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Abstract. We remark that Deutsch-Jozsa algorithm has confused two unitary

transformations: one is performed on a pure state, the other is performed on a

superposition. In the past decades, no constructive specifications on the essential

unitary operator performed on the superposition have been found. We think the

Deutsch-Jozsa algorithm needs more constructive specifications so as to check its

correctness.

Keywords: quantum computing, Deutsch-Jozsa algorithm, Shor’s algorithm,

superposition.

1 Introduction

Deutsch-Jozsa algorithm [5] is one of the first examples of a quantum algorithm that is exponen-

tially faster than any possible deterministic classical algorithm. The algorithm has become the

cornerstone for quantum computation and inspired Grover’s algorithm [7] and Shor’s algorithm

[13]. In this note, we want to point out that Deutsch-Jozsa algorithm has confused two unitary

transformations: one is performed on a pure state, the other is performed on a superposition.

So far, no constructive specifications on the essential unitary transformation performed on a

superposition have been found. This fact renders the algorithm somewhat dubious.

2 Preliminaries

A qubit is a quantum state |Ψ〉 of the form |Ψ〉 = a|0〉 + b|1〉, where the amplitudes a, b ∈ C
such that |a|2 + |b|2 = 1, |0〉 and |1〉 are basis vectors of the Hilbert space. Two quantum

mechanical systems are combined using the tensor product. For example, a system of two
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qubits |Ψ〉 = a1|0〉+ a2|1〉 and |Φ〉 = b1|0〉+ b2|1〉 can be written as

|Ψ〉|Φ〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=


a1b1

a1b2

a2b1

a2b2


Its shorthand notation is |Ψ,Φ〉.

Operations on a qubit are described by 2×2 unitary matrices. Of these, the most important

is the Hadamard gate H = 1√
2

[
1 1

1 −1

]
. Clearly, H|0〉 = 1√

2
(|0〉+ |1〉), H2 =

[
1 0

0 1

]
= I2.

3 Deutsch-Jozsa algorithm

Let f : {0, 1}n → {0, 1}. The Deutsch-Jozsa algorithm needs a quantum oracle computing f(x)

from x which doesn’t decohere x. It begins with the n+ 1 bit state |0〉⊗n|1〉. That is, the first

n qubits are each in the state |0〉 and the final qubit is in the state |1〉.
A Hadamard gate is applied to each qubit to obtain the following state

H⊗(n+1) : |0〉⊗n|1〉 −→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉). (1)

Suppose that the oracle Uf : |x〉|y〉 −→ |x〉|y⊕f(x)〉 is available, where ⊕ is addition modulo

2. Applying the quantum oracle, it gives

W :
1√

2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉) −→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉). (2)

For each x, f(x) is either 0 or 1. The state can be written as 1√
2n+1

∑2n−1
x=0 (−1)f(x)|x〉(|0〉− |1〉).

Ignoring the last qubit and applying the Hadamard gate to each of the first n qubits, it gives

H⊗n :
1√
2n

2n−1∑
x=0

(−1)f(x)|x〉 −→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉

 (3)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the bitwise product. The above new

superposition can be written as

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉.

The probability for measuring the state |0〉⊗n is | 12n
∑2n−1

x=0 (−1)f(x)|2.
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4 Analysis of Deutsch-Jozsa algorithm

The process of Deutsch-Jozsa algorithm can be described as follows

| 00 · · · 0︸ ︷︷ ︸
n

〉|1〉 H⊗(n+1)

−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉)

W−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉)

ignoring the last qubit−−−−−−−−−−−−−−−−−−→
and obtaining the state

1√
2n

2n−1∑
x=0

(−1)f(x)|x〉

H⊗n

−−−−−−→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉


observing the state and−−−−−−−−−−−−−−−−−−−→
obtaining its probability

| 00 · · · 0︸ ︷︷ ︸
n

〉.

