
ABSTRACT
Inception [13] [14] [15] and the Resnet family of Convolutional Neural Network archi-

tectures [1] [2] [3] [5] have broken records in the past few years, but recent state of the

art models have also incurred very high computational cost in terms of training, infer-

ence and model size. Making the deployment of these models on Edge devices, imprac-

tical. In light of this, we present a new novel architecture that is designed for high com-

putational efficiency on both GPUs and CPUs, and is highly suited for deployment on

Mobile Applications, Smart Cameras, Iot devices and controllers as well as low cost

drones. Our architecture boasts competitive accuracies on standard Datasets even out-

performing the original Resnet[1].

We present below the motivation for this research, the architecture of the network, sin-

gle test accuracies on CIFAR 10 [20] and CIFAR 100 [20] , a detailed comparison with

other well-known architectures and link to an implementation in Keras.

MOTIVATION
Since Krizhevsky et al [4] broke records on imagenet in 2012, a tremendous amount of

effort has been put into finding Computationally Efficient and highly accurate architec-

tures. Tradeoff between computational efficiency and model accuracy has been a sub-

ject of great investigation. On the extreme side of very low model size, we have the

Squeezenet architecture [9] which boasts AlexNet [4] level accuracy with 50 times less

parameters and an ImageNet [21] model size of just 5 mb, on the extreme side of Ac-

curacy, we have the Wide Resnet [5] which boasts the state of the art accuracy on

most of the standard datasets, but with an ImageNet [21] model size of 260 mb, mak-

ing them usable only for cloud services.

FastNet : An Efficient Architecture for Smart

Devices

John Olafenwa

johnolafenwa@gmail.com

Moses Olafenwa

guymodscientist@gmail.com

https://github.com/johnolafenwa/FastNet

Smartphones have become a core part our lives and in few years, Internet of Things de-

vices would become a core part of our homes and industries. Going forward, all our mo-

bile applications and IoT devices would need to have Intelligence infused into them.

Edge devices relying on cloud hosted models would not suffice for the modern AI needs,

network latency, failure and bandwidth costs makes intelligent applications relying solely

on cloud services, not fully reliable. A number of techniques have been employed to ad-

dress these, Network pruning, reduction in floating point precision and the Squeezenet

Architecture [9], however, the accuracies of this models are not often comparable to the

models deployed on the cloud.

To build truly reliable intelligent edge devices, there is need for architectures that are

very accurate but can be fit in edge devices.

FASTNET

We are presenting a new architecture, named “FastNet”

FastNet is a 15 layer Convolutional Network that explores the concepts of medium depth

and medium network width.

It boasts accuracies of 93.98% on CIFAR10 and 70.81% on CIFAR100, with only 1.6M pa-

rameters, coupled with high training and inference speed. Using Keras with Tensorflow

[24] backend, training on CIFAR100 takes approximately 3 hours on a single NVIDIA

P100.

Recent models have explored absolute depth, while Wide Resnet [15] uses high depth

with great width. However, the results of their works demonstrates that the rate of in-

crease of depth, while directly proportional to increase in accuracy, is marginally dispro-

portionate. Increasing depth greatly often slows down training and inference with little

gain in accuracy. This questions the benefits of very high depth in neural networks. And

challenges us to rather seek more efficient means of improving model accuracy.

FASTNET IS STRUCTURED AS FOLLOWS:

UnitCell

Each layer is made up of BatchNormalization followed by RELU Activation and finally

Convolution. Batch Normalization introduced [11] is used to normalize all feature maps

to have zero mean and unit variance. This helps to correct Internal Covariate Shift, a phe-

nomenon that results from shift in the distribution of the activation maps as a result of

changing parameters. Batch Normalization is expressed formally as

Note that and are learnable parameters

 They are estimated during training via sto-

chastic gradient descent.

Rectified Linear units are used as the activa-

tion function, as they are very efficient to

compute and has been empirically proved to

be highly effective.

They take the form

It effectively threshold activations at 0.

3 x 3 Convolutions

The first 12 layers of FastNet are constructed

with 3 x 3 convolutions. This is in line with re-

cent studies that has shown the effectiveness

of 3 x 3 convolutions, first they capture a

sufficiently wide region to be able to detect

abstract patterns properly, and they are com-

putionally efficient .

Christian Szegedy et al [14] demonstrated in

“Rethinking The Inception Architecture” that

two 3 x 3 convolutions stacked upon each oth-

er performs similarly to a single 5 x 5 convolu-

tion while being 28% more efficient. Hence,

specially in this case where we are attempting

to optimize for computational efficiency, 3 x 3

convolution is the reasonable choice.

Final 1 X 1 Convolutions:

We avoid using fully connected layers in the

final layers of the network as they add a very

large number of parameters to the network.

