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Abstract: In this work we discuss the possibility to formulate gravity as a coupling of two 

electromagnetic fields of equal magnitude but opposite direction.  

 

In this work we will show that a general theory of gravity can be formulated as a coupling of 

two electromagnetic fields of equal magnitude but opposite direction. In this case since 

electromagnetism is regarded as more fundamental than gravitation therefore we adopt the 

view that electromagnetism should be described in its own right as an independent affine 

structure of a spacetime manifold without reference to any other possible metric structures, 

such as the Riemannian metric structure used to describe the gravitational field [1]. In field 

theory this approach is equivalent to postulating independent physical fields on the same 

background Minkowski spacetime. The spacetime manifold can be endowed with a geometric 

structure from which a particular affine or metric structure can be chosen to describe a 

physical field. Unless it is equipped with a geometric structure, the background spacetime 

manifold cannot describe physical laws [2]. For example, Einstein general theory of relativity 

can be formulated in terms of a principal frame bundle associated with a tangent bundle over 

an n-dimensional manifold [3,4]. On the other hand, in order to describe electrodynamics 

geometrically, an affine connection is introduced into the differentiable spacetime manifold. 

The introduction of such a connection can be carried out by adopting a heuristic approach 

modelled on parallel transport of a vector field and its covariant derivative. We assume that 

the change     in the components of a vector    under an infinitesimal parallel 

displacement is of the form [5] 

         
                                                                                                                                      

in which case the covariant derivatives are defined as 

   
  

   

   
     

                                                                                                                               

     
   

   
                                                                                                                                       

so that they transform like a tensor under general coordinate transformations. Here the 

quantity    is an affine connection of the spacetime manifold, which will be identified with 

the electromagnetic four-vector potential. The quantity   is an arbitrary dimensional constant. 

The transformation law for the affine connection    can be deduced from the transformation 
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properties of the covariant derivative given in Equations (2) and (3). Under a general 

coordinate transformation            , the connection    transforms as 

  
  

   

    
                                                                                                                                                 

As expected, the affine connection    transforms like a covariant vector under a general 

coordinate transformation. The generalisation of Equations (2) and (3) can be obtained from 

the definition of the covariant derivative 

   
      

       

   
      

                                                                                                   

         
       
   

                                                                                                              

        
      

       
     

   
               

                                                                                        

It is noted that the covariant derivative of a mixed tensor having equal number of superscripts 

and subscripts is identical to its ordinary derivative. It should be reiterated that the 

electromagnetic structure is assumed to be an independent structure, which defines a curved 

spacetime. This must not be considered as an additional structure arising from the postulate 

of gauge invariance, as in Weyl’s theory which assumes a change          
  of the 

length       
    of a vector    under parallel transport. In the latter case     represents a 

Riemannian spacetime structure of gravitation and    is a four-vector function which is 

identified with the four-vector potential of an electromagnetic field [6]. The electromagnetic 

spacetime of our case is assumed to exist by itself, independent of any other spacetime 

structures, such as the gravitational field. The purpose of the introduction of the connection 

   is to construct a non-Riemannian spacetime manifold which can be used to represent 

electromagnetism alone. In this way an appropriate topological structure of the manifold can 

be related to the quantum dynamics of a particle in spacetime. The formulation of a physical 

theory is normally required to be covariant only under some particular group of 

transformations, except for the general theory of relativity in which the formalism is based on 

the requirement of general covariance. However, in the present geometric formulation of 

electromagnetism, the geometrical object which plays the role of the Riemannian curvature 

tensor is covariant under general coordinate transformations. This curvature can be derived 

by considering the change          of a vector    parallel transported around an 

infinitesimal closed path. To first order, an infinitesimal closed path permits the components 

of the vector    at points inside the path to be uniquely determined by their values on the 

path. By Stokes’ theorem, it is found that 

           
  

 

 
 
   

   
 
   
   

     
                                                                                      



where      is the area enclosed by a closed path [7]. Since    is a vector and      is a 

tensor, and since     is also a vector, because it is the difference between the values of 

vectors at the same point after parallel displacement, the tensor character of the curvature, 

defined by the relation               is determined from the quotient theorem in tensor 

calculus. The quantities     therefore form a tensor under general coordinate transformations. 

