proof of Goldbach conjecture by introducing a new lemma which implies Goldbach conjecture .By using Chebotarev-Artin theorem, Mertens formula and Poincare sieve we establish the lemma .

1 Introduction

The Goldbach conjecture was introduced in 1742 and has never been proven though it has been verified by computers for all numbers up to 19 digits.
It states that all, even numbers above two are the sum of two prime numbers. All studies on Goldbach conjecture have failed.So we are going to give a complete proof of Goldbach conjecture.

1.1 Principle of the Demonstration

Let n an even integer such as above 20 and denote by \mathbb{C}_{n} the set of the composite integers of $[1, n-1]$ to what we add 1 and let f_{n} be the bijective mapping such that: $\begin{aligned} f_{n}: \mathbb{C}_{n} & \mapsto n-\mathbb{C}_{n} \\ m & \mapsto n-m\end{aligned}$ Denote by G_{n} the subsect of $n-\mathbb{C}_{n}$ consisting of prime numbers and G_{n}^{\prime} that of composite numbers we have $n-\mathbb{C}_{n}=G_{n} \cup G_{n}^{\prime}$. Let \mathcal{P}_{n} the set of prime numbers less than or equal to n . Let

$$
\delta(n)=\operatorname{card}\left(G_{n}\right), \alpha(n)=\operatorname{card}\left(\mathcal{P}_{n} \backslash G_{n}\right), \Pi(n)=\operatorname{card}\left(\mathcal{P}_{n}\right)
$$

then $\Pi(n)=\delta(n)+\alpha(n)$,obviously $\alpha(n)$ represents the number of ways to write n as the sum of two primes

1.2 Lemma 1

$\forall n \in 2 \mathbb{N}^{*}$, we have $\mathcal{P}_{n} \backslash G_{n} \neq \emptyset$
As we said we are going to give later the proof the lemma 1 . Without loss of generality ,suppose that the lemma 1 is true then we have :

1.3 Lemma 2

$\forall p \in \mathcal{P}_{n} \backslash G_{n}$, we have $n-p \in \mathcal{P}_{n}$

1.4 Proof of lemma 2

Let n be an even integer above 20 , and suppose that n - p is not prime, then

$$
n-p \in \mathbb{C}_{n}
$$

, as

$$
p=n-(n-p)
$$

hence

$$
p \in G_{n}
$$

.The lemma is thus proven .
Observe that each integer $m \in \mathbb{C}_{n}$ such that $m \geq 4$ has at least one prime divisor $p \leq \sqrt{n}$.
Let $\mathcal{P}_{\leq \sqrt{n}}=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ where $p_{1}=2, p_{2}=3, \ldots p_{r}=\max \left(\mathcal{P}_{\leq \sqrt{n}}\right)$.
Moreover, remembering that

$$
\mathbb{C}_{n}=\bigcup_{p \in \mathcal{P} \leq \sqrt{n}, p \geq 2} A_{2 p} \cup\{1\}
$$

where

$$
\left.A_{2 p}=\left\{2 p, 3 p, 4 p, \ldots \ldots . .\left(\frac{n-1}{p}\right\rfloor\right) p\right\}
$$

. We notice that $A_{2 p}$ is an arithmetic sequence of first term 2 p and reason p . So

$$
n-\mathbb{C}_{n}=f_{n}\left(\mathbb{C}_{n}\right)=\bigcup_{p \in \mathcal{P}_{\leq \sqrt{n}}, p \geq 2} f_{n}\left(A_{2 p}\right) \cup\{n-1\}
$$