Concurrent with recent practices, we

A UNIT

THE NETWORK

replace fully connected layers with a stack of 3, 1 x 1 Convolutions followed by a GlobalAv-

eragePooling layer. The output of the AveragePooling layer is fed directly into the softmax

layer.

Late Downsampling:

Pooliing feature maps have been demonstrated to enable Covnets generalize

properly, making Covnets highly invariant to the presentation of the image. However,

pooling at early layers can lead to loss of valuable information about the structure of the

image, hence, we perform the first pooling after the first four Convolutional layers. We use

MaxPooling with a pool size of 2.

Summary
FastNet begins with a 64 channels 3 x 3 Conv Unit layer, followed by three 128 channel lay-

ers with similar composition as the first, Down sampling follows, then 3 Unit Layers fol-

lows, and we down sample again, another three layers followed by down sampling is used

again, after which is 2 layers followed by down sampling. Finally, we stack two 1 x 1 Unit

Cells followed by Global Average Pooling.

This is fed into the softmax layer.

AVOIDING PARALLEL LAYERS

Inception [15] and FractalNet [6], both which performs excellently without using Residual

Connections, make great use of layer parallelization techniques. This is very effective on

GPUs, because they are really good at multi-threading, however, on Edge Devices, infer-

ence is primarily by CPUs. It is well known that CPUs have limited multi-threading capabili-

ties, hence we explicitly avoid using this technique.

SIMPLICITY OF DESIGN

A model is only useful enough when many developers can make use of it. Recent architec-

tures have deviated from the simplicity of VGG Net [16], hence, a lot of ML engineers with

limited knowledge find it hard to replicate these architectures. FastNet follows the VGG

style and is very simple to implement in any Deep Learning framework.

RELATED WORKS

Kaiming et al [1] won ImageNet 2015 with their ground breaking work on Residual Con-

nections. They further improved on their work in 2016 with “Identity Mappings in Deep Resid-

ual Networks” [2] Almost all architectures since then have been based upon these frame-

work, in fact, most new architectures are adaptations of the original Residual Framework,

 with the exception of Fractal Net [6] . Stochastic Depth [3], Wide Resnets [5] and Share

Resnet [23] have all sought to improve the speed of Residual Networks. However, all of

these still focus on exploration of depth, while they represent significant improvements

over the original Resnet [1], they are still unsuitable for deployment on Edge devices.

Fractal Net [6] is a great deviation from the Resnet Family. It is a highly impressive work

that proved that Residual Connections are not an absolute requirement for improving

accuracy. It essentially uses highly parallel layers, this is very central to the design of the

architecture. This is an excellent fit for GPUs, but such layer parallelization is not good for

CPU dependent Edge Devices. Limited cores and thread context switching would funda-

mentally hamper performance of these network on low end devices.

FastNet is far more efficient that the art of the art architectures while being close in

terms of accuracy. It even outperforms a number of well-known architectures including

the original Resnet [1].

COMPARISONS

FastNet outperforms a number of popular network architectures, it also outperforms

110 layer Resnet [1] on CIFAR 10. Even though, a few state of the art architectures boasts

better accuracies, but that comes at very high computational cost that renders them un-

usable on Edge devices. we shall now make clear comparisons with some existing archi-

tectures. Note, these comparisons are simply for proofs, we have the utmost respect for

the authors of these works, they are pioneers from which we have greatly learned.

Note: It can be observed that the number of parameters for Resnet 110 and Stochastic Depth are just slightly

above FastNet, however, the actual difference in Model size and performance speed is much higher by a signifi-

cant margin beyond what the difference in the number of parameters tells. These networks use very thin layers

that makes their parameters less but use very high depth that significantly slows them down.

ARCHITECTURE CIFAR 10 CIFAR 100 Params

FastNet (Ours) 93.98 70.81 1.6 M

Network In Network [12] 91.19 64.32 1 M

ALL CNN [17] 92.75 66.29 1.3 M

MaxOut [8] 90.62 65.46 6 M

Resnet 11O [1] 93.57 74.84 1.7 M

Wide Resnet [5] 95.83 79.5 36 M

VGG Net [16] 91.4 - 138 M

Fractal Net [6] 95.4 76.27 38.6 M

Stochastic Depth [3] 94.77 75.42 1.7 M

Fractional Max Pooling
[19]

- 68.55 -

Fractional Max Pooling With
Large Aug. (12 tests)

95.5 73.61 50 M

EXPERIMENT SETUP

Experiments on CIFAR 10 and CIFAR 100 were conducted using data augmentation

techniques similar to Wide Resnet [5]. Adam optimizer with an initial learning rate of

0.001 was used to train the network and the learning rate was divided at 80,120, 160

and 180 epochs. Weights were initialized with he_normal as proposed by Kaiming et

al [7]. All experiments ran for a total of 200 epochs. Code was written in keras and can

be found on this Github repo. (https://github.com/johnolafenwa/FastNet)

We used the standard softmax cross entropy loss as our loss function.

