
A predictor-corrector method for the training of deep

neural networks

Yatin Saraiya

847 Moana Court, Palo Alto, CA 94306, USA

Abstract

The training of deep neural nets is expensive. We present a predictor-

correctormethod for the training of deep neural nets. It alternates a predictor
pass with a corrector pass using stochastic gradient descent with backprop-
agation such that there is no loss in validation accuracy. No special modifi-
cations to SGD with backpropagation is required by this methodology. Our
experiments showed a time improvement of 9% on the CIFAR-10 dataset.

Keywords: Predictor, corrector, deep, neural, network

1. Introduction

Image recognition is performed mainly by deep convolutional neural net-
works [6, 7], and the depth of the network is crucial to accurate results [8].
However, very deep neural nets degrade near convergence unless some form
of shortcutting [11] is used. We choose the deep residual nets of [1] as the
basis for our work. These networks consist of stacked blocks with the same
number of inputs as outputs1. The addition of a residual identity mapping
counters the degradation problem.

2. Methodology

Assumption 1. Our basic hypothesis is that the weights and biases at the
lowest layers of a deep neural network learn more slowly than those of the

Email address: yatinsaraiya12@gmail.com (Yatin Saraiya)
1except for 3 changes in input and output sizes.

Preprint submitted to CoRR January 29, 2018

Figure 1: Predictor and corrector

upper layers. Hence, the parameters of the lower layers can be computed
every other iteration with no appreciable loss of validation accuracy.

Assumption 2. We also assume that the weights and biases at the lower layers
approximate the identity function. Hence, if network N1 is obtained from N2

by adding some layers at the bottom of the stack, then we expect there to
be an approximate equivalence in the learned parameters of the common
(upper) blocks.

Our methodology is to maintain and train 2 models, a shallower one (the
predictor) and a deeper one (the corrector). At the end of the training, the
corrector is the trained model to be used. The parameters on all blocks above
the input layer in the predictor are maintained as equal to the parameters
of the same number of upper blocks in the corrector. An alternation with
this copy operation is done at the granularity of 1 epoch. Figure 1 shows
the picture. The remaining blocks on the corrector are initialized to be the
parameters of the input layer in the case of the input layer, and to the lowest
non-input block of the predictor for the additional blocks of the corrector.
Then SGD and backpropagation maintain these parameters (i.e they are not
copied).

Let N1 be an instance of a resdidual neural net version 1 of [1]. Assume

2

it has L blocks, 1 representing the input block and L representing the output
block. Let Bl represent the lth block, with parameters Pl. This is the
predictor. Let N2 be the corrector, which is obtained by copying N1 and
modifying it as in Algorithm 1 below. Note that this is performed only once
per training session. Algorithm 2 describes how to perform the training.
Note that no special processing is required.

Algorithm 1 Construction of corrector

1: procedure ConstructCorrector(N1, K) ⊲ K is the number of
blocks to add.

2: copy N1 to N2

3: for i = 1, 2, . . . , K do

4: Add a copy of block B2 in N1 just under B2 in N2

5: end for

6: end procedure

Algorithm 2 Training algorithm

1: procedure Train(N1, N2, K) ⊲ K is the number of blocks added.
2: for half the number of epochs do
3: Perform one training epoch using the predictor N1

4: for l = 2, 3, . . . , L do

5: Copy Pl in the predictor to Pl+K in the corrector
6: end for

7: Perform one training epoch using the corrector N2

8: for l = 2, 3, . . . , L do

9: Copy Pl+K in the corrector to Pl in the predictor
10: end for

11: end for

12: The corrector N2 is the trained model.
13: end procedure

3. Experiments

We used cifar10 resnet.py, obtained from
https://github.com/fchollet/keras/blob/master/examples/, to model
the experimental framework of Section 4.2 of [1]. This software is under the

3

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30 35 40 45 50

ac
cu

ra
cy

epochs

predictor-corrector
residual

Figure 2: Validation accuracy

Time savings

Predictor-corrector residual 9

Table 1: Time savings (%) over 50 epochs

Min top-1 error

Residual 14.04
Predictor-corrector residual 13.24

Table 2: Top-1 validation error (%) over 50 epochs

4

MIT license. It is used as the predictor, with 116 layers. We modified it to
create a deeper corrector model by adding 15 layers above the input layer.
We ran both against the CIFAR-10 dataset [4] for 50 epochs.

The time savings were 9% (see Table 3).

Results. Our results are contained in Table 2 and Figure 2. Note that the
predictor-corrector top-1 validation error is lower than that of the residual
net, although marginally so.

4. Conclusions

We presented a predictor-corrector methodology for training a deep neu-
ral net using alternating epochs with a shallower and less expensive model.
We gained a time savings of 9% on the CIFAR-10 dataset with no loss in
validation accuracy.

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, Deep Resid-
ual Learning for Image Recognition, CoRR (2015)

[2] Sergey Zagoruyko and Nikos Komodakis, Wide Residual Networks,
CoRR (2017)

[3] Saining Xie, Ross Girshick, Piotr Dolla, Zhuowen Tu and Kaiming He,
Aggregated Residual Transformations for Deep Neural Networks, CoRR
(2017)

[4] A. Krizhevsky, Learning multiple layers of features from tiny images,
Tech Report (2009)

[5] François Chollet et al, https://github.com/fchollet/keras, GitHub
(2015)

[6] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1989.

[8] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

5

https://github.com/fchollet/keras

[9] M.D.Zeiler and R.Fergus. Visualizing and understanding convolutional
neural networks. In ECCV, 2014.

[10] W. L. Briggs, S. F. McCormick, et al. A Multigrid Tutorial. Siam, 2000.

[11] C. M. Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

6

	Introduction
	Methodology
	Experiments
	Conclusions

