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Abstract

The Beal Conjecture considers positive integers A, B, and C having respec-
tive positive integer exponents X, Y , and Z all greater than 2, where bases
A, B, and C must have a common prime factor. Taking the general form
AX + BY = CZ , we explore a small opening in the conjecture through re-
formulation and substitution to create two new variables. One we call ’C
dot’ (Ċ) representing and replacing C and the other we call ’Z dot’ (Ż) rep-
resenting and replacing Z. With this, we show that Ċ and Ż are separate
continuous functions, with argument

(
AX + BY

)
, that achieve all positive

integers during their continuous non-constant rates of infinite ascent. Pos-
sibilities for each base and exponent in the reformulated general equation
AX +BY = ĊŻ are examined using a binary table along with analyzing user
input restrictions and Ċ’s value relative to A and B. Lastly, an indirect proof
is made, where conclusively we find the continuity theorem to hold over the
conjecture.
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Beal Conjecture:

If AX + BY = CZ , where A, B, C, X, Y , and Z are positive
integers and X, Y , and Z, are all greater than 2, then A, B, and
C must have a common prime factor.
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1. Main Results

The Beal Conjecture considers positive integers A, B, and C having re-
spective positive integer exponents X, Y , and Z all greater than 2, where
bases A, B, and C must have a common prime factor.

In this paper we reformulate two variables held in the conjectures equa-
tion AX + BY = CZ through construction of a ’C dot’ (Ċ) representing and
replacing positive base C, and a ’Z dot’ (Ż) representing and replacing pos-
itive exponent Z. Where our reformulation shows solutions always exist for
Ċ and Ż. We further show that Ċ and Ż are continuous functions, with
argument

(
AX + BY

)
, having non-constant rates of infinite ascent.

Expressing
(
AX + BY

)
as the value Gamma (Γ), we see that Ċ as a f(Γ)

achieves all positive integers −emphasis on positive odd prime integers−
during its continuous non-constant rate of infinite ascent. While Ż, also a
f(Γ), achieves all positive integers during its own continuous non-constant
rate of infinite ascent.

Possibilities for each base and exponent in the reformulated general equa-
tion AX + BY = ĊŻ are examined using a binary table (1’s representing
integer and 0’s representing non-integer), along with analyzing user input
restrictions and Ċ’s value relative to A and B. Lastly, an indirect proof is
made, where the continuity theorem is shown to hold over the conjecture.

Beal Conjecture general equation:

AX + BY = CZ (1)

Beal Conjecture reformulated general equation:

AX + BY =

(
e

ln(Γ2)
2
√

ln(Γ)

)√ln(Γ)

(2)

where,

Ċ = C =

(
e

ln(Γ2)
2
√

ln(Γ)

)
(3)

and,
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Ż = Z =
√

ln (Γ) (4)

then,

AX + BY = ĊŻ (5)

2. Current State of Knowledge

Proposed in 1994, by Andrew Beal, in correspondence letters and early on
referred to as a ’generalization of Fermat’s Last Theorem’ (Edwards 1994),
the Beal Conjecture has evolved into a remarkable problem for mathemati-
cians. Since this time, many contributions have been made.

Andrew Wiles (1994) investigated that Fermat’s Last Theorem where
equal exponents X, Y , and Z had no solutions. Darmon and Merel (1995)
investigated exponents X, Y , and Z of (2, n, n) and (3, n, n). Bjorn Poonen et
al (2005) investigated exponents (2, 3, 7). David Brown (2009) investigated
exponents (2, 3, 10). Bennet et al (2009) investigated exponents (2, 4, n).
Samir Siksek and Michael Stoll (2013) investigated exponents (2, 3, 15).

Each of these works have contributed towards a better understanding of
the Beal Conjecture and where we stand today.

3. Background on Author’s Formation of these Equations and Func-
tions

In deriving our equations and functions we began our analysis by focusing
on minimizing the total number of variables associated with the Beal Con-
jecture’s general equation. With this, we then found our functions, and our
function arguments to which were comprised of the remaining variables held
within the general equation.

Next, we used these functions and their arguments to arrive at our con-
clusions through binary analysis, user restricted inputs, calculated results,
probability analysis, cycle analysis, and indirect proof.