As
$f_{n}\left(A_{2 p}\right)=\left\{n-2 p, n-3 p, n-4 p, \ldots \ldots . n-\left\lfloor\frac{n-1}{p}\right\rfloor p\right\}=\left\{n-\left\lfloor\frac{n-1}{p}\right\rfloor p, n-\left(\left\lfloor\frac{n-1}{p}\right\rfloor-1\right) p \ldots \ldots, n-3 p, n-2 p\right\}$
Then $f_{n}\left(A_{2 p}\right)$ is an arithmetic sequence of first term $n-\left\lfloor\frac{n-1}{p}\right\rfloor p$ and reason p .
We will evaluate the quantity of prime numbers in $\bigcup_{p \in \mathcal{P}_{\leq \sqrt{n}}, p \geq 2} f_{n}\left(A_{2 p}\right)$
by applying the principle -exclusion of Moivre and Chébotarev -Artin theorem in each $f_{n}\left(A_{2 p}\right)$ in the case where $p \nmid n$

2 Chebotarev-Artin 's Theorem

Let $a, b>0$ such that $\operatorname{gcd}(a, b)=1, \Pi(X, a, b)=\operatorname{card}(p \leq X, p \equiv a[b])$ then $\exists c>0$ such that $\Pi(X, a, b)=\frac{L_{i}(X)}{\phi(b)}+\bigcirc\left(c X e^{-\sqrt{\ln X}}\right)$
The prime number theorem states that $\Pi(X)=L_{i}(X)+\bigcirc\left(\frac{X}{\ln ^{2} X}\right)$ so $\Pi(X, a, b)=\frac{\Pi(X)}{\phi(b)}+\bigcirc\left(c X e^{-\sqrt{\ln X}}\right)$

3 corollary

Let $a, b>0$ such that $\operatorname{gcd}(a, b)=1, \Pi(X, a, b)=\operatorname{card}(p \leq X, p \equiv a[b])$ then $\exists c>0$ such that

$$
\frac{\Pi(X, a, b)}{\Pi(X)}=\frac{1}{\phi(b)}+\bigcirc\left(c \ln X e^{-\sqrt{\ln X}}\right)
$$

From probabilistic point of view, the probability of prime numbers less than or equal to X in an arithmetic progression of reason b and of the first term has such that $\operatorname{gcd}(a, b)=1$ is worth
$\frac{1}{\phi(b)}+\bigcirc\left(c \ln X e^{-\sqrt{\ln X}}\right)$ for X large enough .In the following we will justify the application of Chebotein-Artin's theorem for sets $\bigcap_{j=1, p_{i} \in \mathcal{P}_{\leq \sqrt{n}}}^{k} f_{n}\left(A_{2 p_{i_{j}}}\right)$
for $1 \leq i_{1}<i_{2}<\ldots .<i_{k}$

3.1 Remarks

It is obvious to note that for $k>2, \bigcap_{j=1, p_{i} \in \mathcal{P}_{\leq \sqrt{n}}}^{k} A_{2 p_{i_{j}}}$ is the set of multiples of $\prod_{j=1}^{k} p_{i_{j}}$ which allows us to write

$$
\bigcap_{j=1, p_{i} \in \mathcal{P}_{\leq \sqrt{x}}}^{k} f_{n}\left(A_{2 p_{i_{j}}}\right)=\left\{n-m \prod_{j=2}^{k} p_{i_{j}} \left\lvert\, 1 \leq m \leq\left\lfloor\frac{n-1}{\prod_{j=2}^{k} p_{i_{j}}}\right\rfloor\right.\right\}
$$

This set is an arithmetic sequence of reason $\prod_{j=2}^{k} p_{i_{j}}$ and first term $n-\left\lfloor\frac{n-1}{\prod_{j=2}^{k} p_{i_{j}}}\right\rfloor \prod_{j=2}^{k} p_{i_{j}}$. The hypothesis of application of Chebotarev-Artin's theorem will be justified if and only if $\operatorname{gcd}\left(2 \prod_{j=2}^{k} p_{i_{j}}, \prod_{j=2}^{k} p_{i_{j}}+n\right)=1$ which is the case if $\prod_{j=2}^{k} p_{i_{j}} \nmid n$

