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Estimating Genetic Parameters in a Dominance Model that Includes
Inbreeding

S.P. Smith and A. Mäki-Tanila1

Abstract. A dominance model is described coming with inbreeding, and five genetic
parameter plus the environmental variance. The linear model is specified by the
phenotypic equations and the mid-parent equations. They are placed in an indefinite
system that is highly sparse, not the mixed model equations. From this system the
augmented matrix K is built that is symmetric and indefinite, leading to restricted
maximum likelihood. Likelihood evaluation follows from the factorization of K, and
various sparse matrix tools are described for maximizing the likelihood. The method is
used to estimate the six parameters for 2706 egg-laying hens that were part of a
selection experiment.

1. Introduction

When there is no inbreeding, much progress has been made with methods for
estimating additive, dominance and environmental variances (e.g., Misztal 1997). With
inbreeding the situation becomes very challenging.

Gillois (1964) and Harris (1964) worked out the mathematics to define the genetic
covariances among inbred relatives. Harris’s details are very complicated and may
involve 28 genetic parameters  to represent all first and second-order gene interactions2

(i.e., involving two loci) and lesser numbers depending on simplifying stipulations. In the
case of no epistasis at all, there are five genetic parameters to modulate additive genetic
and dominance effects. In this case, the environmental variance brings the parameter
count to six, and these must be estimated from data.

Hoeschele and Vollema (1993) were among the first to actually estimate the five genetic
parameters in dairy cows using a method of moments, and they then found restricted
maximum likelihood (REML) unfeasible for a large-scale animal model. Estimating
variance components by restricted maximum likelihood was proposed by Patterson and



 This formulation is different to model (6) that occurs later because of how the random3

genetic effects are placed in e rather than b.
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Thompson (1971). To define the log-likelihood function that is suitable for REML,
consider the following linear model .3

y= Xb + e

where y is a column vector of observations, b a vector of fixed effect, and in this case e
are the residuals that include all the random genetic effects. The variance matrix of the
residuals is given below.

Var(e)=V

One likelihood function that is suitable for REML is the following,

Log-likelihood= -½log|V|  - ½log|X V X|  -½y PyT -1 T

where P=V -V X( X V X) X V . There are other formulations of the likelihood function-1 -1 T -1 -1 T -1

that involve matrix components taken from the mixed model equations (e.g., see Smith
1995), which has been recommended particularly if sparse matrix methods are to be
employed. However, its not obvious that for the dominance and inbreeding model the
methods developed for sparse matrices are most suitable. Moreover, sparse matrix
methods may not be used even if the alternative formulation involving the mixed model
equations is used. Fernández, Legarra, Martinez, Sánchez and Baselga (2017) note that
necessary inverse-variances matrices tend to be non-sparse, making it difficult to use
the mixed model equations when the number of observations or the order of matrices
becomes large. If the sparse matrix approach is to be followed stickily, that possibly
implies that the order of matrices are to be expanded drastically (beyond the number of
observations) while complex expressions are utilized to provide the inverse dominance
relationship matrix (e.g., Smith and Mäki-Tanila, 1990), and these adjustments may also
be prohibitive.

Therefore, it is not surprising that Abney, Peek and Ober (2000) described REML
estimation for a dominance and inbreeding model, while making no special reference to
sparse matrices that are beyond the matrix V that has an order limited to the number of
observations. Likewise, Shaw and Woolliams (1999) describe REML by limiting their
treatment to dense matrix operations involving V. If the order of V is not too great, these
approaches are feasible. For large matrices, however, vector processing can be
employed before having to consider using an alterative formulation that involves sparse-
matrix manipulation.

Sparse matrix methods will be evaluated again for the dominance and inbreeding model
that is presented in Section (2), with renewed interests. This will again involve a large



 Those readers that correctly see an anomaly in redundantly having an effect for4

inbreeding in a model that already includes a dominance term, please suspend judgment for now.
This situation will be explained shortly, and (1) is to be used as the traditional starting model.
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expansion of genetic effects in the model, well beyond the order of V. Restricted
maximum likelihood is described in Section (3), but rather than following the mixed
model equations, Siegel’s (1965) equations are employed because they have superior
sparse-matrix handling properties. A sample data set involving egg-laying hens is
described in Section (3), and the resulting estimates of the genetic parameters are
presented in Section (4) after they are successfully estimated by the new method.