There were many peaks and valleys during the formation of these equa-
tions and functions, but in the end we found something extremely beautiful.
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4. Reformulation & Substitution

We provide our reformulation for base C and exponent Z below, followed
by graphing the reformulations on a primary and secondary Y axis.

Reformulation for C:

AX + BY = CZ (6)

e(X)ln(A) + e(Y )ln(B) = e(Z)ln(C) (7)

(
e(X)ln(A) + e(Y )ln(B)

)2
=
(
e(Z)ln(C)

)2
(8)

(
e(X)ln(A) + e(Y )ln(B)

)2
= e2(Z)ln(C) (9)

e2(X)ln(A) + 2e(X)ln(A)+(Y )ln(B) + e2(Y )ln(B) = e2(Z)ln(C) (10)

2e(X)ln(A)+(Y )ln(B) = e2(Z)ln(C) − e2(X)ln(A) − e2(Y )ln(B) (11)

e(X)ln(A)+(Y )ln(B) =
e2(Z)ln(C) − e2(X)ln(A) − e2(Y )ln(B)

2
(12)

AXBY = e2(Z)ln(C)−ln(2) − e2(X)ln(A)−ln(2) − e2(Y )ln(B)−ln(2) (13)
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2AXBY

B2Y
=

e2(Z)ln(C)

B2Y
− A2X

B2Y
− 1 (14)

2AXBY−2Y =
e2(Z)ln(C)

B2Y
− A2X

B2Y
− 1 (15)

2AXBY−2Y +
A2X

B2Y
=

e2(Z)ln(C)

B2Y
− 1 (16)

2AXBY + A2X

B2Y
=

e2(Z)ln(C)

B2Y
− 1 (17)

2AXBY + A2X

B2Y
+ 1 =

e2(Z)ln(C)

B2Y
(18)

2AXBY + A2X + B2Y

B2Y
=

e2(Z)ln(C)

B2Y
(19)

e2(Z)ln(C) = 2AXBY + A2X + B2Y (20)

2 (Z) ln (C) = ln
(
2AXBY + A2X + B2Y

)
(21)
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C = e
ln(2AXBY +A2X+B2Y )

2(Z) (22)

Ċ = C = e
ln(2AXBY +A2X+B2Y )

2(Z) (23)

substituting Ċ back into the general equation results in:

AX + BY =

(
e

ln(2AXBY +A2X+B2Y )
2(Z)

)Z

(24)

Reformulation for Z:

AX + BY =

(
e

ln(2AXBY +A2X+B2Y )
2(Z)

)Z

(25)

Z
√

AX + BY = e
ln(2AXBY +A2X+B2Y )

2(Z) (26)

(
AX + BY

) 1
Z = e

ln(2AXBY +A2X+B2Y )
2(Z) (27)

e
1
Z
ln(AX+BY ) = e

ln(2AXBY +A2X+B2Y )
2(Z) (28)
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eZe
1
Z
ln(AX+BY ) = e

ln(2AXBY +A2X+B2Y )
2(Z) eZ (29)

e
1
Z
ln(AX+BY )+Z = e

ln(2AXBY +A2X+B2Y )
2(Z)

+Z (30)

e
1
Z
ln(AX+BY )+Z = e

ln(2AXBY +A2X+B2Y )
2(Z)

+ 2Z2

2Z (31)

e
1
Z
ln(AX+BY )+Z = e

ln(2AXBY +A2X+B2Y )+2Z2

2(Z) (32)

1

Z
ln
(
AX + BY

)
+ Z =

ln
(
2AXBY + A2X + B2Y

)
+ 2Z2

2 (Z)
(33)

ln
(
AX + BY

)
Z

+ Z =
ln
(
2AXBY + A2X + B2Y

)
+ 2Z2

2 (Z)
(34)

ln
(
AX + BY

)
Z

+
Z2

Z
=

ln
(
2AXBY + A2X + B2Y

)
+ 2Z2

2 (Z)
(35)

ln
(
AX + BY

)
+ Z2

Z
=

ln
(
2AXBY + A2X + B2Y

)
+ 2Z2

2 (Z)
(36)

2ln
(
AX + BY

)
+ 2Z2 = ln

(
2AXBY + A2X + B2Y

)
+ 2Z2 (37)
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2Z2 + 2ln
(
AX + BY

)
= 2Z2 + ln

(
2AXBY + A2X + B2Y

)
(38)