4 Demonstration of Goldbach 's conjecture

4.1 Theorem

Let n an even integer be arbitrarily large,

$$
\alpha(n)=\operatorname{card}\left(\mathcal{P}_{n} \backslash G_{n}\right)
$$

the numbers of way to write n in sum of two prime numbers,

$$
\beta_{n}=\prod_{p=3}^{\sqrt{n}} \frac{p(p-2)}{(p-1)^{2}} \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-1}{p-2}
$$

$\exists n_{0}$ such that $\forall n \geq n_{0}$

$$
\alpha(n) \geq \frac{2 \beta_{n} \Pi(n)}{\ln n}
$$

4.2 Useful Lemma

Let $a_{1}, a_{2}, \ldots \ldots a_{r}$ be r numbers then

$$
1-\sum_{i=1}^{r} \frac{1}{a_{i}}+\sum_{1 \leq i<j \leq r} \frac{1}{a_{i} a_{j}}+\ldots . .+\frac{(-1)^{r}}{a_{1} a_{2} \ldots . a_{r}}=\prod_{i=1}^{r} \frac{a_{i}-1}{a_{i}}
$$

4.3 Proof

Let us consider the polynomial : $P(X)=\prod_{i=1}^{r}\left(X-\frac{1}{a_{i}}\right)$ from the coefficient-root relations

$$
P(X)=X^{r}+\sum_{k=1}^{r} \sum_{1 \leq i_{1}<i_{2}<\ldots .<i_{k} \leq r} \frac{(-1)^{k} X^{r-k}}{\prod_{j=1}^{k} a_{i_{j}}}
$$

taking $X=1$, the lemma is thus proved.

4.4 Proof of Theorem

Let us define ϱ as the function which represents the proportion of prime numbers which appear in a given set over prime numbers less than n. we also define $\psi_{n-1}=1,0$ according to $\mathrm{n}-1$ is prime or not With regard to the principle of inclusion -exclusion of Moivre we can write :

$$
\varrho\left(\bigcup_{p \in \mathcal{P}_{\leq \sqrt{n}}, p \geq 3, p \nmid n} f_{n}\left(A_{2 p}\right)\right)=\sum_{k=2}^{r}(-1)^{k} \sum_{2 \leq i_{2}<i_{3}<\ldots . .<i_{k} \leq r} \varrho\left(\bigcap_{j=2, p_{i_{j}} \in \mathcal{P}_{\leq \sqrt{n}}, p_{i_{j}} \nmid n}^{k} f_{n}\left(A_{2 p_{i_{j}}}\right)\right)
$$

.Moreover we have

$$
\varrho\left(n-\mathbb{C}_{n} \backslash n-1\right)=\varrho\left(\bigcup_{p \in \mathcal{P}_{\leq \sqrt{n}}, p \geq 3, p \nmid n} f_{n}\left(A_{2 p}\right)\right)=\frac{\delta(n)-\psi_{n-1}}{\Pi(n)}
$$

. According to Chebotarev's theorem -Artin more precisely the corollary we have : $\forall k \geq 2$

$$
\varrho\left(\bigcap_{j=2, p_{i_{j}} \in \mathcal{P}_{\leq \sqrt{n}}, p_{i_{j}} \nmid n}^{k} f_{n}\left(A_{2 p_{i_{j}}}\right)\right)=\frac{1}{\phi\left(\prod_{j=2}^{k} p_{i_{j}}\right)}+h(n)
$$

$\forall i \geq 2$

$$
\varrho\left(f_{n}\left(A_{2 p_{i}, p_{i} \nmid n}\right)\right)=\frac{1}{\phi\left(p_{i}\right)}-\frac{\psi_{n-p_{i}}}{\Pi(n)}+h(n)
$$

