Proof that P ≠ NP

Author

Robert DiGregorio 0x51B4908DdCD986A41e2f8522BB5B68E563A358De

Abstract

Using sorting keys, we prove that $P \neq NP$.

Part 1

We define SS:

- let ∀list x [SS(x) = the list of all sublist sums of x]
 - example: $SS(x)[01100101_2] = x[0] + x[2] + x[5] + x[6]$
 - note: SS(x) can be constructed lazily
- let \forall list x [SS accepts x \Leftrightarrow |SS(x)| = 2^{|x|}]
 - note: this forces every element of SS(x) to be unique

We define keys and sorting keys:

- let \forall list x \forall k \in $\mathbb{N}[k \in$ KEYS(x) \Leftrightarrow k < |x|]
- let \forall list x \forall k \in KEYS(SS(x)) \forall sk \in SKEYS(SS(x)) [SS(x)[k \oplus sk] = SORT(SS(x))[k]]
 - note: because every element of SS(x) is unique, SS(x) has 1 sorting key

We define L₀:

- let L_0 be all possible inputs for deterministic Turing machine M_0 such that
 - $M_0(k \in KEYS(SS(A)), list A) = k ∉ SKEYS(SS(A))$
- let C_0 be all possible inputs for deterministic Turing machine V_0 such that
 - $\circ V_0(\text{list A}, k \in \mathsf{KEYS}(\mathsf{SS}(\mathsf{A})), x \in \mathsf{KEYS}(\mathsf{SS}(\mathsf{A})), y \in \mathsf{KEYS}(\mathsf{SS}(\mathsf{A}))) = (\text{compare } x \text{ to } y \neq \text{compare } \mathsf{SS}(\mathsf{A})[x \oplus k] \text{ to } \mathsf{SS}(\mathsf{A})[y \oplus k])$
- all YES expressions in L₀ can be verified with YES certificates in C₀ in polynomial time \Rightarrow
 - $\circ \quad L_0 \in NP$

Part 2

We presume part 1 does not prove $P \neq NP$:

- $\bullet \quad \ \ \mathsf{let} \ \mathsf{L}_0 \in \mathsf{P}$
 - note: if L_0 is not in P, P \neq NP

We define digest functions (these are not one way functions):

- let $\forall x \in \mathbb{N}[DIGEST_0(x) = even bits of x \oplus odd bits of x]$
 - example: DIGEST₀(00011011₂) = 0110₂
- let $\forall x \in \mathbb{N}[DIGEST_1(x) = x > 1 ? DIGEST_1(DIGEST_0(x)) : x]$

We define L_1 :

- let L_1 be all possible inputs for deterministic Turing machine M_1 such that
 - $M_1(\text{list } A) = \exists p \in \mathbb{N} \exists sk \in SKEYS(SS(PERMUTATION(A, p))) [DIGEST_1(sk) = 0]$
 - note: it is possible that every sorting key of every permutation of A digests to 0
 - note: it is possible that every sorting key of every permutation of A digests to 1
 - note: there are |A|! permutations of A
 - note: no specific search algorithm is implied
- M₁(list A) searches p ∈ Nsearches SKEYS(SS(PERMUTATION(A, p))) for [DIGEST₁(sk) = 0] ∧
 - $\exists \text{list } A [\forall p \in \mathbb{N} \forall sk \in SKEYS(SS(PERMUTATION(A, p))) [DIGEST_1(sk) = 1]] \Rightarrow$
 - \exists list A [M₁ runs in Ω(|A|!) time] ⇒
 - $\circ \quad L_1 \not\in P$
- let C_1 be all possible inputs for deterministic Turing machine V_1 such that
 - V_1 (list A, p ∈ N, k ∈ N) = ¬L₀(PERMUTATION(A, p), k) ∧ DIGEST₁(k) = 0
- L_0 is in P \Rightarrow
 - \circ all YES expressions in L₁ can be verified with YES certificates in C₁ in polynomial time \Rightarrow
 - $\circ \quad L_1 \,{\in} NP$

We prove that $P \neq NP$:

• $L_1 \notin P \land L_1 \in NP \Rightarrow P \neq NP$