2. Dominance Model

The dominance model with inbreeding , but with no epistasis, is indicated for the k-th4

phenotype:

k k i(k) j(k) i(k),j(k) ky ="+$×F  + a  + a  + d  + e (1)

k kwhere y  is the k-th phenotype, " is the overall mean or intercept, F  is the inbreeding
coefficient for the k-th zygote, $ is a regression indicating inbreeding depression (when 
negative), i(k) and j(k) are index functions that assign addresses for two gametes that

munite to form the k-th zygote, a  is the additive genetic effect summed over loci that is

mnassociated with the m-th gamete, d  is the dominance effect summed over loci that is

kderived with the union of the m-th and n-th gametes, and e  is the environmental error
associated with the k-th phenotype.

kThe variances of e  are uncorrelated, and independent of k, and collectively denoted by:

To describe the remaining five parameters, and to introduce gametic recursions, it is

m mnuseful to introduce vectors, a  and d , representing the genetic effects parsed into loci.

m m nm mnIf there are L loci, and 1 is an L×1 vector of 1s, then a =1 a  and d =1 d . Therefore,T T

in populations in Hardy-Weinberg and linkage equilibrium, and without inbreeding, the
additive genetic and dominance variance are defined below.



 Before work started again 28 years later, the prior software was debugged by comparing5

the previous calculations with newly programmed recursive functions. This uncovered three
small errors in the prior computer code, which were corrected. If the prior software is to be used
again by others, kindly understand that the prior software needs correcting in three places.
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m mnIt is understood that the mean vectors of a  and d  are both 0, the zero vector. That is,

These definitions follow from the fact that the variance of a sum of independent random
variables is the sum of the variances (as is also needed below), which is a statement
that the loci are segregating independently.

When there is inbreeding, three additional parameters are found:

The five genetic parameters can be used to evaluate the covariance between any two
related zygotes or the variance of each, using the path coefficient method (Jacquard
1966) or a tabular method (Smith and Mäki-Tanila, 1990), but the parameters are used
at the end of the calculation of identity coefficients (or probabilities) that do not change
with the parameters (de Boer and Hoeschele,1993). The tabular method does not
actually require a table for storing all like coefficients for gametes and gamete pairs that
are encountered during the gametic recursion. If storing such a table is prohibited,
identity coefficients that serve as intermediates can be computed on the fly (rather than
saved for reuse) by a recursive function that progresses through a list of zygotes and
zygote pairs. Provided the pedigree is not too deep, this shortcut is not too demanding
on computing time. While it is very useful to conceptualize such a table, particular if a
sparse-matrix method is to be used, actual identify coefficients can be restricted to sub-
matrices, or blocks, when gametic recursion is applied (e.g., Smith and  Mäki-Tanila,
1989). The present paper will take up where Smith and Mäki-Tanila (1989) left off with:
with a large and sparse matrix the same dimension as needed for the conceptualized
tabular method, and with the same recursive functions that were then developed , but5

by-passing Sections F and G because the inverse table is no longer needed. 

To define the conceptualized table, or matrix, where gametic recursions are applied, first
number all the gametes in the pedigree and in the zygotes that have records,



i ji ii If a , d  where j<i, and d  are columns in   and the parents of the i-th gamete are x and6

x jx xj xx y jy yj yyy, then closure implies that a , d  or d , d , a , d  or d , and d  are columns in  .

 Actually, the zero expectation are found for all gametes where model (1) applies, but7

further declarations of that fact are not needed because of the introduction of mid-parent
equations.
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consecutively from 1 to G by a partial ordering where j<i if the i-th gametes descended
from the j-th gamete, or if the j-th gamete is from the base population and the i-th

igamete is a non-base gamete. Next define the L×(i+1) matrix H , and the L×½G(G+3)
matrix H, as follows. 

The matrix of second moments, summed over loci, is neatly provided by E(H H) which isT

of order G(G+3)×½G(G+3) and way too large if closure under gametic recursion  is the6

only requirement that must be met. Let   be a subsequence of the columns of H so

iconstructed to be closed under gametic recursion, and let    be the corresponding

icolumn subsequence of H . Appendix A of Smith and Mäki-Tanila (1990) provides a
depth-first search algorithm that computes the subsequence, starting with a complete list
of zygotes and tracing back through the genetic paths using the available pedigree
information.

