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Abstract—Over 80 years ago, the German mathemati-
cian Lothar Collatz formulated an interesting mathe-
matical problem, which he was afraid to publish, for
the simple reason that he could not solve it. Since
then the Collatz Conjecture has been around under
several names and is still unsolved, keeping people
addicted. Several famous mathematicians including
Richard Guy stating “Dont try to solve this problem”.
Paul Erdös even said ”Mathematics is not yet ready
for such problems” and Shizuo Kakutani joked that
the problem was a Cold War invention of the Russians
meant to slow the progress of mathematics in the
West. We might have finally freed people from this
addiction.

I. INTRODUCTION

The Collatz Conjecture:
For x ∈ N

Forx is odd: x→ 3x+ 1 (1)

Forx is even: x→ x

2
(2)

Assumption:

∀x ∈ N , x→∗ 1 (3)

Concept of proof
To prove the Collatz Conjecture, the following idea
has been chosen: First of all, we will show that only
odd numbers need to be considered. Furthermore,
assuming that there are odd numbers, which are not
falling onto 1, there are two possible ways how
these numbers behave. Either they are increasing
infinitely, moving away from 1 or there are other
loops than 1. We will show that these two cases
will end in contradictions.
Before starting with the actual proof, basic impli-
cations are proven and terms defined.

II. BASIC DEFINITIONS AND TERMS

Lemma 1. For all powers of two, with even k, it is

2k (mod 3) = 1 ∀k ∈ N |(k) (mod 2) = 0 (4)

Proof. For 22 (mod 3) = 1 and 2k = 22 ·22 ·22 ·. . .
It follows:

2k (mod 3) = (22 (mod 3)) · (22 (mod 3)) · . . .
2k (mod 3) = 1 · 1 · 1 · . . .
2k (mod 3) = 1

Lemma 2. For all powers of two, with odd k, it is

2k (mod 3) = 2 ∀k ∈ N |(k) (mod 2) = 1 (5)

Proof. For 21 (mod 3) = 2 and 2k = 2 ·22 ·22 · . . .
It follows

2k (mod 3) = (2 (mod 3)) · (22 (mod 3)) · . . .
2k (mod 3) = 2 · 1 · 1 · . . .
2k (mod 3) = 2

Theorem 1. The statement that every number falls
onto 1, is equivalent to the statement that every odd
number falls onto 1.

x→∗ 1 ∀x ∈ N
↔ u→∗ 1 ∀u ∈ N|u (mod 2) = 1 (6)

Lemma 3. All even numbers g fall onto an odd
number u.

g →∗ u ∀ g ∈ N|g (mod 2) = 0 (7)

Proof. Every even number g can be written as a
product of an odd number u multiplied with a factor



of 2k. It follows according to (2), that g falls onto
u:

g = u · 2k
g

2
= u · 2k−1

g

22
= u · 2k−2

. . .
g

2k
= u

⇒ g →∗ u ∀ g ∈ N|g (mod 2) = 0

Lemma 4. All odd numbers u fall onto another odd
number u′.

u→∗ u′ ∀ u, u′ ∈ N|u ≡ u′ ≡ 1 (mod 2) (8)

Proof. According to (1), u is mapped on 3u + 1,
which is an even number. Furthermore according
to Lemma (3), every even number falls onto an odd
number:

u→∗ 3u+ 1 = g

g →∗ u′ ∀ g ∈ N|g (mod 2) = 0

u→ g →∗ u′

u→∗ u′

From Lemma (3) and (4), it follows that only odd
numbers have to be considered.

Definition 1. The number of (2)-steps (dividing an
even number by 2) until u reaches u′ is equal to k
and defined as the rank of u (Ru).

