Part 1

Let PS(x) be the list of all sublists of natural list x, with each sublist folded over the sum operation, such that,
given some natural n, PS{x)[n] is the nth element of PS(x), well ordered as if the nth element of x was the nth
power of 2 before each sublist was folded over the sum operation

MOTE: To clarify what "folded over the sum operation” means, here is the list [1, 2, 3] folded over
the sum operation in pseudocode: "[1, 2, 3].fold{sum)} =1+ 2 + 3 = 6"

MNOTE: To clarify, PS(x) is the list of all sublist sums of x, well ordered as if each element of x was a
unique power of 2

MOTE: To clarify, "well ordered™ means smaller naturals are always before larger naturals. This does
not well order PS(x), unless each element of x was well ordered and much larger than the previous
element. However, in this proof, x is always unordered, therefore P5(x) is always unorderad

Let a "valid power key" be a natural such that, for some list x, for all natural n, PS(x)[n @ (the valid power key
of PS(x))}] is the nth largest element of PS(x)

MOTE: @ is the Boolean exclusive or operation. If you apply @ against some natural x to every natural
from O (inclusive) to 2" (exclusive), those naturals are reordered such that every unique x gives a
unigque order

MNOTE: Deciding the valid power key that works for all elements of PS(x) is the same as well ordering
PS5(x). This is because PS5(x)[n] is the nth element of PS{x), unordered, and PS{(x)}[n & (the valid
power key of PS(x))] is the nth element of PS(x), well ordered, so having the valid power key that
works for all elements of PS(x) means you effectively have a well ordered PS5(x)

MOTE: If all elements of P5(x) are unique, there is only 1 valid power key for PS(x). Again, 1 valid
power key works for all elements of PS{x)

Let A be an unordered natural list, given as input
Let KEY be a natural, given as input

Let the decision problem be "Given unordered list A as input and natural KEY as input; is KEY not the valid power
key of A?"

A deterministic polymomial time verifier can verify a YES solution to the decision problem if list A, natural KEY,
natural x, and natural v are given, such that {(x < v) #+ (PS{A)[x & KEY] < PS{A)[v @& KEY])

If a deterministic polynomial time verifier exists for a YES solution to a decision problem such that all
deterministic Turing machines deciding it must run in superpolynomial time;, P = NP

« [If the decision problem can't be solved in polynomial time, P + NP
» [If the decision problem can be soclved in polynomial time, see part 2

Part 2

It's implied that algorithm ALGORITHM exists such that ALGORITHM can determine if a power key is invalid or
not in polynomial time

MNOTE: If ALGORITHM is polynomial time for a YES solution to a decision problem, ALGORITHM
pelynomial time for a NO solution to a decision problem, and vice versa
If ALGORITHM exists, deterministic polynomial time verifier V' exists such that V' can verify if a power key is valid
for any set of subsets and also determine if that power key is even (YES) or odd (NO)
Let M be some deterministic time Turing machine such that M, given only A, decides the power key of A, then
determines if it's even (YES) or odd (NO)

= Any such deterministic Turing machine runs in superpolynomial time. Otherwise, it could sort a set of

subsets without looking at every subset, which is a logical contradiction

It is implied that V can verify M's superpolynomial decision problem in polynomial time, given A and the power
key of A, using ALGORITHM, therefore, P # NP