Something must be done to connect the columns of   with the collection of genetic
effects, the additive genetic and dominance effects. This is easy because the row vector
g=1   is such a correspondence where the various effects in the phenotypic equationsT

(1), for all k, are all located in g.

i iDefine the row vectors g=1   , for i=1 to G. Additional model specifications are neededT

ithat describe the relationships among the various g  while incorporating the known
pedigree information.

iRegarding the first moments, E(g )=0 (a row vector of 0's) when the i-th gamete belongs

iito the base population , even when the particular expectation involves 1 d . Because the7 T

phenotypic equation (1) already incorporates the inbreeding depression, coherence with
the equivalent model (2) demands a subtraction of $ off the homozygotic dominance
effects in (2) to permit a translation from (2) to (1).

k i(k) j(k) i(k),j(k) ky =:+ a  + a  + d  + e (2)



 This could be a real life zygote, or one that is merely theoretical.8

 Because model (2) is the coherent starting place despite the traditional use of a9

*regression on F to depict inbreeding depression as in (1), the parameter u  is understood to be2

u u, and alternative interpretations cannot be supported.T

6

Note that in (2) the underscore distinguishes the dominance effects that are potentially

ij ij ij ijimpacted by the reformulation. In particular, d =d  + $×F  where F  is the inbreeding

iicoefficient for the zygote  formed by the union of the i-th and j-th gametes. With E(d )=u,8

then 1 u=$ and this specification can be made with a linear model outside of (2), i.e., inT

iiequation (3) below. However, returning to the model that follows from (1) where E(d )=u,
then 1 u=1 u - $=0. To build (1) from (2) its not necessary to distribute the subtractionT T

over the various loci, and this action is technically invalid  because it generates a subtle9

*change to u . Nevertheless, to maintain expediency with notation thereby letting us2

istipulate that E(g )=0, it is handy to apply the subtraction to loci while ignoring the impact

*on u . The sensible way to make the distribution is to define u=u - ($/L)1, i.e., to2

subtract a constant off the effect from each locus in the homozygotic condition.

i iWhen g  belongs to the base population, then the variance-covariance matrix for g  is

a d *diagonal (with one F , perhaps several F  and no more than one F ), except for the2 2 2

a* jpossibility of one element (F ) that is off diagonal. When g  also belongs to the base

i jpopulation, then the covariance matrix between g  and g  has every element set to zero.

*Nowhere does the parameter u  enter into the covariance structure for base population2

gametes.

B N BPartition the entire row vector g as g=[g , g ], where g  corresponds to all the base

Npopulation gametes and g  the non-base population gametes. To summarize, additional
information for the base population gametes is needed and is specified as the following,

B B BE(g )=r and Var(g )=G (3)

Bwhere G  is an almost diagonal variance-covariance matrix with the occasional off

a*diagonal element that is set to F , as previously noted. When model (1) applies then
r=0, but when (2) applies the entries of r are set to zero except for an occasional $

iicorresponding to an expectation of the form 1 E(d ). Because further specifications forT

Ng  are by mid-parent equations (Smith and Mäki-Tanila, 1990), there is no further need

kfor treating $, other than calculating F  as required only for model (1). The mid-parent
equations are identical for models (1) and (2), and come with residual terms

Brepresenting random segregation effects that are uncorrelated with g . Once the mid-
parent model is presented the model specifications are complete.

i i i NConsider the column vector g=1    again where g  is a sub-vector of g . Denote theT

parents of the i-th gamete by x and y, which are by definition part of the pedigree
information where index numbers are consistent with the partial ordering previously
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i=x i=ydetermined. From the larger matrix   define the two matrices,    and    , to be a

isymbolic transformations of    where the index-x or the index-y, respectively, substitute

i ij ii i x xj jx xx for the index-¥. If a , d  and d  are columns of   , then a , d  or d , and d  are columns of

i=x i=x i=y x y  . Note specifically that     and     are not the same as     and    .