4.1 How to practically construct the oracle performed on a pure state

In Deutsch-Jozsa algorithm, the quantum oracle Uf : |x〉|y〉 −→ |x〉|y ⊕ f(x)〉 must be of the

form

Uf = I⊗n2 ⊗ Vf ,

where I2 is the 2× 2 identity matrix and Vf is a 2× 2 unitary matrix.

Suppose that Vf =

[
X1 X2

X3 X4

]
. We have Vf |y〉 =

[
X1 X2

X3 X4

]
|y〉 = |y ⊕ f(x)〉. If y = 0,

then |0〉 =
(
1
0

)
. It gives

(
X1

X3

)
= |f(x)〉. Since f(x) ∈ {0, 1}, we obtain X1, X3 ∈ {0, 1}. If y = 1,

then |1〉 =
(
0
1

)
. It gives

(
X2

X4

)
= |1⊕ f(x)〉. Since f(x) ∈ {0, 1}, we obtain X2, X4 ∈ {0, 1}. Thus,

Vf is in the set{[
1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 1

0 1

]
,

[
1 1

1 0

]
,

[
0 1

1 1

]
,

[
1 0

1 1

]}
.

Clearly, to determine Vf , one has to invoke the classical computational result f(x). That means

the unitary matrix Vf should be further specified as Vf(x). The notation is very useful because it

indicates the constructive specification of the involved unitary matrix. So it is better to rewrite

the quantum oracle as

Uf(x) = I⊗n2 ⊗ Vf(x) .

Note that the construction of the oracle depends essentially on the classical computational result

f(x). Besides, the oracle is performed on the pure state |x〉|y〉.
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4.2 Is it possible to construct the wanted oracle performed on the superpo-

sition

The unitary operatorW is performed on the superposition 1√
2n+1

∑2n−1
x=0 |x〉(|0〉− |1〉) and keeps

the states of the first n qubits. Hence, it can be decomposed asW = I⊗n2 ⊗Γ, where Γ is a 2×2

unitary matrix.

By the description of Deutsch-Jozsa algorithm, we have

W = I⊗n2 ⊗ Γ = Uf(x) = I⊗n2 ⊗ Vf(x) .

That means one has to extract a classical computational result f(x) from the superposition
1√
2n+1

∑2n−1
x=0 |x〉(|0〉−|1〉) in order to construct the operatorW practically. Since x runs through

all values 0, 1, · · · , 2n − 1, one has to measure the superposition so as to obtain a value x̂.

Once the value x̂ is measured, applying W = I⊗n2 ⊗ Vf(x̂) to 1√
2n+1

∑2n−1
x=0 |x〉(|0〉 − |1〉) will

produce one state of the following

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
0 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
1 1

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
0 1

1 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

1 1

]
(|0〉 − |1〉),

not the wanted state 1√
2n+1

∑2n−1
x=0 |x〉(|f(x)〉 − |1⊕ f(x)〉).

All in all, Deutsch and Jozsa have confused a quantum oracle performed on a pure state

with a quantum oracle performed on a superposition. We now want to ask: “is it possible to

construct the wanted oracle performed on the superposition?”

Finally, we would like to stress that only the Hadamard gate H is applied to each of the first

n qubits twice. Since H2 = I2, we find Deutsch-Jozsa algorithm always produces

| 00 · · · 0︸ ︷︷ ︸
n

〉|χ〉

where χ ∈ {0, 1}. Their claim that the probability for the state |0〉⊗n is | 12n
∑2n−1

x=0 (−1)f(x)|2, is

incorrect.

5 Conclusion

We point out that there are some flaws in Deutsch-Jozsa algorithm. We would like to stress that

the construction of a unitary operator performed on a superposition must be compatible with
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tensor product [2], which describes the combination of two quantum systems. Some physical

experiments [4, 8, 10, 11, 12, 14] on Shor’s algorithm are criticized for using less qubits in the

second register and other deficiencies [1, 3]. So far, those so-called quantum computers, D-wave

[6] and IBM [9], have been reported to optimize some combinatoric problems only, not accelerate

any numerical computations. We think Deutsch-Jozsa algorithm needs more specifications so as

to facilitate the construction of the wanted quantum oracle and check its correctness.
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