It takes the form

Where is the index of the correct class.

CONCLUSIONS

In view of the results of our experiments, we draw the following conclusions.

1. Our architecture, FastNet is highly suited for Edge devices, and is highly optimized for

all CPU dependent devices.

2. Simpler architectures when properly designed can outperform complex architectures.

3. Medium depth with medium width networks can perform well with much lesser com-

putational cost.

We also believe, based on these results, that Ultra Deep Networks are not an abso-

lute necessity for building an efficient architecture. The future of CNNs is not going

to be determined by arbitrary increase in depth but rather a conscious effort to

optimize the hyper-parameters of an architecture as well as new better dimen-

sionality reduction techniques, improved activation functions and maybe some-

day, an effective replacement for the convolution layer itself. A notable example is

the introduction of Batch Normalization by Ioffe et al [11]. Batch Normalization

greatly improved both the accuracy and efficiency of existing neural networks, un-

like deeper layers that slightly improves accuracy but greatly reduces computation-

al efficiency. Such great ideas need to be pursued with great vigor.

We hope with further resources to conduct our research, we shall be able to further

improve both the accuracy and efficiency of FastNet.

https://github.com/johnolafenwa/FastNet
https://github.com/johnolafenwa/FastNet

IMAGENET

As two independent researchers, we have limited resources and cannot at present con-

duct experiments on ImageNet. However, good results on CIFAR 10 and CIFAR 100 always

yields good results on ImageNet as well, this makes us highly optimistic about FastNet.

We hope with availability of more resources in the near future, we shall be able to signifi-

cantly improve upon this baseline work.

FURTHER WORK
The performance of FastNet on Imagenet still needs to be evaluated to ensure fair com-

parison to other Architectures. Also, we strongly believe, with further research, the com-

putational efficiency and accuracy of this model can be increased.

To make computer Vision available to everyone, there is absolute need for great research

not just into more accurate models setting new state of the art accuracy, but on highly

efficient models that can work well on low cost edge devices. If we search deeply in the

direction of efficiency, we can someday build computer vision systems with near human

efficiency.

Artificial General Intelligence would only be fully realized when we are able to build intel-

ligent systems that are both accurate and efficient.

ABOUT THE AUTHORS

JOHN OLAFENWA

A self-taught comput-

er programmer, Neural

Networks Blogger and

Computer vision re-

searcher. Skilled in

Building Android applications and Na-

tive software. Can develop software

with Java, Python and C#. Very pas-

sionate about transforming lives

through highly efficient neural net-

works. Studies reInforcement learning

at leisure time.

Email: johnolafenwa@gmail.com,

Website: john.specpal.science

Twitter: @johnolafenwa

MOSES OLAFENWA

 A self-Taught computer

programmer, Cloud and In-

ternet Logistics expert.

Skilled in developing An-

droid applications

Web portals and Desktop software. Can

code in Java, Python and PHP. A Deep Neu-

ral Network practitioner with a vision to

make the world better via Artificial Intelli-

gence. A lover of Big Data.

Email: guymodscientist@gmail.com,

Website: moses.specpal.science

Twitter: @OlafenwaMoses

mailto:johnolafenwa@gmail.com
https://john.specpal.science
https://twitter.com/johnolafenwa
mailto:guymodscientist@gmail.com
https://moses.specpal.science
https://twitter.com/olafenwamoses

REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun . Deep Residual Learning for Image Recog-

nition . https://arxiv.org/abs/1512.03385

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun . Identity Mappings in Deep Residual Net-

works. https://arxiv.org/abs/1603.05027

[3] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger . Deep Networks with Stochas-

tic Depth. https://arxiv.org/abs/1603.09382

[4] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton ImageNet Classification with Deep Convolu-

tional Neural Networks, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks

[5] Sergey Zagoruyko, Nikos Komodakis, Wide Residual Networks, https://arxiv.org/

abs/1605.07146

[6] Gustav Larsson, Michael Maire, Gregory Shakhnarovich , FractalNet: Ultra-Deep Neural Net-

works without Residuals , https://arxiv.org/abs/1605.07648

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun , Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification, https://arxiv.org/abs/1502.01852

[8] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio , Maxout

Networks, https://arxiv.org/abs/1302.4389

[9] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt

Keutzer , SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,

https://arxiv.org/abs/1602.07360

[11] Sergey Ioffe, Christian Szegedy , Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift, https://arxiv.org/abs/1502.03167