The general mid-parent equation is the following.

i i=x i=y i  = ½    +  ½    + S (4)

iWhere S  represents the segregation residual that is realized when the i-th gamete was
spawn from parent gametes x and y during meiosis. Post multiplying (4) by 1  givesT

equation (5), a linear model (as collection of column vectors) representing the mid-
parent equation in terms of effects that have been enumerated for modeling.

i i=x i=y ig = ½ g  +  ½ g  + s (5)

i=x i=x i=y i=y i iwhere    g  = 1     , g  = 1     , and  s =1 S  .T T T

i iThe first moments of S  and s  are a matrix and column vector of zeros. This is derived
below.

i i i=x i=yS=   - ½    -  ½    

i i i=x i=yE(S ) = E(   - ½    -  ½   )

i i=x i=y         =E(  ) - ½ E(  ) - ½ E(  )

i i i=x i=y         =½ E(    | i=x) + ½ E(    | i=y) - ½ E(  ) - ½ E(  )

i=x i=y i=x i=y         =½ E(  ) + ½ E(  ) - ½ E(  ) - ½ E(  )
         = 0

i i iAnd because E(s )=1  E(S ), then E(s )=0T

Now because the first moments are zero, the collection of variances and covariances
are just the corresponding second moments. Moreover, because the variance of a sum
of independent random variables is the sum of the individual variances, the variance-
covariance matrix reduces to the following.

i i iVar(s ) = E(S S )T

i i i i           =½E( S S  | i=x)  + ½E( S S  | i=y) T T

i i i i i i=x i=y           =½E( Ö Ö  | i=x)  + ½E( [- Ö ]  [- Ö ] | i=y) , where Ö =½ E(  ) -½ E(  )T T

i i           =E[Ö Ö ]T

i i iThe very last specification is to commute the variance blocks, B=E[Ö Ö ] for all gametesT



 It is not necessary to pre-treat the model, and the subsequence extraction, to remove10

singularities that are known to exist within the genetic variance matrix as a whole. That prior
treatment described in Smith and Mäki-Tanila (1989, 1990) is not followed. 

 In what historically has been called a collection of “random effects” comes now with a11

second set of equations: the mid-parent equations. This takes the historical random effects and
places them in b, puts the residues (or the segregation effects from the mid-parent equations) in
,, and lastly imputes values for the corresponding elements of y. The imputed values are
generally a collection of zeros (or known quantities that come from model specifications). When
fully specified, (6) represents both the phenotypic and mid-parent equations.
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Nthat are in g , and Smith and Mäki-Tanila (1989) developed software for doing just that.10

BThese segregation effects for the i-th gamete are uncorrelated with g  and other
segregation effects for the j-th gamete when i�j, and therefore, the entire variance matrix

B B ifor g , and all segregation effects together, is block diagonal, with the blocks of G  and B .
Moreover, these blocks are of order of modest size, if not mostly small, and tend to be
sparse.

i i i i i i iEven though Var(s ) = E(S S )= E[Ö Ö ], its important to note that S�Ö , and in general,T T

i i *E(Ö )�0 even if E(S )= 0. Because of this we find that the parameter u  can enter into the2

i Bcalculation of B  even if its never used in G .

3. Restricted Maximum Likelihood

A general linear model is described as follows:

y = X b + , (6)

where y is a column vector of observations, or imputed observations , b is a column vector11

of effects in the model that have historically been called fixed but in this version of (6) some
elements can now be called random, and , is a column vector of residuals.

Lastly, define the variance-covariance matrix V, where var(,)=V. In this system, V is
permitted to be singular or non-negative definite.

To make the correspondence between the dominance models of Section 2, and with (6),
make the following assignments shown in Table 1.
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Table 1. Assignments of column vectors.

Model (6) y notes b , notes

Models (1) & (5)
or

Models (2) & (5)

T

X

T

T

w wT The function {v } returns a column vector, where v  is a column vector, or scalar, and is

wstacked one on bottom of the other to build  {v }, as the index w varies from smallest to
largest over its intended range.
X The column vector 0 contains zeros and has the same dimensions as g .T

The variance matrix, V, is block-diagonal (i.e., with zeros off the diagonal blocks) and has
the following form,

iwhere k varies between 1 and N observations, and the function Diag{B } returns a block

idiagonal matrix with diagonals B , as the index i varies from smallest to largest over its
intended range.

The matrix X has the following form,

1where for Model (1), x  is a column vector of inbreeding coefficients in an order that

2 1 2matches the phenotypic equations, and x =0; or for Model (2), x =0 and x  contains mostly
zeros except for occasional entries that equal 1 corresponding the homozygotic dominance

B 1 2effect that are matched with g . The matrices Z  and Z  contain ones and zeros andT

1collect the genetic effects from g  to match the phenotypic equations. The matrices P  andT

2P  contain zeros and ½’s, and collect all the parental effects that contribute to the mid-
parent equations.