, where $\mathrm{h}(\mathrm{n})$ represents the error of our estimation Regarding the corollary we $h(n)=\bigcirc\left(c \ln (n) e^{-\sqrt{\ln (n)}}\right)$ Thus

$$
\frac{\delta(n)-\psi_{n-1}}{\Pi(n)}=g(n)-\sum_{k=2}^{r} \frac{\psi_{n-p_{k}}}{\Pi(n)}+\sum_{k=2}^{r} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{k} \leq r} \frac{(-1)^{k}}{\prod_{j=2}^{k}\left(p_{i_{j}}-1\right), p_{i_{j}} \nmid n}
$$

where

$$
g(n)=\sum_{k=2}^{r}(-1)^{k} \sum_{2 \leq i_{2}<i_{3}<\ldots . .<i_{k} \leq r} h(n)
$$

represents the error of the proportion estimation of prime in $\bigcup_{p \in \mathcal{P} \leq \sqrt{n}, p \geq 3, p \nmid n} f_{n}\left(A_{2 p}\right)$.Noting that

$$
\sum_{k=2}^{r} \psi_{n-p_{k}}=\sum_{n-p \in \mathcal{P}_{n}, p \leq p_{r}} 1=\sum_{p \in \mathcal{P}_{n} \backslash G_{n}, p \leq p_{r}} 1=\alpha\left(p_{r}\right)
$$

and applying the useful lemma, we have :

$$
\frac{\delta(n)-\psi_{n-1}}{\Pi(n)}=g(n)-\frac{\alpha\left(p_{r}\right)}{\Pi(n)}+\left(1-\prod_{i=2, p_{i} \nmid n}^{r} \frac{p_{i}-2}{p_{i}-1}\right)
$$

As $\delta(n)=\Pi(n)-\alpha(n)$ and $r=\max \left(i \mid p_{i} \leq \sqrt{n}\right)$ so

$$
\frac{\alpha(n)-\alpha(\sqrt{n})}{\Pi(n)}=-g(n)+\prod_{p=3, p \nmid n}^{\sqrt{n}} \frac{p-2}{p-1}-\frac{\psi_{n-1}}{\Pi(n)}
$$

. The veritable problem of our result is bounded on the error function g. How can we solve it? . The answer is so simple by noticing that

$$
\left|\frac{g(n)}{h(n)}\right|=\left|\sum_{k=2}^{r}(-1)^{k} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{k} \leq r} 1\right|=\left|\sum_{k=2}^{r}(-1)^{k}\binom{r-1}{k-1}\right|=\left|-\sum_{k=1}^{r-1}(-1)^{k}\binom{r-1}{k}\right|=1
$$

Using the previous result our formula becomes :

$$
\alpha(n)-\alpha(\sqrt{n}) \sim_{+\infty} \Pi(n) \prod_{p=3, p \nmid n}^{\sqrt{n}} \frac{p-2}{p-1}-\psi_{n-1}
$$

In the following we will apply the Mertens' theorem in order to evaluate $c_{n}=\prod_{p=3, p \nmid n}^{\sqrt{n}} \frac{p-2}{p-1}$. As

$$
\prod_{p=3}^{\sqrt{n}} \frac{p-2}{p-1}=\prod_{p=3, p \nmid n}^{\sqrt{n}} \frac{p-2}{p-1} \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-2}{p-1}
$$

so we have

$$
c_{n}=\prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-2}{p-1} \prod_{p=3}^{\sqrt{n}} \frac{p-1}{p-2}
$$

By using the third formula of Mertens we have :

$$
\prod_{p \leq \sqrt{n}}\left(1-\frac{1}{p}\right)=\frac{2 e^{-\gamma}}{\ln n}\left(1+\bigcirc\left(\frac{1}{\ln n}\right)\right)
$$

Let's put

$$
c_{2}(n)=\prod_{p=3}^{\sqrt{n}} \frac{p(p-2)}{(p-1)^{2}}=\prod_{p=3}^{\sqrt{n}} \frac{p}{p-1} \prod_{p=3}^{\sqrt{n}} \frac{p-2}{p-1}
$$

so

$$
c_{n}=2 c_{2}(n) \prod_{p=2}^{\sqrt{n}}\left(1-\frac{1}{p}\right) \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-1}{p-2}
$$

