
ABSTRACT  
Inception [13] [14] [15] and the Resnet family of Convolutional Neural Network archi-

tectures [1] [2] [3] [5] have broken records in the past few years, but recent state of the 

art models have also incurred very high computational cost in terms of training, infer-

ence and model size. Making the deployment of these models on Edge devices, imprac-

tical. In light of this, we present a new novel architecture that is designed for high com-

putational efficiency on both GPUs and CPUs, and is highly suited for deployment on 

Mobile Applications, Smart Cameras, Iot devices and controllers as well as low cost 

drones. Our architecture boasts competitive accuracies on standard Datasets even out-

performing the original Resnet[1]. 

We present below the motivation for this research, the architecture of the network, sin-

gle test accuracies on CIFAR 10 [20] and CIFAR 100 [20] , a detailed comparison with 

other well-known architectures and link to an implementation in Keras.  

MOTIVATION  
Since Krizhevsky et al [4] broke records on imagenet in 2012, a tremendous amount of 

effort has been put into finding Computationally Efficient and highly accurate  architec-

tures. Tradeoff between computational efficiency and model accuracy has been a sub-

ject of great investigation. On the extreme side of very low model size, we have the 

Squeezenet architecture [9] which boasts AlexNet [4] level accuracy with 50 times less 

parameters and an ImageNet [21] model size of just 5 mb, on the extreme side of Ac-

curacy, we have the Wide Resnet [5] which boasts the state of the art accuracy on 

most of the standard datasets, but with an ImageNet [21]  model size of 260 mb, mak-

ing them usable only for cloud services.   
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Smartphones have become a core part our lives and in few years, Internet of Things de-

vices would become a core part of our homes and industries. Going forward, all our mo-

bile applications and IoT devices would need to have Intelligence infused into them. 

Edge devices relying on cloud hosted models would not suffice for the modern AI needs, 

network latency, failure and bandwidth costs makes intelligent applications relying solely 

on cloud services, not fully reliable. A number of techniques have been employed to ad-

dress these, Network pruning, reduction in floating point precision and the Squeezenet 

Architecture [9], however, the accuracies of this models are not often comparable to the 

models deployed on the cloud.  

To build truly reliable intelligent edge devices, there is need for architectures that are 

very accurate but can be fit in edge devices. 

 

FASTNET 

We are presenting a new architecture, named “FastNet” 

FastNet is a 15 layer Convolutional Network that explores the concepts of medium depth 

and medium network width.  

It boasts accuracies of 93.98% on CIFAR10 and 70.81% on CIFAR100, with only 1.6M pa-

rameters, coupled with high training and inference speed. Using Keras with Tensorflow  

[24] backend, training on CIFAR100 takes approximately 3 hours on a single NVIDIA 

P100. 

Recent models have explored absolute depth, while Wide Resnet [15] uses high depth 

with great width. However, the results of their works demonstrates that the rate of in-

crease of depth, while directly proportional to increase in accuracy, is marginally dispro-

portionate. Increasing depth greatly often slows down training and inference with little 

gain in accuracy. This questions the benefits of very high depth in neural networks. And 

challenges us to rather seek more efficient means of improving model accuracy. 

 

FASTNET IS STRUCTURED AS FOLLOWS: 

UnitCell  

Each layer is made up of BatchNormalization followed by RELU Activation and finally 

Convolution.  Batch Normalization introduced [11] is used to normalize all feature maps 

to have zero mean and unit variance. This helps to correct Internal Covariate Shift, a phe-

nomenon that results from shift in the distribution of the activation maps as a result of 

changing parameters. Batch Normalization is expressed formally as 



 

 

Note that  and are learnable parameters 

 They are estimated during training via sto-

chastic gradient descent. 

Rectified Linear units are used as the activa-

tion function, as they are very efficient to 

compute and has been empirically proved to 

be highly effective. 

They take the form  

 

It effectively threshold activations at 0. 

3 x 3 Convolutions 

The first 12 layers of FastNet are constructed 

with 3 x 3 convolutions.  This is in line with re-

cent studies that has shown the effectiveness 

of 3 x 3 convolutions,  first they capture a 

sufficiently wide region to  be able to detect 

abstract patterns properly, and they are com-

putionally efficient .  

