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Abstract

In this note we present some new results about the analyticity of the functional-
differential equation f ′ = ef

−1
at 0 with f−1 is a compositional inverse of f

, and the growth rate of f−(x) and f+(x) as x → ∞ , and we will check
the analyticity of some functional equations which they were studied before
and had a relashionship with the titled functional-differential and we will
conclude our work with a conjecture related to Borel- summability and some
interesting applications of some divergents generating function with radius
of convergent equal 0 in number theory .
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1. Introduction1

[01] Functions are used to describe natural processes and forms. By means2

of finite or infinite operations, we may build many types of derived functions3

such as the sum of two functions, the composition of two functions, the4

derivative function of a given function, the power series functions, etc. Yet5

a large number of natural processes and forms are not explicitly given by6

nature. Instead, they are implicitly defined by the laws of nature. There-7

fore we have functional equations (or more generally relations) involving our8

unknown functions and their derived functions. When we are given one9

such functional equation as a mathematical model, it is important to try to10

find some or all solutions, since they may be used for prediction, estima-11

tion and control, or for suggestion of alternate formulation of the original12

physical model. In this paper, we are interested in finding solutions that13

are polynomials of infinite order, or more precisely, power series functions.14

There are many reasons for trying to find such solutions. First of all, it is15

sometimes obvious from experimental observations that we are facing with16
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natural processes and forms that can be described by smooth functions such17

as power series functions. Second, power series functions are basically gen-18

erated by sequences of numbers, therefore, they can easily be manipulated,19

either directly, or indirectly through manipulations of sequences. Indeed,20

finding power series solutions are not more complicated than solving recur-21

rence relations or difference equations. Solving the latter equations may also22

be difficult, but in most cases, we can calculate them by means of modern23

digital devices equipped with numerical or symbolic packages! Third, once24

formal power series solutions are found, we are left with the convergence or25

stability problem. This is a more complicated problem which is not com-26

pletely solved. Fortunately, there are now several standard techniques which27

have been proven useful. In this paper we join our work using some related28

sequences which montioned in OEIS which we will cite them below .Robert29

Anschuetz II and H. Sherwood studied in [02] this topic ”When Is a Func-30

tion’s Inverse Equal to Its Reciprocal”? that is interesting mathematical31

subject dealing with multiplicative and compositional inverse in the same32

time , and H.Nelson proposed the functional -differential equation f−1 = f ′33

in [04] and it’s appeared again in [05] ,And the aim of this paper is studying34

the behavior and analiticity of f ′ = ef
−1

using some communs properties of35

the cited functional equations36

2. functions satisfy :f−1 = 1
f

37

Lemma 1. let f be a function map IR∗ to itself and f−1 be a composi-
tional inverse of f , one class of solution satisfies :f−1 = 1

f

Proof. Take any f0 that maps (0, 1] one-to-one onto (−∞,−1] with f0(1) =
−1. :

f(x) =


f0(x), if x ∈ (0, 1]

1
f0(

1
x
)
, if x ∈ (1,+∞)

f0
1
x
, x ∈ (−1, 0)

1
f−1
0 (x)

, x ∈ (−∞,−1]

We can look to f0(x) = −1 + tan
(

(x−1)π
2

)
as example for that equation38
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3. function satisfy :f−1 = f ′39

As far as i know this problem was originally proposed by H. L. Nelson In40

[03] and appeared on page 779 in [04] it would make its way to the problem41

and solutions column once again in 1976 here[05] We restrict our analysis42

to positives real numbers because For the domain IR, no solution exists. A43

continuous injective f : IR → IR must be monotone, which implies that44

its derivative cannot change sign, but f−1 would include both positive and45

negative numbers in its range .We let that clear and obvious according to46

the graph shown below in figure 1 Piecing these functions together gives

Figure 1: piecewise of f and f−1 show the domain of differntiability

47

an invertible map from IR onto IR such that f ′(x) = f−1(x) when f ′(x)48

exists, and f ′(0) doesn’t exist, but the right-hand derivative lim
h→0+

f(h)− f(0)

h
49

exists and equals 0 = f−1(0). Considering that a differentiable solution is50

impossible, this is pretty good.51

Lemma 2. let f be a function map IR+ onto IR+ and f−1 is the com-
positional inverse of f ,The function satisfying the functional equation
:f ′(x) = f−1(x) is of the form :f(x) := h(ah−1(x)) with h auxiliary func-
tion , defined in the neighborhood of t = 0 and coupled to f via x = h(t)
.