 There is no need for V to be non-singular, there is no need for a rapid method to12

compute the inverse dominance matrix, there is no need for the mixed model equations. These
historical approaches in the past only hobble the calculations. Today a sharper focus can be
directed at sparse matrix methods applied to (7), or the K matrix that follows, which are
incredibly sparse and simple by comparison with the mixed model equations. Moreover, V is a
linear combination of the genetic parameters, and come with coefficients that are computed only
once and saved for reuse with different genetic parameters.
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Estimates of b, denoted by , are computed by solving Siegel’s (1965) equations:

(7)

The empty space in system (7) is intended to be a collection of zeros, and V and X are also
very sparse. Standard errors for various estimates are obtained as the square-root of
corresponding negative elements of the inverse coefficient matrix of (7). At this point, all
the novelty that went into the dominance model in Section (2), including the translation that
involved (6), gives way to various matrix operations that can be standardized and
optimized. The theoretical developments in this paper have been completed, and the paper
now turns to computational ideas that have previously been developed; what remains is
just plug and play .12

Smith (2001b) described how to take the matrix elements of (7), and turn them into one
coefficient matrix K that is presented below, and how to use K to calculate the log-
likelihood function for restricted maximum likelihood (REML).

The M×M matrix K is symmetric and indefinite. Such matrices are not generally known to
have a Cholesky decomposition, unlike the case with positive definite matrices. However, it
is feasible to re-order the rows and columns of K in such a way to permit Cholesky’s
factorization (Smith 2001a), leading directly to likelihood evaluation. Let Q be a
permutation matrix that permutes the rows and columns of K such that factorization can
proceed as the following, 

LDL =QKQT T



 This number can be counted during factorization following Fact 10 of Smith (2001a).13
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where L is lower triangular, D is diagonal with diagonal elements +1 or -1, and Q is a
permutation matrix that leaves the last row and column of K unchanged.

The REML likelihood is provided by the following,

iiwhere S={i: L >0, i<M}.

eThere is a second preferred way to calculate the likelihood. It is useful to factor F  out of2

part of the likelihood by expressing the remaining parameters as variance ratios.
Computationally, K is evaluated by substituting the variance ratios for variances, as
presented in Table 2.

Table 2. Variance ratios to substitute for variances when calculating K.

Factorization then follows, while using the prior notation, LDL =QKQ . A closed formT T

eestimate for F  becomes available with the variance ratios fixed, as follows.2

The degrees of freedom  are denoted by df, and in the present example with two fixed13

effects, df= N - 2. This estimate is substituted back into the likelihood to derive the
concentrated likelihood (9) which depends on five variance ratios rather than the six
variance components that impacted (8). 



 Discovered empirically.14

 Based on computing the Cholesky decomposition of the largest matrices that press the15

computer’s limits in terms of memory and computing time, and this expectation being the case
for sparse matrix manipulation (Ng and Peyton, 1993) and possibly vector processing.

12

The first real big calculation involves finding the permutations that permit factorization. This
is done in sparse matrix mode, using an expensive double-linked list to keep track of rows
or columns that may be pulled forward in the pivot order while the outer-product form of the
Cholesky decomposition is followed. Unlike the situation when K is positive definite, the
initial factorization is not done symbolically. Rather, it is done with real floating point
calculations that operate on the K that was built for a particular set of parameters. The
results are saved symbolically, however, to build the sparse structure of L. Factorization of
a new matrix, LDL =QKQ , can now be repeated using the same sparse structure but withT T

a different set of parameters, and provided the new parameters are not too different from
the starting set. The success of factorization is very likely  and dependent on the14

discovered permutations being robust in permitting factorizations that follow.

The concentrated likelihood (9) is maximized following a variety of potential techniques
(e.g., Fletcher 1987), including derivative-free, conjugate gradient, or Netwon’s methods.
The derivative-free approach can be fashioned as a direction set search with evolving
directions (Powell 1964), or by the popular simplex algorithm (Nelder and Mead, 1965).
The conjugate gradient and Newton’s methods require calculation of some or all of the first
and second derivatives.