Definition 2. The mapping u → u′ is defined as
C(u).
Whereby u′ = 3u+1

2k
= 3u+1

2Ru

Lemma 5. The number 1 maps to itself:

1→∗ 1 (9)

Proof. It is 1 (mod 2) = 1 and 1→ 3 · 1 + 1 = 4
It follows:

4 (mod 2) = 0

4→ 4

2
= 2

2 (mod 2) = 0

2→ 2

2
= 1

⇒ 1→∗ 1

Lemma 6. Only the number 1 falls onto itself after
exactly one C(u) (mapping from one odd number
to the following odd number). The following
equation has to be fullfilled:

For u ∈ N, it is
3u+ 1

2Ru
= u (10)

Proof.

3u+ 1

2Ru
= u

u · 3 + 1 = u · 2Ru

u · 3 + 1− u · 2Ru = 0

u · (3− 2Ru) + 1 = 0

u · (3− 2Ru) = −1 (11)

For Ru = 1⇒ u = −1 E u ∈ N
For Ru > 2⇒ 1 > u > 0 E u ∈ N
It follows that equation (11) is only true for Ru = 2
and u = 1 as shown in Lemma (5).

III. PROOF AGAINST INFINITE INCREASE

In the following, we are going to show, that it is
impossible to have a set of numbers which are not
falling onto 1.
Reminder: Only odd numbers are considered in the
following, according to the definitions above.
Concept of proof
Under the condition, that there are no other loops
than the number 1, it follows that if there is an
odd number A which is not mapping onto 1, then
there must be an uncountably infinite amount of
odd numbers that is not falling onto 1, which is a
contradiction, since the natural number space only

2



holds a countably infinite amount of numbers.

A1 A2 …A3

B.1 B.2

No childrenInfinite children

B.3

Infinite children

A1 A2 …A3

Children with even ranks Children with odd ranks

C(B)

Fig. 1. There are three different types of parents. Both, the B.1
and B.3 type parents have an infinite number of children. B.1
has children with even ranks, while B.3 has children with odd
ranks. B.2 type parents have no children.

For the following, we define the terms, children,
siblings and parents:

Definition 3. A child (A) is an odd number that is
directly mapping onto one specific odd number (B).
Every other odd number (An) that is mapping onto
the same specific odd number (B) is defined as a
sibling.
It is An = (B)·2(RAn

)−1
3 , with RAn

being defined
as the rank of An.

The parent (B) is an odd number, that has exactly
one parent (C(B)) itself. Furthermore it has siblings.
The parent can have children or not as it will be
shown later.

Theorem 2. Either an infinite number of odd num-
bers u are falling on one specific number u′ or
none.
To show this, we studied, which odd numbers An

(children) are mapping onto one specific number
B (parent). We found that there are three different

groups (Fig. 1).

For B ∈ N, B can have three different forms:

B =

 2(3i) + 1 B.1
2(3i+ 1) + 1 B.2
2(3i+ 2) + 1 B.3

(12)

B is therefore divided into three groups which fall
into the three different residue classes of 3.

Lemma 7. The parent only has children with even
ranks. In other words An has an even rank. The
parent B would look like:

B.1 = 2(3i) + 1 (13)

Accordingly, the children An mapping onto this
parent would look like:

An =
(2(3i) + 1) · 2k − 1

3
(14)

with k = RAn

Proof. It has to be shown that for the parent B =
2(3i) + 1, the children An have an even rank.
Meaning that (k) (mod 2) = 0 and that there are
no An with k (mod 2) = 1. It is:

[(2(3i) + 1) · 2k − 1] (mod 3) = 0

⇒ [2 · 2k · (3i) + 2k − 1] (mod 3) = 0

⇒ [(2 · 2k · (3i)) (mod 3)+

(2k) (mod 3)− 1 (mod 3)] (mod 3) = 0

Case 1: For (k) (mod 2) = 0 and according to
Lemma (1):

⇒ [0 + 1− 1] (mod 3) = 0

⇒ 0 (mod 3) = 0

Case 2: For (k) (mod 2) = 1 and according to
Lemma (2):

⇒ [0 + 2− 1] (mod 3) = 0

⇒ 1 (mod 3) = 0 E
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Lemma 8. The parent only has children with odd
ranks. In other words An has an odd rank. The
parent B would look like:

B.3 = 2(3i+ 2) + 1 (15)