This result shows that if only the field strength of the electromagnetic field is considered 

significant, then the present geometric formulation of electromagnetism, like the general 

relativistic formulation of gravitation, is also covariant with respect to the general group of 

transformations. The curvature               automatically satisfies the homogeneous 

equations of classical electrodynamics                    . The result shows that the 

homogeneous equations of electrodynamics are geometrical rather than dynamical when the 

connection    is considered as being a purely geometrical object. As usual, to determine the 

dynamics of the electromagnetic spacetime manifold, an action, that may or may not relate 

geometrical properties of the manifold to matter or charge, must be specified. If such an 

action is defined by the form       
 
    

       
     , where   is an arbitrary 

constant, then the variation of the action   with respect to the connection    leads to the 

inhomogeneous equations of classical electrodynamics    
        . The external 

current density   , whose geometrical character is unknown, plays the role of the stress tensor 

in the field equations of general relativity.  

In the above discussions, the spacetime structure of electromagnetism that has been described 

using the connection    and the curvature     is entirely affine. However, an affine structure 

is not capable of providing a dynamical description of the motion of a particle in the field. 

This is exactly the case in classical electrodynamics where the Lorentz force must be added 

to the Maxwell field equations for a dynamical description of a charged particle. With a 

geometrical formulation of the physical field, the dynamics can be provided by introducing a 

metric tensor     onto the spacetime manifold through the defining relation     

     
    . When the spacetime manifold is endowed with a metric, a relationship between 

the metric and the connection can be obtained by demanding that the metric be covariantly 

constant, in the sense that the inner product of two vectors remains constant under parallel 

transport along a curve. This requirement leads to the condition 

      
    

   
                                                                                                                       

Equation (9) can be rewritten in the form 

   
   

  

    
   

 
 

   

  

   
 

 

  

      

   
                                                                                       

where           . The equation of motion of a charged particle in an electromagnetic 

spacetime manifold can be obtained from the requirement that the path of a particle is 

geodesic 



    

   
    

   

  

   

  
                                                                                                                        

where the parameter   is identified with the arc-length only when a metric exists. Since the 

affine connection    is entirely geometrical, it is necessary to introduce some kind of 

relationship between the geometrical objects and the physical quantities in order to provide a 

possible dynamical description of the system consisting of particle and field. For example, if 

the following relationship is assumed 

   
   

  
  

 

 
  
 
                                                                                                                                  

then the familiar form of Lorentz force law for the motion of a charged particle in an 

electromagnetic field is regained 

    

   
 

 

 
  
   

 

  
                                                                                                                                    

However, since there is no physical basis for its introduction, the relationship given in 

Equation (12) should be considered as an intrinsic relationship between the geometrical field 

and the experimentally defined physical quantities that characterise the mass and the charge 

of a particle. We will discuss how to specify the mass and the charge of an elementary 

particle in terms of geometrical objects in further works. They may be viewed as 

manifestations of purely geometrical properties determined by the three-dimensional 

topological structure of the particle. 

Having established electromagnetism as an affine structure on the spacetime manifold, we are 

now in the position to discuss how gravity can be formulated as a coupling of two 

electromagnetic fields of equal magnitude but opposite direction. Consider an asymmetric 

connection of the form    
    

   . As shown below, the motivation for considering this 

form of asymmetric connection is that it allows a construction of an affine connection in 

terms of two electromagnetic fields. The quantity    will then be identified with the four-

vector potential of one electromagnetic field and the quantity   
  with the field strength of the 

second opposing field. When the affine connection is constructed from two electromagnetic 

fields, the resulting formulation is considered to give rise to genuine physical effects when 

the electromagnetic field is viewed as a physical field. However, due to the asymmetry of the 

connection, these effects cannot be identified with gravity, since the theory of general 

relativity requires a symmetric connection. To meet this requirement, it is necessary to reduce 

the physical Ricci tensor, which is formed by two electromagnetic fields, to a symmetric 

form. The affine connection of the particular form    
    

    reduces the Riemann 

curvature tensor     
       

       
     

    
     

    
  to the simpler form as 

    
  

    
    

   
 
    

    

   
                                                                                                              

The Ricci tensor defined by the relation         
  becomes 



     
   

   
 
   

   
   

    

   
 

   
   

   
 

   
                                                                                 

The Ricci tensor in this form can be reduced to a symmetric form if the quantities   
  satisfy 

the relation    
         

   , where   are arbitrary functions of the coordinate variables. 

