
 This paper was written in 1988. Only small editorial improvements have been made in1

2018, and no attempt was made to introduce materials from after 1988. However, FOULLEY,
HANOCQ and BOICHARD (1992) provide some followup information, and this citation was
added to the references for readers that want more.

 The purist is the statistician that takes the assumed model as true, and remains unwilling2

to look at assumptions beneath the model.
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SUMMARY

A method of measuring linkage in sire reference schemes is described. The method
consists of determining estimability and prediction error variance for linear contrasts
when the assumed animal model includes genetic groups. Base animals in a herd are
assigned a common genetic group and different herds correspond to different genetic
groups. The set of linear contrasts used to determine linkage is the set of group
differences. Groups differences can be scrutinized using a simplified lease-squares
analysis.
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I. INTRODUCTION

Reference sire schemes are becoming increasingly popular for use in across-herd/flock
genetic evaluations in livestock populations not making extensive use of artificial
insemination. Practical animal breeders recognize the importance of adequate linkage
in these reference sire schemes. Unrelated sires cannot be compared statistically
unless they have progeny in common contemporary groups or they have other indirect
“links”. Alternatively, purists  consider the concept of linkage ill-founded because the2

mixed model allows for estimation of random effects independently of linkage. Even
with little linkage it is possible to accurately estimate the difference between two
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random sire effects; by assumption the sire effects are deviated around zero. Purists
consider prediction error variance as the only criterion for whether sires are adequately
compared or inadequately compared.

Practical concerns about linkage imply the existence of genetic groups (FOULLEY et
al., 1988). That is, addressing fears about linkage is like saying, “what if the model is
wrong because it has not accommodated genetic groups”. With genetic groups in the
model, the purist approach can be adopted so as to vindicate the appled geneticists; as
this paper shows with the animal model.

II. MODEL

We consider the animal model:

y=Xb+Za+e (1)

where y, b, a and e are vectors of observations, fixed effects, animal effects and
residuals; X and Z are incidence matrices that assign various effects to observations.
To complete the model’s specifications, first and second moments for a and e are
needed. The usual declarations are:

E(a)=0 and Var( a)=G (1a)

E(e)=0 and Var(e)=R (1b)

Note that model (1) with companion clauses (1a) and (1b) is general enough to

arepresent both univariate and multivariate models: for the univariate case G=F A where2

aF  is the additive genetic variance and A is the numerator relationship matrix.2

To estimate b and a we solve HENDERSON’s (1973) mixed model equations:

(2)

where  is the best linear unbiased estimate (BLUE) of b and  is the best linear
unbiased prediction (BLUP) of a.

If assumption (1a) is correct, then information about linkage is redundant and prediction
error variances can be constructed from the inverse of the coefficient matrix of (2).



 His machinery was actually being readied for the publication in QUAAS (1988), while3

our paper was being written independently. 
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Alternatively, if we must worry about linkage then we necessarily reject assumption (1a)
and need to construct useful alternatives.

III. ALTERNATIVE MODELS

Our treatment depends on technical machinery due to QUAAS (1979, personal
communication).  He used these tools to construct a trivial proof of HENDERSON’s3

(1975) formulae for A ; see Hudson (1986) for illustration. Recently, GRASER et al.-1

(1987) used the QUAAS machinery to accommodate fixed animals. These tools provide
a simple and yet rigorous confirmation of the work of ELZO (1986) and, as this paper
shows, WESTELL et al. (1988).

With the QUAAS machinery assumption (1a) can be expressed by

a=Pa +s (3)

where: P is a matrix such that Pa represents a vector of average mid-parent values (if
both parents are known), ½ times parental effects (if one parent is known), and zeros (if
no parent known); and s is a vector of residuals, which are attributed to segregation and
random mating. To complete the assumptions for the univariate case, we define the
diagonal matrix D=Var(s) using principles of inheritance and stipulate that E(s)=0. For
the multivariate case, D is block diagonal or some permutation thereof.

With the distributional properties of s unspecified, (3) is the correct description of the
biology. We may superimpose on the biology additional conditions: treat come of the
elements of a as fixed (GRASER et al., 1987); introduce genetic groups, i.e., E(s)=Qg
(WESTELL et al., 1988); or allow for different genetic parameters for different
subpopulations (ELZO et al., 1986). Whatever condition we impose, we must be
consistent with (3) and the related biology.

We are mainly concerned with genetic groups and hence we are interested in models of
the form

a=Qg+Pa+š, (4)

where g is a vector of fixed or random group effects, Q is a matrix that assigns groups
to animals and š substitutes for s-Qg. To be consistent with biology, groups can only be



 The grouping model leaves the segregation variances unchanged, i.e., Var(s)=Var(š)=D.4
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assigned to animals with unknown parents: usually a ½ of one group when one parent
is unknown; and a whole group when both parents are unknown. Animals not assigned
a group via Q are implicitly given their parents’s group(s) via P. Animals that are not
associated with a group directly or through relationships represent a “catch-all” group.
Because the catch-all group effect is not in the model it is implicitly constrained to zero.

Now we must choose an appropriate matrix Q so as to model our worst fears about
linkage. There is no unique way of doing this and it is the responsibility of the
practitioner to come up with a suitable Q. Most of the concern about linkage is focused
on comparing bulls used in herd A with different bulls used in herd B. This implies that
all base animals within herd are assigned a common group and this is our proposal if
nothing else is known. Different herds then get different groups, but this maybe too fine
a grouping strategy when data can only justify a coarser grouping. Nevertheless, a finer
grouping strategy may be also necessary if within herd comparisons are suspect, e.g., if
a rancher buys a group of heifers from an outside source. Refinements can be
extended to the point where individual animals are treated as independent variables
possessing subjective variation. Assigning base animals to groups remains non-trivial.