Accordingly, the children An mapping onto this
parent would look like:

An =
(2(3i+ 2) + 1) · 2k − 1

3
with k = RAn

Proof. It has to be shown that for the parent B =
2(3i + 2) + 1, the children An have an odd rank.
Meaning that (k) (mod 2) = 1 and that there are
no An with k (mod 2) = 0. It is:

[(2(3i+ 2) + 1) · 2k − 1] (mod 3) = 0

⇒ [(2 · (3i) + 5) · 2k − 1] (mod 3) = 0

⇒ [(2 · (3i) (mod 3) + 5 (mod 3))·
2k (mod 3)− 1 (mod 3)] (mod 3) = 0

Case 1: For (k) (mod 2) = 1 and according to
Lemma (2):

⇒ [(0 + 2) · 2− 1] (mod 3) = 0

⇒ 3 (mod 3) = 0

Case 2: For (k) (mod 2) = 0 and according to
Lemma (1):

⇒ [(0 + 2) · 1− 1] (mod 3) = 0

⇒ 1 (mod 3) = 0 E

Lemma 9. The parent has no children. The parent
B would look like:

B.2 = 2(3i+ 1) + 1 (16)

Accordingly, the children An mapping onto this
parent would look like:

An =
(2(3i+ 1) + 1) · 2k − 1

3
with k = RAn

Proof. It has to be shown that for the parent B =
2(3i + 1) + 1, there are no children An. Meaning

that (2(3i+1)+ 1) · 2k − 1 is not divisible by 3. It
is:

[(2(3i+ 1) + 1) · 2k − 1] (mod 3) = 0

⇒ [(2 · (3i) + 3) · 2k − 1] (mod 3) = 0

⇒ [(2 · (3i) (mod 3) + 3 (mod 3))·
2k (mod 3)− 1 (mod 3)] (mod 3) = 0

⇒ [(0) · (2k (mod 3))− 1] (mod 3) = 0

⇒ [0− 1] (mod 3) = 0

⇒ −1 (mod 3) = 0 E

In the next step, we show that if the parent B has
an infinite amount of children An, that among these
children, there is an infinite amount of children
having infinite amount of children themselves.

Theorem 3. B.1 and B.3 type parents have an infi-
nite number of children An each, which themselves
are equally divided into the three different parent
groups B.1, B.2 and B.3.
To prove this, we study how the children An look
like. For the children from the parent B.1, the
relationship to their siblings is as followed: Since
k has to be even for B.1 children (Lemma (7)), the
sibling has to have an even rank too (multplication
with 22).

An+1 =
(2(3i) + 1) · 2k · 22 − 1

3

An+1 =
(2(3i) + 1) · 2k · 22 − 4 + 3

3

An+1 =
(2(3i) + 1) · 2k · 22 − 4

3
+ 1

An+1 =
((2(3i) + 1) · 2k − 1)

3
· 4 + 1

An+1 = An · 4 + 1 (17)

Same behaviour accounts for the children from the
parent B.3. Since k has to be odd for B.3 children
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(Lemma (8)), the sibling has to have an odd rank
too (multplication with 22).

An+1 =
(2(3i+ 2) + 1) · 2k · 22 − 1

3
. . .

An+1 = An · 4 + 1 (18)

Comment: The multiplication with 22 means noth-
ing else than:

RAn+1
= RAn

+ 2; (19)

with Ru being the rank of u.

In the next step, it will be shown, that the
children A behave similiar to their parents B,
meaning that they can have infinite children or
none, since they can also be divided into the three
different residue classes of 3.

Lemma 10. For An ∈ N,
it is An ≡ (An+1 + 1) (mod 3)

Proof. In the following the residue class of An+1

is shown depending on the residue class of An.