Likelihoods (8), and (9), are functions of L, which can be differentiated using forward or
backward differentiation of the algorithm used to perform the Cholesky decomposition of
an indefinite matrix. Smith (2001b) used the outer-product form, and provides the
backward derivatives. However, that account of differentiation has small errors that have
been corrected by Smith, Nikolic and Smith (2012). Smith (2017a, b) describes the
backward differentiation of the bordering method of the Cholesky decomposition, including
for the Cholesky decomposition of an indefinite matrix. Murray (2916) describes the
differentiation on the inner-product form of the Cholesky decomposition, but these results
must be extended for indefinite matrices which is easy enough as found by Smith (2017b).
Algorithms developed from the inner-product form and the bordering algorithm are likely to
be superior  to those that come from the outer-product form. 15

4. Example Data

These methods were applied to data derived from a selection experiment involving eqq-
laying hens at the former MTT Agrifood Research Finland (Luke Natural Resources



 Among diagonals that are candidate pivots that are commuted dynamically and are16

found different from the operational zero. Diagonals that start out as zero must experience fill-in
before they can be selected as pivots.
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Institute Finland), Jokioinen, Finland. Previously, the same data were used to illustrate the
inverse calculation for the extended genomic table (Smith and Mäki-Tanila 1989), which is
not needed for the present situation.

The selection experiment generated two divergent lines over four generations of selection,
and the pedigree information contained as many as five generations back to the base
population where inbreeding was taken as non-existent (see Table 3).

Table 3. Breakdown of 2706 Hens by amount of Pedigree Information

# Hens Ancestor Generations Recorded

488 1

645 2

540 3

704 4

329 5

Of the total 2706 hens, only 686 were inbred coming with inbreeding coefficients that
varied between 0.00195 and 0.125. The minimal inbreeding creates limits on information
available to estimate some of the genetic parameters, and therefore, this data set serves
as a good benchmark for testing the suitability of the methods with limited data sets.
Challenges come to bare on numerical stability of the calculations and estimability (or
definability) of the parameters.

5. Results

The symmetric M×M matrix K (defined in Section 3) that resulted for the hen data has
order M=332,937, but it is very sparse starting with 672,690 non-zero elements (half-
stored). With a minimum degree ordering  of rows and columns to permit the Cholesky16

factorization of the indefinite matrix (K=L L), the number of non-zero elements in L grew toT



 The re-ordering is none implicitly by defining when diagonals become pivots, rather17

than actually assigning new numbers that act as labels for rows and columns.

 The arrays F, Q and S are all defined in Smith (2017b). The array S, in particular, has18

no relation to the matrix S in Section 2.

 In the direction of the gradient, and using the same software for computing the arrays Q19

and S.
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the huge number, 27,947,586. The minimum degree ordering required 40 hours of
computing on a Windows machine that runs at 3.30 GHz with 8.0 GB of random access
memory. The very modest data set, with minimal inbreeding, generates a very challenging
example for testing the methods.

By comparison, likelihood evaluation only required 17 minutes of computing following the
bordering method, and once the sparse structure of L is specified following the very
expensive re-ordering  of rows and columns. A work array containing 27,947,586 double17

precision numbers representing L is required, and is stored inside random access memory.
Equal amounts of memory are required for storing the sparse structure of L as two integer
arrays that speed the application of the bordering method.

To calculate the gradient required the computation of a second array F the same size as L,
and requires L to be available in the computer’s memory. Because the memory demand
was now beyond the limits of the home computer, the array F had to be treaded outside of
random access memory using direct access reading and writing to disc. This slowed the
gradient calculation way down, and required about 217 minutes per gradient vector.

To calculate five second derivatives from the 5×5 Hessian matrix requires the calculation of
two more arrays, Q and S,  the same size as L. Both Q and S can be calculated18

separately. However, while Q is calculated and stored in random access memory the array
F must be available by reading from disc. The array S is calculated in two parts. In the first
part, array S is calculated and stored in random access memory while arrays Q and F are
available by reading from disc. In the second part, S is treaded outside of random access
memory using direct access reading and writing to disc, while array L is available in
random access memory. Direct access reading and writing from disc slows the calculations
way down. The calculation of Q required 238 minutes of computing. The calculation of S
for part 1 required 252 minutes of computing, and part 2 used 217 minutes. Beyond the
calculation of the likelihood and gradient vector, computing a row or column from the
Hessian matrix required a total of 707 minutes, or 11.8 hours. Calculating the entire
Hessian matrix required 58.9 hours.