1
52

Proof. Let a = 1 + p > 1 be given. We shall construct a function f of the53

required kind with f(a) = a by means of an auxiliary function h,54

defined in the neighborhood of t = 0 and coupled to f via55

1zeraouliarafik@gmail.com
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x = h(t), f(x) = h(at), f−1(x) = h(t/a). The condition f ′ = f−1 implies56

that h satisfies the functional equation57

(01) h(t/a)h′(t) = ah′(at).

,Writing h(t) = a +
∑

k≥1 ckt
k we obtain from (01) a recursion formula for58

the ck,59

and one can show that 0 < cr < 1/pr−1 for all r ≥ 1. This means that60

h is in fact analytic for |t| < p, satisfies (01) and possesses an inverse h−1 in61

the neighborhood of t = 0. It62

follows that the function f(x) := h(ah−1(x)) has the required properties63

, it’s good to show the uniqness of this solution since it’s existed and well64

defined ,The uniqueness of the solution to the problem is established by65

means of the fixed point whose existence should to prove it .66

4. Analyticity and Existence of fixed point for:f−1 = f ′67

Lemma 3. Any solution f for the functional-differential f−1 = f ′ is a
real-analytic function and does have a fixed point a ∈ I

2
68

Proof. First off, we notice that if f is a function that does the job, then
f must be C1 and strictly increasing in (0,∞). Then, differentiating the
identity

f(f ′(x)) = x

repeatedly, we obtain that f is a function of class C∞. What is more, we
obtain that f ′′ > 0, f ′′′ < 0, . . . , (−1)kf (k) > 0; it follows from Bernstein’s
theorem on regularly monotonic functions as shown here in [06] that f is a
real-analytic function (see bellow footnote on (0,∞). Now, from the
identity d

dx
f(f(x)) = f ′(f(x))f ′(x) = xf ′(x) we get that:

f(f(x)) =

∫ x

0

y f ′(y) dy

69

for every x ∈ I. This allows us to ascertain that f has a fixed point a ∈ I:70

2A function f : R → R is called R-analytic iff for every x0 ∈ R there exist R > 0
and power series

∑∞
n=0 an(x − x0)n convergent for |x − x0| < R and such that f(x) =∑∞

n=0 an(x− x0)n for |x− x0| < R.
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if this were not the case, the function F : I → IR, defined for every x ∈ I as71

F (x) = f(x) − x, would be of fixed sign. We claim that such a thing is not72

possible: indeed, if f(x) > x for every x ∈ I, then y = f ′(f(y)) > f ′(y)73

for every y ∈ (0, x) and whence x < f(f(x)) =
∫ x
0
y f ′(y) dy <

∫ x
0
y2 dy =74

x3

3
, which doesn’t necessarily hold when x is sufficiently small; since the75

assumption that the inequality f(x) < x holds for every x ∈ I allows us to76

derive a similar contradiction, we conclude that any solution f to the titled77

functional-differential does have a fixed point a ∈ I. Further, the strict78

convexity of F implies that F has at most two zeros, counting the one it has79

at x = 0. Thus, f has exactly one fixed point a ∈ I, with f(x) < x in (0, a),80

f(x) > x in (a,∞), f ′(x) > x in (0, a), and f ′(x) < x in (a,∞)81

5. Uniqueness of solution for f−1 = f ′82

Lemma 4. There is no other function f which satisfies all the con-
straints under consideration for the functional-differential f−1 = f ′

Proof. Let us suppose that f1 and f2 are two functions satisfying all the83

constraints under consideration and let g := f1− f2. Moreover, let us denote84

with ai the unique fixed point of fi in the interval I. Without loss of gener-85

ality, we can suppose that a1 ≥ a2.The possibility that a1 > a2 leads us to a86

contradiction,Now If a1 = a2 = a, then it is not difficult to convince oneself87

that 0 = g(a) = g′(a) = g′′(a) = . . .; being g a real-analytic function in I,88

the latter equalities implies that g vanishes identically and we are done.89

Now we are ready to study the aim of this paper which include behavior of90

the functional equation f ′ = ef
−1

with f map IRontoIR , before introducing91

our main results we try to show the preliminary analysis of the functional92

-differential for the derivation of some related interesting results to many93

area of mathematics for example : Number theory .94

6. Preliminary analysis :95

one might ask if there is a closed form of this equation but there is no96

reason to expect a closed form for it ,we can see only that there is a unique97
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solution in formal power series around 0 satisfying f(0) = 0 , Despite appear-98

