
Taking Advantage of BiLSTM Encoding to

Handle Punctuation in Dependency Parsing: A

Brief Idea

Matteo Grella
matteogrella@gmail.com

January 5, 2018

Abstract

In the context of the bidirectional-LSTMs neural parser (Kiperwasser
and Goldberg, 2016), an idea is proposed to initialize the parsing state
without punctuation-tokens but using them for the BiLSTM sentence
encoding. The relevant information brought by the punctuation-tokens
should be implicitly learned using the errors of the recurrent contribu-
tions only.

I assume the reader is familiar with the formal framework of transition-
based dependency parsing originally introduced by Nivre (2003) [1] and the most
recent deep-learning techniques applied to the natural language processing; see
Goldberg (2017) [2] for an introduction.

Traditional data-driven transition-based dependency parsers analyze punc-
tuation as words. Experimental results showed that parsing accuracy drops
on sentences which contain higher ratios of punctuation. The problem is that
punctuation is not as consistently annotated in tree-banks as words, and this
makes the learning and therefore the parsing processes harder.

Indeed, certain aspects of punctuation are merely stylistic, and punctuation
dependencies are a bit hard to defend compared to word-to-word dependency,
so that in the standard CoNLL evaluation the arcs leading to the punctuation
tokens just do not count.

However, it is out of the question that punctuation (especially commas)
plays an essential role in the syntactic analysis as it is vital to resolve many
attachment ambiguities. Furthermore, it can completely alter the meaning of a
sentence.

In the context of dependency parsing, Ma et al. (2014) [3] suggest treating
punctuation as properties of its neighboring words, without involving the punc-
tuation itself directly in any attachment. In their model, before parsing starts,
a pre-processing step is used to first set the punctuation marks as properties of
their neighboring words, and then remove them from the sentence. During pars-
ing, each transition that creates a dependency relation causes these properties
to be propagated from a token to its governor, producing additional features to
guide the parser to build the dependency graph.

1



Ma et al. show that their method reduces errors-propagation1 and improves
parsing performance of about 0.90% UAS over a greedy baseline parser on the
English Penn Tree-bank. Grella (2015) [4] obtained comparable results for the
Italian language.

I think that a similar strategy could be implemented efficiently in the scheme
for dependency parsing based on bidirectional-LSTMs proposed by Kiperwasser
and Goldberg (2016) [5]. In that model, each sentence token is associated with
a BiLSTM vector representing the token with its surrounding context. The
next best transition is obtained by using a multi-layer perceptron whose input
features are constructed by concatenating a few of these BiLSTM vectors, based
on the current configuration of the parsing state.

The gist of my idea is to initialize the parsing state without punctuation-
tokens but using them for the BiLSTM sentence encoding.2 In this way, the
punctuation will never be directly involved in either the features construction
or any attachment, but since the BiLSTM is trained jointly with the parser-
objective, the relevant information brought by the punctuation-tokens
should be implicitly learned using the errors of the recurrent contri-
butions only.

Besides, it might be possible to let the BiLSTM indicate the best head of
a punctuation-token, using a sort of attention mechanism to evaluate on which
previous/next word it had the overall strongest influence.3

Future thoughts can be made to exploit this idea to perform parsing and
punctuation prediction jointly.

I encourage researchers to try to implement this technique inside the open-
source BIST-parsers.4

References

[1] Joakim Nivre. An efficient algorithm for projective dependency parsing.
In Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT. Citeseer, 2003.

[2] Yoav Goldberg. Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1):1–309, 2017.

[3] Ji Ma, Yue Zhang, and Jingbo Zhu. Punctuation processing for projective
dependency parsing. In ACL (2), pages 791–796, 2014.

[4] Matteo Grella. Notes about a more aware dependency parser. arXiv preprint
arXiv:1507.05630, 2015.

1A wrong attachment in punctuation may require non-projective transitions to continue
the analysis correctly. Even for transition systems that support non-projective, crossing-links
remain more subject to errors due to their relative rarity.

2In the arc-standard model the initial parsing state would be an empty stack and the
input buffer filled with all the sentence tokens except for punctuation marks. The oracle shall
consider that some tokens will never be reduced.

3It might make sense to replace the LSTM [6] with the RAN [7] to take advantage of its
highly interpretable outputs.

4https://github.com/elikip/bist-parser

2



[5] Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency
parsing using bidirectional LSTM feature representations. TACL, 4:313–327,
2016.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[7] Kenton Lee, Omer Levy, and Luke Zettlemoyer. Recurrent additive net-
works. arXiv preprint arXiv:1705.07393, 2017.

3