Applying the quadratic formula to both sides,

Z =
−K ±

√
K2 − 4JL

2J
(39)

Table 1: Quadratic Formula Inputs

Left-Hand Side Right-Hand Side

J = 2 J = 2
K = 0 K = 0
L = 2ln

(
AX + BY

)
L = ln

(
2AXBY + A2X + B2Y

)
Z =

−0±
√

02−4(2)2ln(AX+BY )

2(2)
Z =

−0±
√

02−4(2)ln(2AXBY +A2X+B2Y )

2(2)

Z = ±i
√
ln (AX + BY ) Z =

±i
√

(2)ln(2AXBY +A2X+B2Y )

(2)

Z =
√
ln (AX + BY )

By reformulation of C to Ċ, our Z may now be chosen selectively, see
Z within (24), so we choose the positive real part of the simplest term that
fulfills the function requirement for a (AX + BY ) as the argument.

Z =
√

ln (AX + BY ) (40)

and now,
Ż = Z =

√
ln (AX + BY ) (41)

We see that our final reformulated general equation is now (shown in three
equivalent forms):
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AX + BY =

e

ln(2AXBY +A2X+B2Y )
2

√
ln(AX+BY )


√
ln(AX+BY )

(42)

AX + BY =

e

ln

(
(AX+BY )

2
)

2

√
ln(AX+BY )


√
ln(AX+BY )

(43)

AX + BY =

(
e

ln(Γ2)
2
√

ln(Γ)

)√ln(Γ)

(44)

Where when graphed, with Γ = X (where the X here is different from the
X exponent in the general equation, as the X here is zero to infinity repre-
senting all values of Γ) we see Figure 1:

Figure 1: Functions ’C dot’ (Ċ) and ’Z dot’ (Ż), w/ Gamma (Γ) Equal to X
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5. Continuity Theorem

Referencing the well-known ’continuity theorem’, if ”g” is a continuous
function at all values of argument ”a”, and function ”f” is continuous with
”x” argument at ”g (a)”, then the composition f ◦g is continuous at ”x = a”.

with,
f(x) = ex (45)

and,

g(a) = a (46)

then also continuous everywhere at,

f(g(a)) = ea (47)

Where then we can state our reformulated general equation (shown in three
equivalent forms) is continuous everywhere,

AX + BY =

e

ln(2AXBY +A2X+B2Y )
2

√
ln(AX+BY )


√
ln(AX+BY )

(48)

AX + BY =

e

ln

(
(AX+BY )

2
)

2

√
ln(AX+BY )


√
ln(AX+BY )

(49)

AX + BY =

(
e

ln(Γ2)
2
√

ln(Γ)

)√ln(Γ)

(50)
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6. Binary Table, Restrictions, and Equality Proof

With our bases A, B, and Ċ and exponents of X, Y , and Ż we assign all
possibilities for integer and non-integer at any moment in time. Where a 1
represents an integer and a 0 represents a non-integer:

Table 2: Reformulated General Equation Integer & Non-
Integer Possibilities

Bases Exponents

Rows A B Ċ X Y Ż
1 0 0 0 0 0 0
2 0 0 0 0 0 1
3 0 0 0 0 1 0
4 0 0 0 0 1 1
5 0 0 0 1 0 0
6 0 0 0 1 0 1
7 0 0 0 1 1 0
8 0 0 0 1 1 1
9 0 0 1 0 0 0
10 0 0 1 0 0 1
11 0 0 1 0 1 0
12 0 0 1 0 1 1
13 0 0 1 1 0 0
14 0 0 1 1 0 1
15 0 0 1 1 1 0
16 0 0 1 1 1 1
17 0 1 0 0 0 0
18 0 1 0 0 0 1
19 0 1 0 0 1 0
20 0 1 0 0 1 1
21 0 1 0 1 0 0
22 0 1 0 1 0 1
23 0 1 0 1 1 0
24 0 1 0 1 1 1
25 0 1 1 0 0 0
26 0 1 1 0 0 1

Continued on next page
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Table 2 – Continued from previous page
Bases Exponents