ances, this is rather different from an ODE since the equation is non-local99

in the sense that the RHS at x can not be evaluated if one only knows f100

near x , After computations first few coefficients of the unique power se-101

ries solution are [0, 1, 1/2, 0, 1/24, -1/20, 13/180, -197/1680, 2101/10080,102

-48203/120960, 2938057/3628800, -23059441/13305600, 74408941/19160064,103

-9409883317/1037836800] ,More of that the calculation of the first 100 terms104

of the formal power series. It is pretty clear that .It is pretty clear that105

|an|−1/n → 0 as n→∞ so the radius of convergence is zero, so this approach106

will not give a solution that is an actual function.107

According to what we are cited about the preliminary analysis and observa-108

tions about the titled functional equation we are ready to present the main109

obtained results .110

7. Main results:111

• ( 01) f− = f+ are smooth functions with f− = f+ is an actual solution112

to the equation f ′(x) = ef
−1(x), it is merly c∞ but not analytic having113

divergent power series expansion .114

• (02) The equation converges in L1 and therefore in c∞ for x ≥ 0 .115

• (03) For h(x) = −f−1(−x), h is totally monotonic on [0, a[with 0 <116

a ≤ +∞ and it is invertible117

• (04) h is unbounded function.118

• (05) Probably Borel summation could be applied for this solution (if119

it is asymptotic series)120

• (06) bn = (−1)nn!an appears to always be a positive integer for n > 1121

but this sequence is not in OEIS ,Also bn it does not factorise in a122

way that suggests that there could be a simple formula: for example123

b10 = 2938057, which is prime124

We can show Result one by restriction to f : R≥0 → R≥0 and impose125

f(0) = 0126
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Result 1. f− = f+ are smooth functions with f− = f+ is an actual
solution to the equation f ′(x) = ef

−1(x), it is merly c∞ but not analytic
having divergent power series

Proof. This idea has been explored above in 6, where a formal power series127

expansion is obtained for f which does not seem to converge for any x 6= 0.128

Taking another approach, we can use an iteration scheme starting from129

f1(x) = x and inductively solve the ODE f ′n+1 = ef
−1
n with the initial con-130

dition fn+1(0) = 0 to obtain fn+1, much in the spirit of Picard iteration.131

Explicitly, for example, we have132

f ′2 = ex and f2 = ex − 1;133

f ′3 = eln(x+1) = 1 + x and f3 = x+ x2/2;134

f ′4 = e
√
1+2x−1 and f4 = e

√
1+2x−1(

√
1 + 2x− 1)135

and the next iteration produces non-elementary functions. It is clear that136

the sequence (f2k−1)k≥1 is increasing, (f2k)k≥1 is decreasing, and f2k−1 < f2k,137

so there are respective limits f− = limk→∞ f2k−1 and f+ = limk→∞ f2k+1,138

with f− ≤ f+. It is also clear that from n ≥ 2 on the function f ′n = ef
−1
n−1 is139

positive and increasing, so fn is increasing and convex, which can be passed140

to the limit to show that both f− and f+ are also increasing and convex.141

As such they are continuous, and by Dini’s theorem , [(see the bellow142

footnote)] f2k−1 converges to f− locally uniformly and similarly for f+143

,This is one of the few situations in mathematics where pointwise convergence144

implies uniform convergence; the key is the greater control implied by the145

monotonicity. Note also that the limit function must be continuous, since a146

uniform limit of continuous functions is necessarily continuous. Furthermore,147

the inequality |x − y| ≤ |fn(x) − fn(y)| (as f ′n = ef
−1
n−1 ≥ 1) can also be148

passed to the limit. Then the following chain of inequalities: 3 |f−1− (x) −149

f−12k−1(x)| ≤ |x− f−(f−12k−1(x))| = |f2k−1(f−12k−1(x))− f−(f−12k−1(x))| shows that150

f−12k−1 converges locally uniformly to f−1− , which then implies f ′2k converges151

3In the mathematical field of analysis, Dini’s theorem says that if a monotone sequence
of continuous functions converges pointwise on a compact space and if the limit function is
also continuous, then the convergence is uniform ,The standard theorem is the following:
Let fk : [a, b] → R be a sequence of functions, such that fk is non-increasing (resp. non-
decreasing) for every k ∈ N. If (fk) converges pointwise to a **continuous** function
f : [a, b] → R, then f is non-increasing (resp. non-decreasing) and the convergence is
uniform.
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locally uniformly to ef
−1
− . Hence f ′+ = ef

−1
− , and similarly f ′− = ef

−1
− . From152

this it can be shown that f2k−1 converges to f− locally in C∞, so both f− and153

f+ are smooth functions, and they form an orbit of order at most 2 of the154

above iteration scheme. Moreover it can be shown that the first n terms of155

the Taylor expansion of fn agrees with what have been calculated formally in156

6 (preliminary analysis), so both f− and f+ have the same Taylor expansion157

as calculated using formal power series expansion.then we are done158

Now if we attempt to solve the equation f ′(x) = ef
−1(x) with f map IR→ IR159

we w’d say:160

Lemma 5. There is no such function satisfies f ′(x) = ef
−1(x) Since f

would have to map IR→ IR.