For An (mod 3) = 0

An+1 (mod 3)

= (An · 4 + 1) (mod 3)

= ((An · 4) (mod 3) + (1) (mod 3)) (mod 3)

= (0 + 1) (mod 3)

⇒ An+1 (mod 3) = 1

For An (mod 3) = 1

An+1 (mod 3)

= (An · 4 + 1) (mod 3)

= ((An · 4) (mod 3) + (1) (mod 3)) (mod 3)

= (4 + 1) (mod 3)

⇒ An+1 (mod 3) = 2

For An (mod 3) = 2

An+1 (mod 3)

= (An · 4 + 1) (mod 3)

= ((An · 4) (mod 3) + (1) (mod 3)) (mod 3)

= (8 + 1) (mod 3)

⇒ An+1 (mod 3) = 0

Theorem 4. Under the condition, that there are no
other loops than the number 1, it follows that every
odd number B is mapping onto 1.

1) We know, that there are odd numbers which
fall onto 1 after a finite number of steps.

2) Assuming, there is an odd number B, which
does not fall onto 1, then we know that there
must be another number (it’s parent) C(B),
which is also not falling onto 1.

3) Under the condition that there are no other
loops than 1, we can follow that there is an in-
finite amount of numbers C(B), C(C(B)), . . .
not falling onto 1.

4) Since C(B) has one child, we can follow, that
it has an infinite amount of children. This ac-
counts also for C(C(B)), C(C(C(B))), · · · .

5) We know, that the set of children of C(B) has an
infinite subset of the kind B.1 and B.3 children
(Fig. 1).

6) Each of them, again have an infinite subset
of B.1 and B.3 children. This process repeats
recursively.

7) This results in a directional tree graph in
which every element is connected.

Lemma 11. Under the condition that there is no
loop, every element in this directional tree graph is
disjoint.

Proof. Assuming that there are two elements E1

and E2, which are not disjoint. Since every element
in this directional tree graph is connected, E1 and
E2 are connected in exactly one point X .

E1 →k1 X → . . .

E2 →k2 X → . . .
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If k1 = k2, it is trivial, since then the elements
E1 and E2 have to be the same node. This derives
simply from the fact, that a function cannot have
two different outputs for the same input.
If k1 < k2, it results in:

E1 →k1 X → . . .

E2 →k1 X →k2−k1 X → . . . E

This is a contradiction, since X would loop. Same
accounts for k1 > k2

Finally, this means that if there is one single odd
number B that is not falling onto 1, under the
condition that there is no other loop than 1, there
is a directional tree graph with infinite disjoint
elements. By enumerating the directional tree graph
with every real number (Fig. 2), it can be shown
that the cardinality of the real numbers equals that
of the directional tree graph. As proven by Cantor
[1] real numbers are uncountably infinite, it can
be followed that the directional tree graph has an
uncountably infinite amount of elements. Meaning
that an uncountably infinite amount of odd numbers
would not fall onto 1, which is a contradiction,
since there is only a countably infinite amount of
numbers in the natural number space. Therefore we
can conclude that under the given condition (no
other loop than 1), every number has to fall onto
1.

IV. PROOF AGAINST LOOPS

In the final step, we are proving that the condition,
only the number 1 loops, is true. Therefore we
introduce a corollary:

Corollary 1. For u is an odd number and u ∈ N,
it is:

C(u) =
u · 3 + 1

2Ru
= u1

C(C(u)) =
C(u) · 3 + 1

2Ru1
=

u·3+1
2Ru

· 3 + 1

2Ru1
= u2

C(...C(C(u))...) =
(

u·3+1

2Ru
·3+1

2Ru1
. . . ) · 3 + 1

2Run
= un+1

-2

-1

0

1

2

0.12
…

0.19

0.11

0.101

0.102
…

0.22
…

0.29

0.21

0.201

0.202
…

0.2
…

0.9

0.1

0.01

0.02
…

siblings

siblings

parentschildrengrandchildren grandparents great-

grandparents

-0.2
…

-0.9

-0.1

-0.01

-0.02
…

Fig. 2. If there is one odd number of type B.1 or B.3, which is
not falling onto 1, this number is labeled with zero. In case
the odd number is of type B.2, meaning it has no children
itself, the parent is labeled with zero. The zero-labeled number
has an infinite amount of disjoint ancestors (negative numbers),
which are not falling onto 1, too. Furthermore the zero-labeled
number, has an infinite amount of disjoint siblings and disjoint
descendants. The directional tree graph can be enumerated one-
to-one with all real numbers, making it uncountably infinite.