[12] Min Lin, Qiang Chen, Shuicheng Yan , Network In Network, https://arxiv.org/abs/1312.4400

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Angue-

lov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich , Going Deeper with Convolutions,

https://arxiv.org/abs/1409.4842

[14] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna , Re-

thinking the Inception Architecture for Computer Vision, https://arxiv.org/abs/1512.00567

[15] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi , Inception-v4, Inception-

ResNet and the Impact of Residual Connections on Learning, https://arxiv.org/abs/1602.07261

[16] Karen Simonyan, Andrew Zisserman , Very Deep Convolutional Networks for Large-Scale Image

Recognition, https://arxiv.org/abs/1409.1556

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.09382
https://papers.nips.cc/author/alex-krizhevsky-5653
https://papers.nips.cc/author/ilya-sutskever-3959
https://papers.nips.cc/author/geoffrey-e-hinton-121
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/find/cs/1/au:+Zagoruyko_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Komodakis_N/0/1/0/all/0/1
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1605.07146
https://arxiv.org/find/cs/1/au:+Larsson_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Maire_M/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Shakhnarovich_G/0/1/0/all/0/1
https://arxiv.org/abs/1605.07648
https://arxiv.org/find/cs/1/au:+He_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zhang_X/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ren_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Sun_J/0/1/0/all/0/1
https://arxiv.org/abs/1502.01852
https://arxiv.org/find/stat/1/au:+Goodfellow_I/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Warde_Farley_D/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Mirza_M/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Courville_A/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Bengio_Y/0/1/0/all/0/1
https://arxiv.org/abs/1302.4389
https://arxiv.org/find/cs/1/au:+Iandola_F/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Han_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Moskewicz_M/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ashraf_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Dally_W/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Keutzer_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Keutzer_K/0/1/0/all/0/1
https://arxiv.org/abs/1602.07360
https://arxiv.org/find/cs/1/au:+Ioffe_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/abs/1502.03167
https://arxiv.org/find/cs/1/au:+Lin_M/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Chen_Q/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Yan_S/0/1/0/all/0/1
https://arxiv.org/abs/1312.4400
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Liu_W/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Jia_Y/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Sermanet_P/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Reed_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Anguelov_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Anguelov_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Erhan_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Rabinovich_A/0/1/0/all/0/1
https://arxiv.org/abs/1312.4400
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ioffe_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Shlens_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Wojna_Z/0/1/0/all/0/1
https://arxiv.org/abs/1512.00567
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ioffe_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Alemi_A/0/1/0/all/0/1
https://arxiv.org/abs/1602.07261
https://arxiv.org/find/cs/1/au:+Simonyan_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zisserman_A/0/1/0/all/0/1
https://arxiv.org/abs/1409.1556

[17] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller , Striving for Sim-

plicity: The All Convolutional Net, https://arxiv.org/abs/1412.6806

[18] Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber , Highway Networks, https://

arxiv.org/abs/1505.00387

[19] Benjamin Graham , Fractional Max-Pooling, https://arxiv.org/abs/1412.6071

[20] Alex Krizhevsky , Learning Multiple Layers of Features from Tiny Images, https://

www.researchgate.net/

publication/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_Images

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, Li Fei-Fei, ImageNet: A large-scale hierarchical

image database, http://ieeexplore.ieee.org/document/5206848

[22] Yoshua Bengio, "Learning Deep Architectures for AI," in Learning Deep Architectures for AI , 1,

Now Foundations and Trends, 2009, pp.136-

doi: 10.1561/2200000006

[23] Alexandre Boulch , ShaResNet: reducing residual network parameter number by sharing

weights, https://arxiv.org/abs/1702.08782

[24] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,Sanjay Ghemawat, Ian Goodfellow, Andrew

Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur,Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke,Yuan Yu, Xiaoqiang Zheng , TensorFlow: Large-Scale Machine Learning on Heter-

ogeneous Distributed Systems, https://arxiv.org/abs/1603.04467

https://arxiv.org/find/cs/1/au:+Springenberg_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Dosovitskiy_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Brox_T/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Riedmiller_M/0/1/0/all/0/1
https://arxiv.org/abs/1412.6806
https://arxiv.org/find/cs/1/au:+Srivastava_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Greff_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Schmidhuber_J/0/1/0/all/0/1
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1505.00387
https://arxiv.org/find/cs/1/au:+Graham_B/0/1/0/all/0/1
https://arxiv.org/abs/1412.6071
https://www.researchgate.net/scientific-contributions/2110429446_Alex_Krizhevsky
https://www.researchgate.net/publication/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_Images
https://www.researchgate.net/publication/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_Images
https://www.researchgate.net/publication/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_Images
http://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/1702.08782
https://arxiv.org/abs/1603.04467