Proof. There is no such function. Since f would have to map IR→ IR for161

the equation to make sense at all x ∈ IR, it follows that f−1(x)→ −∞ also162

as x → −∞, so f ′ → 0. Thus f(x) ≥ x, say, for all small enough x, hence163

f−1(x) ≤ x eventually, but then the equation shows that f ′ ≤ ex, which is164

integrable on (−∞, 0), so f would approach a limit as x→ −∞ and not be165

surjective after all.166

167

Remark. :Now might one explore the idea and ask about analyticity of the168

equation with the domain restriction of f to be defined as f : IR+ → IR+169

and impose f(0) = 0, here the convergence is not hard for demonstrate as170

shown below , but the question about the analyticity at 0 seems to be less171

obvious.172

Result 2. The functional equation f ′(x) = ef
−1(x) converges in L1 and

therefore in c∞ for x ≥ 0

Proof. Assume f, h are two increasing functions with f(0) = h(0) = 0 and173

f(x), h(x) ≥ x and F,H are their image under the picard map ,then for every174

T > 0 the functional: Φ(f, h, T ) =
∫ T
0
|f(t) − h(t)| dt satisfies Φ(F,H, T ) ≤175 ∫ T

0
etΦ(f, h, t) dt and it follows that on every finite interval [0, T ] we have176

convergence in L1 and c∞177
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Before going to present a general proof for partial results which include both178

:result (03) and (04) and also result (01) adding some detail for it ,we must179

show that the titled diff-functional has a unic solution in a formal power180

series which it is divergent ,The following lemma is a formel version of the181

standard proof of Picard-Lindelf .182
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Lemma 6. Let k be some field. There is a formal differentiation in the
ring of formal power series k[[x]]. Let F (x, y) ∈ k[[x, y]] be a formal
series which is algebraic over x and y. Consider a differential equation:

y′ = F (x, y)

where y belongs to the maximal ideal of k[[x]], so F (x, y) is well-defined

Proof. we Rewrite the desired condition as:

y =

∫ x

0

F (x, y) dx =
∑
n,m≥0

fn,m

∫ x

0

xnym dx = L(x, y).

We compute that: L(x, y0)−L(x, y1) =
∑

n,m≥0 fn,m
∫ x
0
xn(yn0 −ym1 ) dx hence183

that if xk|y0 − y1 then xk+1|L(x, y0)− L(x, y1). It follows that the operation184

y 7→ L(x, y) on xk[[x]] is Lipschitz with respect to the x-adic metric with185

Lipschitz constant less than 1 (the exact constant depends on how you’re186

defining the x-adic metric), hence has a unique fixed point by the Banach187

fixed point theorem. (This is a formal version of the standard proof of Picard-188

Lindelf.) Moreover, this fixed point has coefficients in the field generated by189

fn,m. By the way this is a very simple fact which is verified by hands. we190

just plug a formal power series for y, and see that all coefficients can be191

uniquely determined. (Condition that y belongs to the maxial ideal is just192

a fancy way to state that the constant term of y is zero, that is ”y(0) =193

0”). It is included in many old books on analytic functions and differential194

equations.For example H. Cartan [14]195

4
196

4This solution is way too complicated. It’s much easier: the way we teach students to
find a power series solution. Just plug in and equate similar terms to get a ”chain-like”
linear system in the coefficients of y: each coefficient is uniquely found in terms of the
previous ones. (And we assume y0 = 0 Or, if we prefer, keep differentiating the equation
and substituting Or, x = 0 we w’ll get y(n) in terms of the previous derivatives. Since the
series are formal, it’s even easier as there’s no convergence issue
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Theorem 1. (Lagrange Inversion theorem) If y = f(x) with f(a) = b
and f ′(a) 6= 0, then

x(y) = a+
∞∑
n=1

(
lim
x→a

dn−1

dxn−1

(
x− a
f(x)− b

)n
(y − b)n

n!

)
.