=

u · 3 · 3n + 3n + 3n−1 · 2Ru+
3n−2 · 2Ru · 2Ru1 + · · ·+ 2(Ru+Ru1

+···+Run−1
)

2(Ru+Ru1+···+Run )

In the following we will summarize this term into:

un+1 =
u · x+ y

2(Ru+z)

We have already proven that there is exactly one
number which falls directly onto itself after one step
(B = C(B)), which is 1 (as shown in Lemma (5)
and (6)). So the only possible way, for a number
looping is as follows:
A1 → B →n A1, whereas B 6= A1 and the loop
has a length of n+ 1, with n > 0.

According to Corollary (1), the following has to be
valid if A1 loops:

A1 · x+ y

2(RA1
+z)

= A1

Furthermore, as shown in the section before, B has
to have an infinite number of children, since it has
already one child (A1), (Theorem (2)).
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A1 → B → · · · → A1

A2 → B → · · · → A1

A3 → B → · · · → A1

. . .

Moreover, the siblings are related in the following
way (Theorem (3)):

An+1 = 4 ·An + 1,with RAn+1
= RAn

+ 2;

It follows that:
A2 · x+ y

2(RA2
+z)

= A1

(4 ·A1 + 1) · x+ y

2(RA1
+2+z)

= A1

From the formular given above it follows:

⇒ (4 ·A1 + 1) · x+ y

2(RA1
+2+z)

=
A1 · x+ y

2(RA1
+z)

⇒ (4 ·A1 + 1) · x+ y

22
=

A1 · x+ y

1
⇒ (4 ·A1 + 1) · x+ y = 4 · (A1 · x+ y)

⇒ 4 ·A1 · x+ x+ y = 4 ·A1 · x+ 4 · y
⇒ x+ y = 4 · y
⇒ x = 3y

In general:

⇒ An+1 · x+ y

2(RAn+1
+z)

= A1

⇒ (4 ·An + 1) · x+ y

2(RAn+2+z)
= A1

⇒ (4 ·An + 1) · x+ y

2(RA1
+2n+z)

=
A1 · x+ y

2(RA1
+z)

⇒ (4 ·An + 1) · x+ y

22n
=

A1 · x+ y

1
⇒ (4 ·An + 1) · x+ y = 4n · (A1 · x+ y)

⇒ 4 ·An · x+ x+ y = 4n ·A1 · x+ 4n · y
⇒ x(4 ·An + 1− 4n ·A1) = y(4n − 1)

It is

An = 4n−1 ·A1 + 4n−2 + 4n−3 + · · ·+ 40

An = 4n−1 ·A1 +

n−2∑
i=0

4i

⇒ x · (4 ·An + 1− 4n ·A1) = y · (4n − 1)

⇒ x · (4 · (4n−1 ·A1 +

n−2∑
i=0

4i) + 1− 4n ·A1)

= y · (4n − 1)

⇒ x · (4n ·A1 +

n−1∑
i=0

4i − 4n ·A1) = y · (4n − 1)

⇒ x ·
n−1∑
i=0

4i = y · (4n − 1)

It is
n−1∑
i=0

4i = 1−4n
1−4 = 4n−1

3 . (Geometric series)

⇒ x =
y · (4n − 1)

n−1∑
i=0

4i
⇒ x =

y · (4n − 1)
4n−1

3

⇒ x = 3y

For a loop with n+ 1-steps (n > 0):

x = 3 · 3n

y = 3n + 3n−1 · 2Ru + 3n−2 · 2Ru · 2Ru1 + . . .

+ 2(Ru+Ru1+···+Run−1
)

y = 3n + c,with c > 0

As we derived from above x = 3y. After insertion,
we get:

3 · 3n = 3 · (3n + c)

0 = 3c

c = 0E

Q.E.D
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