Derivative free searches only require 17 minutes of computing per likelihood evaluation. By
comparison, the conjugate-gradient method requires a minimum of 234 minutes per step,
and up to 724 minutes per step if the second directional derivative  is computed to19



 The Cholesky decomposition of an indefinite matrix is not known to be numerically20

stable compared to the Cholesky decomposition of a positive definite matrix. Therefore, the
calculations should be monitored for stability, particularly to make sure the same set of non-zero
pivots are encountered each time the Cholesky decomposition is calculated. The number of non-
zero pivots, and the degrees of freedom that are calculated from counting them by following Fact
10 of Smith (2001a), should be checked for each evaluation. Moreover, the operational zero is
tuned for counting pivots, and not set too small to avoid declaring a real zero pivot as non-zero.
The primary goal is to calculate the likelihood consistently for different sets of genetic
parameters. To improve numerical stability, the observations and inbreeding coefficients in (1)
should first be centered before building K.

* a* The evaluation of Q was not attempted by setting  F =F =0, but that might have been21 2

useful.
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determine step size. One iteration of Newton’s method uses 62 hours of computing.

The derivative free method was used to maximize the likelihood because it was much
faster per step than the alternatives that require derivatives for calculations performed on
the home computer. Days, weeks and months of computing time were used up testing the
conjugate-gradient and Newton’s methods on a preliminary data set that was only later
found to be inaccurate and needed to be corrected. While the methods based on
derivatives tended to move estimates in the right direction, i.e., to the maximum, stability
issues were also encountered. Newton’s method in particular, and to a lesser extent the
conjugate-gradient method, can overshoot the maximum, and fail to converge, if the
starting iterate is too far from the maximum. The present data set, coming with limited
amounts of inbreeding, only exacerbated the known challenges facing both the Conjugate-
gradient and Newton’s methods. The likelihood was found very flat for two of the

*parameters. The variance estimate of F  tended to drift to zero, and to prevent a possible2

failure  in the Cholesky decomposition of QKQ  it was eventually held fixed at the value20 T

a*0.048. Moreover, the covariance parameter F  tended to drift to the minimum value
permitted, corresponding to a negative correlation of -100%. It was possible to set the
implicit correlation to -100% or +100% without creating a singularity that causes the
Cholesky decomposition of QKQ  to fail because the permutation matrix Q was foundT

using an implicit correlation that was actually set to +100%.  Nevertheless, the implicit21

correlation was eventually held fixed at -99%. In any regard, with two parameters that
tended to the edge of the parameter space, the first derivatives for those parameters will
not push themselves to zero as they would if the maximum values were in the interior. This
enabled possible overshooting. Furthermore, the negative Hessian matrix was found non-

* a*negative definite with rank three, implying that F  and  F  are approximated by a linear2

combination of the remaining three parameters where the likelihood is not so flat. Lastly,
the methods based on derivatives work well but only if the radius of convergence is bigger
than the machine precision, and its doubtful if this condition was met given the
aforementioned challenges. 
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The derivative free approach worked well on the home computer, evaluating the likelihood
function hundreds of times, with none of the stability problems noted with the other
methods. However, the derivative free method did encounter stability issues caused by
parameters being too far from the initial parameter set that was used to compute the
permutation matrix Q where QKQ  is subjected to factorization. Restricting the step sizeT

eliminated this problem, and for every successful likelihood evaluation the same non-zero
pivots were found from round to round. Despite the present success with using the
derivative free method, the other methods might still show better performance on a bigger
computer, or with a data set that shows more inbreeding. 

The REML estimates of the six parameters are presented in Table 4. The relative sizes of

ethe standard errors are large for all the parameters, except for the estimate of F .2

aTherefore, the following observations are very guarded. The point estimate of F  was huge2

e a a d erelative to F , corresponding to a heritability of h =2F /(2F +F +F )=95.3% in a non-2 2 2 2 2 2

inbred population. While the statistical error is such that its unlikely that heritability is as
high as 95.3%, the data does imply that the heritability is high for egg-number. The point

d e *estimate of F  actually looks very reasonable compared to F . The point estimates of F2 2 2

a*and  F  are close to zero, and probably should be completely discounted due to the

* a*statistical error. There are theoretical reasons why F  and F  can tend to zero, or |$|2

approach infinity, when the number of loci become arbitrarily large in models describing
directional dominance (e.g., Robertson and Hill, 1983), but there is little to suggest this is
occurring in the present analysis.