Might someone ask for the derivation of LIF for complex ,just to check this197

paper[13] which it montioned the theorem with proof for reals and complex198

8. Solution of f ′(x) = ef−1(x) in a formel power series:199

5 6
200

Definition 1. A formal power series, sometimes simply called a ”formal201

series” (Wilf 1994), of a field F [a0, a1, a2, · · · ] over F is an infinite se-202

quence Equivalently, it is a function from the set of nonnegative integers to203

F [0, 1, 2, · · ·]→ F .A formal power series is often written : a0 +a1x+a2x+204

· · · + anx
n + · · · but with the understanding that no value is assigned to the205

symbol x206

Lemma 7. The functional-equation f ′(x) = ef
−1(x) has a unic divergent

solution in formel power series

Proof. A formal Taylor series (e.g.f.) solution about the origin can be
obtained a few ways. Let f (−1)(x) = eb.x with (b.)n = bn and b0 = 0, Then
[07] (Bell polynomials) gives the e.g.f.

ef
(−1)(x) = ee

b.x

= 1 + b1x+ (b2 + b21)
x2

2!
+ (b3 + 3b1b2 + b31)

x3

3!
+ · · · ,

5We denote in the proof of lemma 7 by e.g.f or E.G.F : The exponontial generating
function and by o.g.f or O.G.F :The ordinary generation function and by LIF by The
inversion lagrange formula [12] Which is presented below for reals.

6An exponential generating function (E.G.F) for the integer sequence a0, a1 · · · is a

function E(x) such that E(x) =
∑+∞

k=0 ak
xk

k! = a0 + a1
x
1! + a2

x2

2! + · · · , The ordinary
generating function is a function associated with a sequence :a0, a1 · · · is a function whose
value at x is

∑+∞
i=0 aix

i
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and the Lagrange inversion / series reversion formula (LIF) [08] gives

f ′(x) =
1

b1
+

1

b31
(−b2)x+

1

b51
(3b22 − b1b3)

x2

2!
+ · · · .

,Equating the two series and solving recursively gives:

bn → (0, 1,−1, 3,−16, 126,−1333, ...)

which is signed [09]. This follows from the application of the inverse function
theorem (essentially the LIF again)

f ′(z) = 1/f (−1)′(ω) ,

when (z, ω) = (f (−1)(ω), f(z)), leading to

f (−1)′(x) = exp[−f (−1)(f (−1)(x))],

The differential equation defining signed [09], Applying the LIF to the se-
quence for bn gives the e.g.f. f(x) = ea.x equivalent of F.C.’s o.g.f.

an → (0, 1, 1, 0, 1,−6, 52, ...).

As another consistency check, we apply the formalism of [10] for finding
the multiplicative inverse of an e.g.f. to find the e.g.f. for exp[−A(−x)] =
exp[f (−1)(x)] from that for

exp[A(−x)] = 1− x+ 2
x2

2!
− 7

x3

3!
+ · · · ,

which is signed [11], as noted in [09]. This gives f ′(x) = a. ea.x.207

7
208

7The inverse function theorem here might be more aptly called the inverse formal
series theorem. As we can see, the differential equations and inverses here in analytic
guise are concise statements of relations among the coefficients of formal series (e.g.f.s or
o.g.f.s), Really we are talked about the Lagrange inversion theorem such that we mean
the plain derivation of coefficients of the series for f (−1) and also the residue formula
[xn]f (−1) = 1

nRes(f−n) , for more informations we can check The July 2015 formula in
[A133437], and we pay tribute to Lagrange by calling pretty much any formula an LIF,
Think Lagrange inversion = compostitional inversion via series whether o.g.f.s, e.g.f.s, or
other series reps. For non-series inversion, we might use directly g(g−1(x)) = x or a
Laplace-like transform with a change of variables ,Any way to skin the cat analytically
but we don’t have a well-defined analytic function, forward or inverse, to begin with here
though, so bootstrap methods only come to mind.
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Proof. :General proof: There is no analytic local solution at 0 to f ′ =
ef
−1

, f(0) = 0, that is, the formal power series solution is diverging. , this
means f− = f+ is an actual solution to the equation f ′(x) = ef

−1(x) [result
(01)], we shall consider the equivalent equation{

h′ = eh◦h,

h(0) = 0,

satisfied by h(x) := −f−1(−x) (Indeed, by the rule of the derivative of an
inverse, (f−1)′(x) = 1

f ′(f−1(x))
= e−f

−1(f−1(x)) so that h′(x) = eh(h(x)); see also

the proof of lemma 07 ) Indeed, assume by contradiction the formal power
series solution x+ 1

2
x2 + 1

2
x3 + 2

3
x4 + &c. to the above equation has a positive

radius of convergence. Then, it extends uniquely by analytic continuation to
a maximally-defined analytic function, still denoted h (that is, defined on the
largest positive interval [0, a), for some 0 < a ≤ +∞). Note that the Taylor
series of h at 0 has non-negative coefficients. This follows immediately by
induction, equating the coefficients of h′ and eh◦h; incidentally, This series is
the EGF of the positive integer sequence [09], As a consequence (check the
details below), h is totally monotonic on [0, a); in particular h′(x) > h′(0) = 1
and h(x) > x for all 0 < x < a, and h is invertible. [result(03)]
Then observe that log(h′(h−1(x)) is a well-defined analytic function on the
interval h[0, a), and coincides with h locally at 0. By the maximality of
[0, a) we have thus h[0, a) ⊂ [0, a), but, due to the inequality h(x) > x on
(0, a), this inclusion is only possible if a = +∞, so that h is unbounded
[result(04)]. On the other hand, since e−h(h(t))h′(t) = 1 and h(t) ≥ t, we
have for any x ≥ 0

x =

∫ x

0

e−h(h(t))h′(t)dt =

∫ h(x)