Rows A B Ċ X Y Ż

27 0 1 1 0 1 0
28 0 1 1 0 1 1
29 0 1 1 1 0 0
30 0 1 1 1 0 1
31 0 1 1 1 1 0
32 0 1 1 1 1 1
33 1 0 0 0 0 0
34 1 0 0 0 0 1
35 1 0 0 0 1 0
36 1 0 0 0 1 1
37 1 0 0 1 0 0
38 1 0 0 1 0 1
39 1 0 0 1 1 0
40 1 0 0 1 1 1
41 1 0 1 0 0 0
42 1 0 1 0 0 1
43 1 0 1 0 1 0
44 1 0 1 0 1 1
45 1 0 1 1 0 0
46 1 0 1 1 0 1
47 1 0 1 1 1 0
48 1 0 1 1 1 1
49 1 1 0 0 0 0
50 1 1 0 0 0 1
51 1 1 0 0 1 0
52 1 1 0 0 1 1
53 1 1 0 1 0 0
54 1 1 0 1 0 1
55 1 1 0 1 1 0
56 1 1 0 1 1 1
57 1 1 1 0 0 0
58 1 1 1 0 0 1
59 1 1 1 0 1 0
60 1 1 1 0 1 1

Continued on next page
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Table 2 – Continued from previous page
Bases Exponents

Rows A B Ċ X Y Ż

61 1 1 1 1 0 0
62 1 1 1 1 0 1
63 1 1 1 1 1 0
64 1 1 1 1 1 1

As shown in Table 2, the reformulated general equation is not restricted
to any particular row or rows, but in fact accommodates all rows therein.

When the user restricts the reformulated general equation to certain in-
puts (e.g., A, B, X, and Y being only positive integers) then focus on Ċ and
Ż is essential in witnessing fluctuations between positive non-integers and
integers.

All solutions reside on the Ċ and Ż lines, therefore we analyze important
intersections (’intersections’ being where two avenues meet) and some user
restriction scenarios relative to the conjecture:

i) when the user restricts A, B, X, and Y to positive integers greater
than 2;

ii) when the user restricts A, B, X, and Y to positive integers greater
than 2, where A and B are of non-common prime factor; and

iii) when the user restricts A and B to positive odd prime integers
and X and Y to positive integers greater than 2.

Under these restriction scenarios, vertical avenues occur at every value of
the Γ argument, which we assign to the horizontal axis, whereas the remain-
ing horizontal avenues occur from either positive integers (for Ċ and Ż) or
positive integers (for Ż) and positive odd prime integers (for Ċ), which we
assign to the vertical axis. The restricted scenarios, and their infinite number
of avenues and intersections are essential to understanding the journey of Ċ
and Ż during their non-constant rates of infinite ascent.

Visualizing a sliver of this journey, we present Figure 2 showing only the
Ċ path under a sample portion of one set of Γ arguments from an infinite set
of Γ arguments available.
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Figure 2: Function ’C dot’ (Ċ) w/Gamma (Γ) Verticals & Prime Horizontals

As we can see in Figure 2, Ċ is on an endless journey of a non-constant
rate of infinite ascent where any crossing of an intersection results in Ċ having
a positive odd prime value driven from argument Γ. (Keeping in mind that
Figure 2 is only a small sample of possible Γ values under the three proposed
user restriction scenarios.)

Where Ċ’s path is shown in Figure 2, a similar but different path is also
being taken by its exponent Ż. When Ċ and Ż cross different intersections si-
multaneously the reformulated general equation under the user’s restrictions
unlocks its delight with respect to the Beal Conjecture.

If regularity in Γ or odd prime numbers existed there could have been a
cyclic miss of intersection crossings. Given such regularity does not exist, we
counter intuitively now can count on the irregularity of these two values.

The non-constant rate of ascent found in the path of Ċ, combined with
the irregularity of the odd primes, coupled with the irregularity of the Γ ar-
guments guarantees no cycle could take place that would cause continuously
missed intersection crossings.

To further analyze the situation, we look at probabilities. Where we can
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comfortably say1 that the probability of Ċ being a positive integer or posi-
tive odd prime integer at future Γ arguments is 1, and the probability that
Ż is a positive integer at future Γ arguments is also 1. Therefore, as the
’mutually exclusive’ rule does not apply here, the probability that Ċ and Ż
occur simultaneously is the product of the individual probabilities,

where,

P
(
Ċ
)

= 1 (51)

and,

P
(
Ż
)

= 1 (52)

then,

P
(
Ċ ∩ Ż

)
= P

(
Ċ
)
× P

(
Ż
)

= 1 (53)

Nothing in our investigations, have risen to say that these two events will
not occur simultaneously at some future Γ argument, and based off of our
analysis here we can say that in fact these events will occur simultaneously.
Much contemplation has been given to these two events, and accordingly, the
remaining part of the analysis involves analyzing the relationship between
values of A, B, and Ċ with respect to when they are all positive odd prime
integers.