In the above recommendation it may be necessary to devise a separate grouping
strategy for those immigrant sires that do not come from recognized herds. Bulls that
are brought in from over-seas, for example, may be grouped on year of entry into a
system and country of origin.

IV. MODIFIED MIXED MODEL EQUATIONS

From (4) we obtain expression for a which is a function of g and š:

a=(I-P) Qg + (I-P) š-1 -1

Now substituting a into model (1) we obtain THOMPSON’s (1979) group model:

y=Xb + Z(I-P) Qg +Zu + e (5)-1

where u=(I-P) š. Note that with g fixed, Var(a)=Var(u)=G= (I-P) D(I-P ) .-1 -1 N -1 4

Treating g fixed, the mixed model equations for (5) are



 QUAAS (1988) formulated these same equations using an elegant alternative derivation.5
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(6)

Now define the QUAAS and POLLAK (1981) transformation matrix

.

Multiplying both side of (6) by T and inserting I=TN(TN)  between the coefficient matrix-1

and the solution vector, we get the equations  of WESTELL et al. (1988):5

(7)

The quantities QND Q, -QND (I-P) and G =(I-PN)D (I-P) can be evaluated easily and-1 -1 -1 -1

simple rules can be devised for their construction (WESTELL et al., 1988).
HENDERSON (1985) provides a different treatment of genetic groups.

If genetic groups are assumed random, (7) can be modified by augmenting the group
by group part of the coefficient matrix with Var(g) . Moreover, some groups can be-1

treated as fixed and others random.

Tp predict animal effects in the presence of group influences we simply solve (7).
However, to determine whether linkage is adequate is more difficult. We agree with
FOULLEY et al. (1988) in that it is more reasonable to check if herds in this case, i.e.,
groups more generally, are adequately compared rather than individual animals. Group

1 21 and group 2 are adequately compared if the prediction error variance of � -�  is
sufficiently small. To find the prediction error variance requires certain inverse elements
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two or more iterative solutions, but using different starting values for the group effects. The
contrast are estimable if they remain invariant to the starting values.
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of the coefficient matrix of (7). Presumably, we may employ sparse matrix absorption
(TIER and SMITH 1989) to eliminate all non-group equations; the resulting matrix can
then be inverted directly. However, this step is still liable to be difficult. A second
concern is that some group contrasts may not be estimable, and we need to identify
those contrasts. Estimable contrast can be established by following SEARLE (1971, p
185).6

V. RECOMMENDATION

Rather than working with (7) directly we propose a preliminary analysis to: determine
linkage, and estimate the size of group effects. This is accomplished by a series of
univariate least-squares analyses of model (5) ignoring u. Given that b is a vector of
contemporary group effects, the univariate model is:

ij i ij ijy =b+w Ng+e (8)

ij ijwhere y  is the j-th observation in the i-th contemporary group; w  is a vector of weights

ij ijthat equal the proportional contributions of each genetic group to y . The w  can be
computed by recursion in much the same way that A is evaluated by the tabular

ij xy rsmethod; if xy and rs identify the parents of ij then w =½w +½w .

The normal equations for genetic groups with contemporary groups absorbed can be
formed with one pass through the data. We determine estimability of group contrasts
and scrutinize precision. This strategy reflects the belief that linkage occurs when
animals associated with different genetic groups are compared in a common
contemporary group.

Given that linkage is determined adequate, we next consider the size of the estimable
group contrasts. If these contrasts are considered too large too ignore then we should
return to system (7) for the main analysis.

After the main analysis, a criterion is needed for publishing individual breeding values.
Our criterion is to publish a set of breeding values if: the associated groups are well
estimated and linked; the breeding values have a sufficient accuracy.

VI. CONCLUSION

Whereas our recommendations is computationally easy, it can be criticized because a
least-squares analysis of (8) is not fully efficient. However, it is difficult to see how
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decisions resulting from (8) would be far removed from decisions resulting from (5). For
example, a linear contrast of fixed effects is estimable under (5) if and only if it is
estimable under (8) (FOULLEY et al., 1988). If the practitioner feels that a more exact
analysis is justified then a closer examination of (5) and (7) is warranted; there are other
ways to approximate prediction error variances than our least-squares approach.

One mistaken view is that treating part of the genetic component as fixed is inherently
bad; to be conservative we should regress effects back to zero. However, we cannot at
one hand complain about linkage and then argue that there are no fixed effects.
Linkage is a problem, precisely because our true model possesses fixed effects. If it is
not possible to estimate certain fixed effects accurately, then we should not publish the
associated breeding values. If animal breeder must regress breeding values back to
zero, then they should at least acknowledge the existence of genetic groups and treat
these groups as random. At least we can haggle with the subjectivity involved in
determining group covariance structure. The undeclared subjectivity associated with the
incorrect use of (2) is untouchable.

It may be necessary to modify our procedure, i.e., system (7), when selected sires with
prior information are brought into the evaluation program. This can be accomplished by
the approach of GODDARD and SMITH (1988). This method involves: setting up the
prediction equations treating selected sires as fixed; then using the prior information in
the same way that HENDERSON (1984, p 102) uses external information on fixed
effects.

Lastly, close analysis may reveal that traditional reference sire schemes are not as
useful in establishing links as we would like them to be. That is, our purists instincts
may be way too optimistic. If this is true then modification may be required to increase
the use of reference sires to improve linkage.
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