0

e−h(s)ds ≤
∫ +∞

0

e−sds = 1,

a contradiction.209

• Note 01: To justify the total monotonicity of h [result(03)], Note210

that, as a general elementary fact, a real analytic function on an inter-211

val I, whose Taylor series at some point x0 ∈ I has non-negative co-212

efficients, has Taylor series with non-negative coefficients ay any point213

x ∈ I, x ≥ x0. Indeed, this is clear for x1 ≥ x0 within the radius of con-214

vergence of x0, and since there is a uniform radius of convergence at any215

y ∈ [x0, x], one reaches x by finitely many steps x0 < x1 < · · · < xn = x.216
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• Note 2: . The same argument works for other differential-functional217

equations like e.g.218 {
h′ = 1 + h ◦ h,
h(0) = 0,

that generates the sequence [OEIS A001028]. As before, a maximally-
defined analytic solution h, if any, must be totally monotonic and de-
fined for all x ≥ 0, for otherwise h′ ◦ h−1 − 1 would be a proper exten-
sion of it. Then we reach a contradiction as before, with one more step
needed: since we have h′(t)

1+h(h(t))
= 1 and h(t) ≥ t for any t ≥ 0, we also

have, for any x ≥ 0

x =

∫ x

0

h′(t)dt

1 + h(h(t))
=

∫ h(x)

0

dt

1 + h(t)
≤
∫ h(x)

0

dt

1 + t
= log(1 + h(x)),

whence ex ≤ 1 + h(x); if we plug this into the latter inequalities again,
we get

x =

∫ h(x)

0

dt

1 + h(t)
≤
∫ h(x)

0

e−tdt ≤ 1,

as before. By comparison, the same conclusion also holds for h′ =219

F (h ◦ h) with any F analytic and totally monotonic on (−ε,+∞), and220

with F (0) = 1.221

Remark 1. We deduced result 06 from calculation of the few terms of co-222

efficients as shown above in 6 using mathematica , For result05 really we223

can’t able to check weither this function is Borel -summable f , see [15]224

(you can see bellow definition of Borel summation in footenote ) , we see225

that f is smooth but not analytic and we don’t know if this is an asymp-226

totic series to which Borel summation could be applied, The derivatives of227

the n-folds iterate fn of f have a curious formula such that : for any n ∈ N:228

(fn)′ = exp(f−1+f 0+f 1+· · ·+fn−2) ,(f−n)′ = exp(−f−2−f−3−· · ·−f−n+1).229

for instance we try to check if the function we have asymptotics or no ac-230

cording to the following definitions .231
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8 9
232

Definition 2. A series :a0 + a1x+ a2x
2 + · · · is said to be an asymptotic for233

f(x) , near x = 0 if : :f(x) = a0 + a1x + a2x
2 + · · · + anx

n + O (xn+1) for234

each n and small x235

Definition 3. The definition of asymptotics series is interesting only when236

the series is divergent , if f(x) is regular at the origin [see footnote page237

14] then it’s Taylor series
∑∞

n=0 anx
n is convergent for small x and satisfy238

definition 2 [see, 16,p28]239

The solution of the titled functional equation which is presented as a240

formal power series as shown above in general proof and proof of lemma 7241

and as noted in [09] which has the following form :f(x) = x+ 1
2
x2+ 1

2
x3+ 2

3
x4+242

&c. is the exponential generating function converges only at x = 0 and has243

the positive radius of convergence also centred at the origin then it is regular244

hence the function we have satisfies both definition 2 and definition 3 then245

it is asymptotics but this is not enough to judge that is a Borel summable246

because it’s not a well defined analytic function .The next definition will247

show to us that the function we have does not have analytic continuation to248

(a neighborhood of) x = r such that r is the radius of convergence .249

Definition 4. . A series
∑+∞

n=0
cn
zn+1 is Borel summable [17, def.3,page 17]250

for z > 0 if the series f(x) =
∑+∞

n=0 bn
xn

n!
has a radius of convergence R > 0251

and if the function:252

f(x) =
+∞∑
n=0

bn
xn

n!
(1)

8In mathematics, Borel summation is a summation method for divergent series, intro-
duced by mile Borel (1899). It is particularly useful for summing divergent asymptotic
series, and in some sense gives the best possible sum for such series. There are several
variations of this method that are also called Borel summation, and a generalization of it
called Mittag-Leffler summation.