Christian Szegedy et al [14] demonstrated in 

“Rethinking The Inception Architecture” that 

two 3 x 3 convolutions stacked upon each oth-

er performs similarly to a single 5 x 5 convolu-

tion while being 28% more efficient. Hence, 

specially in this case where we are attempting 

to optimize for computational efficiency, 3 x 3 

convolution is the reasonable choice. 

Final 1 X 1 Convolutions: 

We avoid using fully connected layers in the 

final layers of the network as they add a very 

large number of parameters to the network. 

Concurrent with recent practices, we  

A UNIT 

THE NETWORK 



replace fully connected layers with a stack of 3, 1 x 1 Convolutions followed by a GlobalAv-

eragePooling layer. The output of the AveragePooling layer is fed directly into the softmax 

layer. 

Late Downsampling: 

Pooliing feature maps have been demonstrated to enable Covnets generalize  

properly, making Covnets highly invariant to the presentation of the image. However, 

pooling at early layers can lead to loss of valuable information about the structure of the 

image, hence, we perform the first pooling after the first four Convolutional layers. We use 

MaxPooling with a pool size of 2. 

 

Summary 
FastNet begins with a 64 channels 3 x 3 Conv Unit layer, followed by three 128 channel lay-

ers with similar composition as the first, Down sampling follows, then 3 Unit Layers fol-

lows, and we down sample again, another three layers followed by down sampling is used 

again, after which is 2 layers followed by down sampling. Finally, we stack two 1 x 1 Unit 

Cells followed by Global Average Pooling.  

This is fed into the softmax layer. 

AVOIDING PARALLEL LAYERS 

Inception [15] and FractalNet [6], both which performs excellently without using Residual 

Connections, make great use of layer parallelization techniques. This is very effective on 

GPUs, because they are really good at multi-threading, however, on Edge Devices, infer-

ence is primarily by CPUs. It is well known that CPUs have limited multi-threading capabili-

ties, hence we explicitly avoid using this technique. 

SIMPLICITY OF DESIGN 

A model is only useful enough when many developers can make use of it. Recent architec-

tures have deviated from the simplicity of VGG Net [16], hence, a lot of ML engineers with 

limited knowledge find it hard to replicate these architectures. FastNet follows the VGG 

style and is very simple to implement in any Deep Learning framework. 

 

RELATED WORKS 

Kaiming et al [1] won ImageNet 2015 with their ground breaking work on Residual Con-

nections. They further improved on their work in 2016 with “Identity Mappings in Deep Resid-

ual Networks”  [2] Almost all architectures since then have been based upon these frame-

work, in fact, most new architectures are adaptations of the original Residual Framework, 



 with the exception of Fractal Net [6] . Stochastic Depth [3], Wide Resnets [5] and Share 

Resnet [23] have all sought to improve the speed of Residual Networks. However, all of 

these still focus on exploration of depth, while they represent significant improvements 

over the original Resnet [1], they are still unsuitable for deployment on Edge devices. 

Fractal Net [6] is a great deviation from the Resnet  Family. It is  a highly impressive work 

that proved that Residual Connections are not an absolute requirement for improving 

accuracy. It essentially uses highly parallel layers, this is very central to the design of the 

architecture. This is an excellent fit for GPUs, but such layer parallelization is not good for 

CPU dependent Edge Devices. Limited cores and thread context switching would funda-

mentally hamper performance of these network on low end devices. 

FastNet is far more efficient that the art of the art architectures while being close in 

terms of accuracy. It even outperforms a number of well-known architectures including 

the original Resnet [1]. 

COMPARISONS 

FastNet outperforms a number of popular network architectures, it also outperforms 

110 layer Resnet [1] on CIFAR 10. Even though, a few state of the art architectures boasts 

better accuracies, but that comes at very high computational cost that renders them un-

usable on Edge devices. we shall now make clear comparisons with some existing archi-

tectures. Note, these comparisons are simply for proofs, we have the utmost respect for 

the authors of these works, they are pioneers from which we have greatly learned.  