We look at when A and B are different positive odd prime integers and
the three possible positive odd prime scenarios for Ċ.

But first, for completeness, we show by an equality proof that Ċ may
be equal to A or B, keeping in mind this does not mean Ċ is restricted to
only these two possible positive odd prime values, as in the (An1 + Bn2) case
Ċ may achieve many different positive odd prime integer values during its
non-constant rate of ascent.

1See Ċ at odd prime integer 269 given arbitrary argument of 39243047905669 (one of
many findings by us while experimenting with Ċ).
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We assume the following is true and show it can be true.

where if,

A = A (54)

then if,

A = e

ln

(
(AX+BY )

2
)

2

√
ln(AX+BY ) (55)

we see that,

ln (A) =
ln
((

AX + BY
)2
)

2
√

ln (AX + BY )
(56)

2ln (A) =
ln
((

AX + BY
)2
)√

ln (AX + BY )

ln (AX + BY )
(57)

2ln (A) =
ln
((

AX + BY
)2
) (

ln
(
AX + BY

)) 1
2

ln (AX + BY )
(58)

2ln
(
AX + BY

)
(ln (AX + BY ))

1
2

=
ln
((

AX + BY
)2
)

ln (A)
(59)

2
(
ln
(
AX + BY

)) 1
2 ln (A) = ln

((
AX + BY

)2
)

(60)

2
√
ln (AX + BY )ln (A) = ln

((
AX + BY

)2
)

(61)
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e2
√
ln(AX+BY )ln(A) =

(
AX + BY

)2
(62)

√
e2
√
ln(AX+BY )ln(A) =

(
AX + BY

)
(63)

X

√√
e2
√
ln(AX+BY )ln(A) −BY = A (64)

setting (55) and (64) equal,

e

ln

(
(AX+BY )

2
)

2

√
ln(AX+BY ) =

X

√√
e2
√
ln(AX+BY )ln(A) −BY (65)

e

(X)ln

(
(AX+BY )

2
)

2

√
ln(AX+BY ) + e(Y )ln(B) =

√
e2
√
ln(AX+BY )ln(A) (66)

e

(X)ln

(
(AX+BY )

2
)

2

√
ln(AX+BY ) + e(Y )ln(B) = e

√
ln(AX+BY )ln(A) (67)

e

(X)

2

√
ln(AX+BY )

ln
(
(AX+BY )

2
)

+ e(Y )ln(B) = e
√
ln(AX+BY )ln(A) (68)

((
AX + BY

)2
) (X)

2

√
ln(AX+BY ) + e(Y )ln(B) = e

√
ln(AX+BY )ln(A) (69)

((
AX + BY

)2
) (X)

2

√
ln(AX+BY ) + BY = e

√
ln(AX+BY )ln(A) (70)
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((
AX + BY

)2
) (X)

2

√
ln(AX+BY ) = A

√
ln(AX+BY ) −BY (71)

(
AX + BY

)2
=

(X)

2

√
ln(AX+BY )

√
A
√
ln(AX+BY ) −BY (72)

(
AX + BY

)
=

(X)√
ln(AX+BY )

√
A
√
ln(AX+BY ) −BY (73)

(
AX + BY

) (X)√
ln(AX+BY ) = A

√
ln(AX+BY ) −BY (74)

where then,

BY = A
√
ln(AX+BY ) −

(
AX + BY

) (X)√
ln(AX+BY ) (75)

and now substituting for BY in (74) yields,

(
AX + BY

) (X)√
ln(AX+BY ) = A

√
ln(AX+BY )−A

√
ln(AX+BY )+

(
AX + BY

) (X)√
ln(AX+BY )

(76)

which then shows,

(
AX + BY

) (X)√
ln(AX+BY ) =

(
AX + BY

) (X)√
ln(AX+BY ) (77)

where we see,

1 = 1 (78)

Therefore (55) can be true,
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A = e

ln

(
(AX+BY )

2
)

2

√
ln(AX+BY ) (79)

With this proof (and the same result if one were to solve for B), we now
consider when A and B are different positive odd prime integers that Ċ could
be one of the same positive odd prime integers.