9The meaning of the word regular is not precisely defined. Sometimes they say regular
enough which means (for instance) that a function is differentiable, or twice continuously
differentiable and so on. Usually saying this they want the function to fulfill all the needed
assumptions ,If the power series consists of powers of x, Then it means that the series has
a positive radius of convergence. If the series is not centered at the origin(not powers of
x but of x− a for some a 6= 0) then it means that there is an analytic continuation to the
origin that is regular at the origin

15



has an analytic continuation along R+253

with

∫ +∞

0

e−xzg(x)dx converges for z > 0 Then we define :

Borel∑
n=0

cn
zn+1

=

∫ +∞

0

e−xzf(x)dx (2)

We show here that the radius of convergence of the function f defined254

in (1) must be positive for applying Borel- summation. Really the problem255

we are challenged in Definition .4 is the convergence of the integral in the256

R.H.S of the equation (2), For the formel solution f(x) = x + 1
2
x2 + 1

2
x3 +257

2
3
x4 + &c. the term bn is positive for n > 1 (see.result. (06)) and it is258

increasing sequence and satisfy :bn > n! for n > 4 as shown in the bellow259

table which signed the sequence A214645 in [09]: 10
260

10Watson’s theorem gives conditions for a function to be the Borel sum of its asymptotic
series,and says that in this region f is given by the Borel sum of its asymptotic series. More
precisely, the series for the Borel transform converges in a neighborhood of the origin, and
can be analytically continued to the positive real axis, and the integral defining the Borel
sum converges to f(z) for z in this region |z| < R

16



n =n bn
n = 1 1
n = 2 1
n = 3 3
n = 4 16
n = 5 126
n = 6 1333
n = 7 17895
n = 8 293461
n = 9 5721390
n = 10 129948787
n = 11 384796695
n = 12 99848190706
n = 13 3301868304168
n = 14 121369298328835
n = 15 4923587573624940
n = 16 219090125559917698
n = 17 10637377855875861600
n = 18 560928617456424367993
n = 19 31993928581562975604588
n = 20 1966682218962058310721178

261

Remark 2. As bn > n! for n > 4, the series diverges at x = 1, hence its
radius of convergence r lies in [0, 1] precisely r = 0. Then, by [Pringheim’s
theorem] see [18] , g(x) does not have analytic continuation to a neighborhood
of x = r Hence the integral can’t converge for any x over (0,+∞).One of
the few cases we can get the convergence of integral defined in R.H.S of (2)
with bn > n! is the extension to complex plane , We take this as example :

bn = (−1)nn!

(
1/2

n

)
. (3)

which gives : ∑ anx
n

n!
=
√

1− x (4)

near zero, and does have an analytic continuation to (1,∞) in fact two of262

them through the complex plane. And the integral converges.263

Recall that the defined formel solution of f ′ = ef
−1

is :

f(x) = x+
1

2
x2 +

1

2
x3 +

2

3
x4 + &c. (5)
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Now the definition 4 show to us that the formel series solution defined
in 3 can’t be Borel- summable since r = 0 and must be positive where-
ase definition 2 and definition 3 showed that function could be Borel
summable missing the bounded of the error term which is necessary condi-
tion to apply Watson’s theorem [19 , (see also .footnote,page 15) ], just we
used the regularity of the formel series at the origin.In any way we arn’t able
to know if the function defined in (6) is Borel-summable in the context of
all previews definitions. The special feature in the problem discussed here
is the possibility to find such a function explicitly and to use it to find a
formula for bn, rather than that we don’t have an explicit formula or closed
form for bn or bn ([09 ]) hasn’t any known recursive formula for example
:bn+1+bn−1 = (nα+β)bn, n ≥ 1.(α, β) real or complex 11 Recurrence relations
of this type appear in several contexts see[20] and [21] and also sequences
:A053983, A053984, A058797, A058798, A058799. see[20, sloane 2008].The
determination of the explicit formula for bn by any linear reccurence is very
important to get analytic solution satisfies the asymptotics expansion which
is defined as : ∑

bnx
n +O

(
xn+1

)
(6)

for more explanation see the following remark264

Remark 3. By a theorem of Borel (1895 ) [22], see also Carleman (1926,265

Ch. V) [23], given any sequence bn there exists a C∞ function on R with266

these numbers as Taylor coefficients at 0, and thus the asymptotic
∑
bnz

n
267

there; moreover, we may choose the function so that it is analytic in, e.g., a268