 

 

 

 

 

 

 

 

 

Note: It can be observed that the number of parameters for Resnet 110 and Stochastic Depth are just slightly 

above FastNet, however, the actual difference in Model size and performance speed is much higher by a signifi-

cant margin beyond what the difference in the number of parameters tells. These networks use very thin layers 

that makes their parameters less but use very high depth that significantly slows them down. 

ARCHITECTURE CIFAR 10 CIFAR 100 Params 

FastNet (Ours) 93.98 70.81 1.6 M 

Network In Network [12] 91.19 64.32 1 M 

ALL CNN [17] 92.75 66.29 1.3 M 

MaxOut [8] 90.62 65.46 6 M 

Resnet 11O [1] 93.57 74.84 1.7 M 

Wide Resnet [5] 95.83 79.5 36 M 

VGG Net [16] 91.4  - 138 M 

Fractal Net [6] 95.4 76.27 38.6 M 

Stochastic Depth [3] 94.77 75.42 1.7 M 

Fractional Max Pooling 
[19] 

- 68.55  - 

Fractional Max Pooling With 
Large Aug. (12 tests) 

95.5 73.61 50 M 



 

EXPERIMENT SETUP 

Experiments on CIFAR 10 and CIFAR 100 were conducted using data augmentation 

techniques similar to Wide Resnet [5]. Adam optimizer with an initial learning rate of 

0.001 was used to train the network and the learning rate was divided at 80,120, 160 

and 180 epochs. Weights were initialized with he_normal as proposed by Kaiming et 

al [7]. All experiments ran for a total of 200 epochs. Code was written in keras and can 

be found on this Github repo. (https://github.com/johnolafenwa/FastNet) 

 

We used the standard softmax cross entropy loss as our loss function. 

It takes the form 

 

Where is the index of the correct class. 

CONCLUSIONS 

In view of the results of our experiments, we draw the following conclusions. 

1. Our architecture, FastNet is highly suited for Edge devices, and is highly optimized for 

all CPU dependent devices. 

2. Simpler architectures when properly designed can outperform complex architectures. 

3. Medium depth with medium width networks can perform well with much lesser com-

putational cost. 

We also believe, based on these results, that Ultra Deep Networks are not an abso-

lute necessity for building an efficient architecture. The future of CNNs is not going 

to be determined by arbitrary increase in depth but rather a conscious effort to 

optimize the hyper-parameters of an architecture as well as new better dimen-

sionality reduction techniques, improved activation functions and maybe some-

day, an effective replacement for the convolution layer itself. A notable example is 

the introduction of Batch Normalization by Ioffe et al [11]. Batch Normalization 

greatly improved both the accuracy and efficiency of existing neural networks, un-

like deeper layers that slightly improves accuracy but greatly reduces computation-

al efficiency. Such great ideas need to be pursued with great vigor.  

We hope with further resources to conduct our research, we shall be able to further 

improve both the accuracy and efficiency of FastNet. 

https://github.com/johnolafenwa/FastNet
https://github.com/johnolafenwa/FastNet


IMAGENET 

As two independent researchers, we have limited resources and cannot at present con-

duct experiments on ImageNet. However, good results on CIFAR 10 and CIFAR 100 always 

yields good results on ImageNet as well, this makes us highly optimistic about FastNet.  

We hope with availability of more resources in the near future, we shall be able to signifi-

cantly improve upon this baseline work. 

FURTHER WORK 
The performance of FastNet on Imagenet still needs to be evaluated to ensure fair com-

parison to other Architectures. Also, we strongly believe, with further research, the com-

putational efficiency and accuracy of this model can be increased. 

To make computer Vision available to everyone, there is absolute need for great research 

not just into more accurate models setting new state of the art accuracy, but on highly 

efficient models that can work well on low cost edge devices. If we search deeply in the 

direction of efficiency, we can someday build computer vision systems with near human 

efficiency. 

Artificial General Intelligence would only be fully realized when we are able to build intel-

ligent systems that are both accurate and efficient. 
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