From the previous part

$$
\begin{gathered}
c_{n}=\frac{4 c_{2}(n) e^{-\gamma}}{\ln n}\left(1+\bigcirc\left(\frac{1}{\ln n}\right)\right) \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-1}{p-2} \\
\alpha(n)-\alpha(\sqrt{n}) \sim_{+\infty} \Pi(n)\left[\frac{4 c_{2}(n) e^{-\gamma}}{\ln n} \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-1}{p-2}\right]
\end{gathered}
$$

Let

$$
\beta_{n}=c_{2}(n) \prod_{p=3, p \mid n}^{\sqrt{n}} \frac{p-1}{p-2}
$$

then $\exists n_{0} \forall n \geq n_{0}$

$$
\alpha(n) \geq \alpha(n)-\alpha(\sqrt{n}) \geq \frac{2 \beta_{n} \Pi(n)}{\ln n}
$$

4.5 proof of lemma 1

Let suppose that $\exists q$ such that $\mathcal{P}_{q} \backslash G_{q}=\emptyset$ then $\alpha(q)=\operatorname{card}\left(\mathcal{P}_{q} \backslash G_{q}\right)=0$.According to the theorem necessarily we have $q \leq n_{0}$ and we also have

$$
\frac{\alpha(q)-\alpha(\sqrt{q})}{\Pi(q)}=-g(q)+\prod_{p=3, p \nmid q}^{\sqrt{q}} \frac{p-2}{p-1}-\frac{\psi_{q-1}}{\Pi(q)}
$$

then

$$
-g(q)+\prod_{p=3, p \nmid q}^{\sqrt{q}} \frac{p-2}{p-1}-\frac{\psi_{q-1}}{\Pi(q)}=0
$$

more precisely $\prod_{p=3, p \nmid q}^{\sqrt{q}} \frac{p-2}{p-1}=g(q)+\frac{\psi_{q-1}}{\Pi(q)}$. Which leads us to :

$$
\frac{4 c_{2}(q) e^{-\gamma}}{\ln q}\left(1+\bigcirc\left(\frac{1}{\ln q}\right)\right) \prod_{p=3, p \mid q}^{\sqrt{q}} \frac{p-1}{p-2} \leq g(q)+\frac{1}{\Pi(q)}
$$

Multiplying each member by $\ln (q)$ we have

$$
4 c_{2}(q) e^{-\gamma}(1+\bigcirc(1)) \prod_{p=3, p \mid q}^{\sqrt{q}} \frac{p-1}{p-2} \leq \ln (q) g(q)+\frac{\ln (q)}{\Pi(q)}
$$

.As $\ln (q) g(q)+\frac{\ln (q)}{\Pi(q)}=\bigcirc\left(c \ln ^{2}(q) e^{-\sqrt{\ln (q)}}\right)$ hence our inequality does not hold. Therefore the lemma 1 is true. The main result is that for any even given integer n the pairwise of Goldbach prime is $(p, n-p)$ where $p \in \mathcal{P}_{n} \backslash G_{n}$

4.6 Acknowledgments

The author wish to express their appreciation and sincere thanks to Professor Tanoé François(Université Félix-Houphouet Boigny Ufr de Maths-info) and Professor Pascal Adjamogbo (Université Paris 6) for their encouragements

Références

[1] Not always buried deep selection from analytic and combunatorial number theory 2003,2004 Paul POLLACK
[2] An amazing prime heuristic Chris K. CALDWELL
[3] ON EXPLORATION ABOUT GOLDBACH'S CONJECTURE BY EMarkakis,C.Provatidis,N.Markakis
[4] Elementary number theory a revision by Jim Heferon,st Michael's college 2003-Dec
[5] generatingfunctionology, Herbert S.Wilf
[6] Lecture on NX(p) Jean pierre serre
idriss.bado HDSHDJDP