* eThe big surprise is the size of the estimate of u  relative to F , being 263.2 times bigger.2 2

*The impact that u  has on the genetic variances is not large, however, because the2

*associated coefficients in V, in (7), corresponding to u  are found to be an order of2

magnitude smaller than most of the other coefficients.
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Table 4. Estimates of Genetic Parameters for Egg Number Among Egg Laying Hens. 

Parameter Estimate Standard Error A B

12.21 26.28

0.208 0.5809

0.048 83.62 C

-0.756 26.78 C

263.2 532.6

21.22 0.5730 D

A. The parameters in the various numerators (of variance ratios) are defined in Section 2.

eThe environmental, or residual, variance for the phenotypic equation is denoted by F .2

B. Except where indicated, the standard errors are estimated using the Hessian matrix

ecomputed for the concentrated log-likelihood with F  removed.2

C. With the negative Hessian matrix non-negative definite and rank 3, the standard error
was approximated as the root of the negative reciprocal of the respective diagonal element
of the Hessian matrix.

eD. Approximated from the second derivative of the log-likelihood with respect to F  while2

holding all the variance ratios fixed at their estimated values.

Estimates for two of the fixed effects in Model (1) are presented in Table 5. The estimate of
$ should be negative to reflect an expected inbreeding depression, but here its estimated
as a positive 14.50. However, the estimate comes with a large standard error of 39.37, and
therefore its not significant.
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Table 5. Estimates of Fixed Effects.

Parameter Estimate Standard Error

": Intercept 113.02 1.53

$: Slope on F 14.24 41.62

* eConsidering the size of $=14.24 in Table 5, a comparison with the size of u =F ×263.2 in2 2

Table 4 is possible, albeit using a very naive method. If there are L loci, then f=$/L is the

*average effect coming from one locus. If there is no locus to locus variance, then Lf = u2 2

* *or $ /L=u  or L= $ /u  =14.24×14.24/(21.22 ×263.2)=0.0363. By this simple comparison,2 2 2 2

*the estimate of u  was found much larger than $, because it should be that L$1.2

6. Conclusion

Twenty eight years ago the inverse genomic table calculation became theoretically feasible 
(Smith and Mäki-Tanila, 1989), but the complexity of using the mixed model equations with
such a matrix made practical applications difficult at best. It remains too big of a price to
pay for the convenience offered by sparse matrices. While the REML calculations remain
extensive, new sparse-matrix approaches involving Siegel’s (1965) equations, and the
corresponding K matrix, did lead to calculations that gave practical results on the home
computer. Moreover, better methods are available for calculating derivatives of the log-
likelihood, even if they were found unhelpful in maximizing the particular likelihood function
in the present application. While the example data set is small, coming with large standard
errors on some of the genetic parameter, so is the home computer. Larger data sets will
improved the standard errors, and bigger and faster computers can replace the home
computer. The advances that came as hardware and software have now made it possible
to calculate the REML estimates for a dominance model that comes with inbreeding, or at
lease an expectation now exists on what it takes to solve these hard problems.

The methods described in this paper involving the indefinite K matrix, and the derivative
calculations of the log-likelihood, can possible find application with much less ambitions
models. Whenever there is a possible depiction of mid-parent equations, even when the
inbreeding is treated as non-existent as a simplifying assumption (e.g., Hoeschele and Van
Raden, 1991; Van Raden and Hoeschele, 1991), perhaps new applications can be found.

Before ending this paper a few speculative comments about the feasibility of extending the
above approach for some examples of epistasis. Even though this method is becoming
more feasible when there is inbreeding, but with no epistasis as the present paper is
attempting to demonstrate, broader success seems a long way off even if some extensions
are theocratically feasible for 2  order interactions involving locus pairs.  A 2  ordernd nd

system can be specified separate comparted to the 1  order system with L loci.st

Theoretically, there will be ½L(L-1) pairs with L loci, turning matrices with L rows into



 This is not to say that higher order identity coefficients cannot be evaluated efficiently22

through gametic recursion, they can.

19

matrices with ½L(L-1) rows. A much bigger complication comes with gametic recursion
because here alleles from four different gametes may need to be considered in
combination, further inflating the length of the subsequence needed to represent gametic
recursion within a large matrix, further leading into over- parameterization, and otherwise
making the calculations impossible.  In any regard, there are theoretical expectations that22

imply that epistatic variance is small relative to additive genetic variance (Hill, Goddard and
Visscher 2008; Mäki-Tanila and Hill 2014), and therefore, further extensions may be
unnecessary.
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