given sector expansion in D in the complex plane, with the given asymptotic269

expansion as z → 0in D Hence, the existence of a function (and, indeed,270

infinitely many functions) representing a given sequence by an asymptotic271

expansion is well-known.272

Now, since we are unable to define an explicit formula of the sequence defined273

in [09] for predicting the Borel sum of (6 ), we shall use the bellow theorem274

(theorem.2 ) which uses Borel’s method .275

11let f(z) =
∑

n≥0 anz
n be regular at the point O and let be the set of all its singular

points. Draw the segment OP and the straight line Lp normal to OP through any point
P ∈ C The set of points on the same side with O for each straight line Lp is denoted by∏

the boundary Γ of the domain
∏

is then called the Borel polygon of the function f(z).
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9. Borel’s Methods276

if:

e−x
∑
An

xn

n!
→ A (7)

we say that :An → A(B) and if :∫ +∞

0

e−x
∑
an

xn

n!
dx = lim

X→+∞

∫ X

0

e−x
∑
an

xn

n!
dx = A (8)

we say that An → A(B′).The methods are of quite different types , The277

first(7 )being ’integral function’ definition in the sense of 4.12 ,see ([16, page278

79]) with J(x) = ex and the second (8 ) a ”moment method in the sense of279

. 4.13,see ([16,page 81]) with µn = n! , X(x) = 1 − e−x, but the special280

properties of the exponential function make them all but equivalent.for a281

short proof see [16, page 79] under ” Method B and B′ are regular . ,The282

following Theorem w’d be in the context of the cited Borel’s method.283

Theorem 2. The power series representing a function regular at the origin284

is summable (B′) inside the Borel polygon (see.the above .footnote) of the285

function , regulary and uniformaly throughout any closed region interior to286

the polygon ; and is not summable at any point outside the polygon.287

The present theorem which uses Borel’s method is available to be active288

in complex plane then by extension from R+ to C we have a well defined289

analytic function f(z) since it is Holomorphic (smooth in R+) in some region290

D in C more than that f(z) is convergent only for z = 0 which means it has291

a positive radius of convergence and it is centred at the origin hence we292

have got a regular complex valued function at the origin which satisfies the293

above theorem , And do not forgot since it is regular at the origin then it294

has asymptotic series convergent for small z , Now from the given conditions295

for Borel- summable to be applied in the conext of the above theorem We296

are ready to present the following conjecture which include both real and297

complex plane .298

conjecture 1. The solution of the differential-functional f ′ = ef
−1

which is299

presented in a formel power series as noted in [09] is Borel-summable (B′)300

inside the Borel polygon of the function regulary and uniformaly throughout301

any closed region interior to the polygon ; and is not summable at any point302

outside the polygon in the complex plane and could be applied over R+303
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10. Conclusion:304

Formal power series with radius of convergence 0 often arise in counting
labeled graphs. For example, the exponential generating function for labeled
connected graphs is logG(x), where

G(x) =
∞∑
n=0

2(n
2)x

n

n!
,

which has radius of convergence 0.305

Series like
∑∞

n=0 n!xn arise in the theory of continued fractions; this series
has the continued fraction expansions

1

1− x

1− x

1− 2x

1− 2x

1− 3x

1− 3x

1− · · ·
and

1

1− x− x2

1− 3x− 22x2

1− 5x− 32x2

1− 7x− · · ·
Similar continued fractions exist for ordinary generating functions (with ra-
dius of convergence 0) for Bell numbers, Eulerian polynomials, matchings,
and more generally, moments of orthogonal polynomials. A very nice com-
binatorial approach to these continued fractions has been given by Philippe
Flajolet, Combinatorial aspects of continued fractions[24]. It is true that
most, if not all, of these examples of nonconverging power series can be re-
fined to power series in more than one variable that do converge for some
values of the parameters. For example, the exponential generating function
for labeled connected graphs by edges is logG(x, t), where

G(x, t) =
∞∑
n=0

(1 + t)(
n
2)x

n

n!
;
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this converges for |1 + t| < 1. On the other hand, the exponential gen-306

erating function for strongly connected tournaments is 1 − 1/G(x), and307

this doesn’t seem to generalize since 1 − 1/G(x, t) has some negative co-308

efficients.Particulary the solution of the titled functional is smooth function309

but not analytic in R+ then the existence of this kind of functions repre-310

sents one of the main differences between differential geometry and analytic311

geometry. In terms of sheaf theory, this difference can be stated as follows:312

the sheaf of differentiable functions on a differentiable manifold is fine, in313

contrast with the analytic case.probably there is some one find any rigorous314

application of this function in sheaf theory .315
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