1	
	given some natural n, $PS(x)[n]$ is the nth element of $PS(x)$, well ordered as if the nth element of x was the nth power of 2 before each sublist was folded over the sum operation
•	NOTE: To clarify what "folded over the sum operation" means, here is the list $[1, 2, 3]$ folded over the sum operation in pseudocode: " $[1, 2, 3]$.fold(sum) = $1 + 2 + 3 = 6$ "
•	NOTE: To clarify, PS(x) is the list of all sublist sums of x, well ordered as if each element of x was a unique power of 2
•	NOTE: To clarify, "well ordered" means smaller naturals are always before larger naturals. This does not well order $PS(x)$, unless each element of x was well ordered and much larger than the previous element. However, in this proof, x is always unordered, therefore $PS(x)$ is always unordered
	Let a "valid power key" be a natural such that, for some list x, for all natural n, $PS(x)[n \oplus (the \ valid \ power \ key \ of PS(x))]$ is the nth largest element of $PS(x)$
•	NOTE: \oplus is the Boolean exclusive or operation. If you apply \oplus against some natural x to every natural from 0 (inclusive) to 2^n (exclusive), those naturals are reordered such that every unique x gives a unique order
	NOTE: Deciding the valid power key that works for all elements of PS(x) is the same as well ordering
	PS(x). This is because PS(x)[n] is the nth element of PS(x), unordered, and PS(x)[n \oplus (the valid power key of PS(x))] is the nth element of PS(x), well ordered, so having the valid power key that works for all elements of PS(x) means you effectively have a well ordered PS(x)
	power key of $PS(x)$] is the nth element of $PS(x)$, well ordered, so having the valid power key that
	power key of $PS(x)$] is the nth element of $PS(x)$, well ordered, so having the valid power key that works for all elements of $PS(x)$ means you effectively have a well ordered $PS(x)$ NOTE: If all elements of $PS(x)$ are unique, there is only 1 valid power key for $PS(x)$. Again, 1 valid
	power key of $PS(x)$] is the nth element of $PS(x)$, well ordered, so having the valid power key that works for all elements of $PS(x)$ means you effectively have a well ordered $PS(x)$ NOTE: If all elements of $PS(x)$ are unique, there is only 1 valid power key for $PS(x)$. Again, 1 valid power key works for all elements of $PS(x)$
	power key of PS(x))] is the nth element of PS(x), well ordered, so having the valid power key that works for all elements of PS(x) means you effectively have a well ordered PS(x) NOTE: If all elements of PS(x) are unique, there is only 1 valid power key for PS(x). Again, 1 valid power key works for all elements of PS(x) Let A be an unordered natural list, given as input
	power key of PS(x))] is the nth element of PS(x), well ordered, so having the valid power key that works for all elements of PS(x) means you effectively have a well ordered PS(x) NOTE: If all elements of PS(x) are unique, there is only 1 valid power key for PS(x). Again, 1 valid power key works for all elements of PS(x) Let A be an unordered natural list, given as input Let KEY be a natural, given as input Let the decision problem be "Given unordered list A as input and natural KEY as input, is KEY not the valid power

Let PS(x) be the list of all sublists of natural list x, with each sublist folded over the sum operation, such that,

Part 1

If the decision problem can be solved in polynomial time, see part 2

If the decision problem can't be solved in polynomial time, P ≠ NP

key of A, using ALGORITHM, therefore, $P \neq NP$

- Part 2
- It's implied that algorithm ALGORITHM exists such that ALGORITHM can determine if a power key is invalid or
- not in polynomial time
- NOTE: If ALGORITHM is polynomial time for a YES solution to a decision problem, ALGORITHM polynomial time for a NO solution to a decision problem, and vice versa
- If ALGORITHM exists, deterministic polynomial time verifier V exists such that V can verify if a power key is valid for any set of subsets and also determine if that power key is even (YES) or odd (NO)
- . Let M be some deterministic time Turing machine such that M, given only A, decides the power key of A, then
- determines if it's even (YES) or odd (NO)
- Any such deterministic Turing machine runs in superpolynomial time. Otherwise, it could sort a set of subsets without looking at every subset, which is a logical contradiction It is implied that V can verify M's superpolynomial decision problem in polynomial time, given A and the power