Therefore, we attend to this by looking at when Ċ is a positive odd prime
integer and looking at a scenario comparison under the three possible positive
odd prime integer scenarios for Ċ. Those being:

i) where Ċ is equal to that positive odd prime integer A;

ii) where Ċ is equal to that positive odd prime integer B; and

iii) where Ċ is equal to some other positive odd prime integer (which
there are an infinite number of)

Under these three positive odd prime integer scenarios for Ċ, we examine
a user restriction input where the Γ argument is comprised of A and B,
being two different positive odd prime integers, with A’s exponent set to n1

and B’s exponent set to n2, were each n exponent goes to infinity at +1
integer intervals (keeping in mind the infinite permutation abilities of this
arrangement).

(An1 + Bn2) = Γ (80)

n1 →∞ at + 1 integer intervals (81)

n2 →∞ at + 1 integer intervals (82)

Under this particular user restriction input Ċ could achieve positive odd
prime integer values of A, B, and/or any ĊPRIME along its journey under
varying Γ arguments.

Most importantly though, any achievement by Ċ of any A or B positive
odd prime integer value does not preclude Ċ from also achieving ĊPRIME.
While similarly, any achievement by Ċ of a ĊPRIME positive odd prime
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integer value does not preclude Ċ from also achieving a positive odd prime
value of A or B. Accordingly, Ċ is not restricted by, nor limited, during its
infinite non-constant rate of ascent.

With this, we conclude:

1) Ċ will achieve many different positive odd prime integer values
during its infinite non-constant rate of ascent; and

2) Ċ will eventually be that positive odd prime integer ĊPRIME hav-
ing a Γ argument comprised of different positive odd prime integers
A and B (where ĊPRIME 6= A and B).

Next, we turn to the remaining aspects of the Beal Conjecture.

7. Beal Conjecture Indirect Proof

We can rely on our reformulated general equation that when A and B are
different positive odd prime integers, and X and Y are integers greater than
2, that Ċ and Ż fluctuate from non-integer to integer status during their
infinite non-constant rate of ascent. It is this non-constant rate of ascent to
infinity that allows us to claim that eventually Ċ and Ż will simultaneously
cross intersections and be positive integers, while Ċ’s integer −in particular−
will also be a positive odd prime one not equal to A and B.

From this, we now consider an indirect proof of the Beal Conjecture:

Beal Conjecture states2 that the sequence of events outlined above
will not occur. So, we assume it will not occur, and where it will
naturally occur during that infinite non-constant rate of ascent to
which Ċ and Ż simultaneously achieve positive integers (and Ċ
is also odd prime not equal to those different positive odd prime
integers A and B) the functions Ċ and Ż would then not be
continuous. But by the continuity theorem functions Ċ and Ż
are continuous at all times. Contradiction. Therefore, the Beal
Conjecture does not hold by the continuity theorem.

2”...and then A, B, and C must have a common prime factor”

20



8. Summary and Conclusions

We presented the reformulated general equation of the Beal Conjecture,
two separate function equations Ċ and Ż, relationship with the continuity
theorem, a binary table for integer and non-integer within the reformulated
general equation, scenario analysis, and an indirect proof.

We relied on our reformulations of C to Ċ and Z to Ż, the continuity
theorem, user restricted scenarios, experiment results, probability of non-
mutually exclusive, irregularity of the odd primes coupled with the irregu-
larity of the Γ arguments guaranteeing no cycle could take place that would
cause continuously missed intersection crossings, a three scenario analysis for
Ċ’s value with respect to A, B, and ĊPRIME, and an indirect proof of the
Beal Conjecture to validate our claims.

The irregularity qualities of positive odd primes, CZ , and AX + BY val-
ues that once was thought as the barrier in solving this conjecture have now
been used in reverse to solve it. Without the ability to reformulate C to Ċ
and Z to Ż (having the sole argument of Γ) it would have been difficult to
see things from a new vantage point. Yet, from this new vantage point, the
non-constant rates of infinite ascent by Ċ and Ż showed us the way.
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