The Ricci tensor then becomes 

      
                                                                                                                                                   

where we have defined              . It is seen that the reduced Ricci tensor given in 

Equation (16) is symmetric if the quantity   
  is the transpose of the quantity    . The 

reduced Ricci tensor suggests that in order to incorporate it into electromagnetism, the 

quantity    should be identified with the four-vector potential and the quantity     with the 

field strength of an electromagnetic field. In this case, if the reduced Ricci tensor is required 

to be symmetric, the quantity   
  is identified as the field opposite to the field    . The 

reduced Ricci tensor therefore may be used as a counterpart of the energy-momentum tensor 

to form general relativistic field equations for gravitation because according to the Lorentz 

force law in classical electrodynamics two opposing electromagnetic fields of equal 

magnitude are considered to have no classical electromagnetic effects on a charged particle 

moving in the coupled fields. In terms of the field strengths   
  and    , the reduced Ricci 

tensor given in Equation (16) takes the explicit form as follows 

  
   

          
        
        
        

                                                                                                          

     

       
         
         
         

                                                                                                      

    

 

 
 

  
    

    
                            

           
    

    
                   

                    
    

    
          

                             
    

    
 
 

 
 
                            

We have assumed that the dynamics of a charged particle in a region of spacetime, whose 

structure is determined by the affine connection   
    formed by two opposing 

electromagnetic fields, is governed by the reduced form of the Ricci tensor given in Equation 

(16). In order to determine the dynamical aspects of the particle in the spirit of general 

relativity, a new symmetrical metric tensor     is introduced according to the defining 

relation          
    . With the introduction of this symmetric metric tensor into the 

spacetime structure, it is now possible to construct field equations for the gravitational field 

in terms of differential geometry that reflects the structure of the physical quantity that 



determines the Ricci tensor as specified in Equation (19). It is possible to adopt Einstein field 

equations of general relativity as a postulating physical formulation to describe gravity, 

however, as shown in our other works on general relativity, in order to formulate gravity 

purely in terms of differential geometry, we can postulate field equations of general relativity 

by adopting Bianchi identities instead [8,9]. It is shown that the Ricci tensor satisfies the 

Bianchi identities 

   
   

 

 
                                                                                                                                       

Even though Equation (20) is purely geometrical, it has a form of Maxwell field equations of 

the electromagnetic tensor,    
      . If the quantity 

 

 
       can be perceived as a 

physical entity, such as a four-current of gravitational matter, then Equation (20) has the 

status of a dynamical law of a physical theory. With the assumption that the quantity 
 

 
       to be identified with a four-current of gravitational matter then a four-current 

          can be defined purely geometrical as follows 

   
 

 
                                                                                                                                                

For a purely gravitational field, Equation (20) reduces to  

   
                                                                                                                                                     

Using the identity    
    , Equation (22) implies 

                                                                                                                                                       

where   is an undetermined constant. Using the identities     
     and     

    , we 

obtain      . With the new purely geometrical formulation of gravity, Einstein field 

equations given by the relation     
 

 
          can be interpreted as a definition of an 

energy-momentum tensor, as that of Maxwell theory of the electromagnetic field. From 

Equation (23), we obtain 

     
 

 
                                                                                                                                              

If we assume that the effect of the coupling of two opposing electromagnetic fields can be 

interpreted as a gravitational field, then the affine connection    
    

    gives rise to a 

geodesic equation of the form 

    

   
   

 
  

   

  

   

  
                                                                                                                     

Equation (25) admits a linear first integral of the form [10] 



  

   

  
  

 

 
                                                                                                                                         

provided the quantities    satisfy the condition             and we have set the 

constant in the first integral equal to      for convenience. This condition identifies    as 

a Killing vector field, which defines a direction of symmetry along which the motion leaves 

the spacetime geometry unchanged. The geodesic equation then has the form of the Lorentz 

force law 

    

   
 

 

 
  
   

 

  
                                                                                                                                    

We may interpret this result as follows. When one of the electromagnetic fields drives the 

charged particle according to the laws of classical electrodynamics, the opposite field resists 

such motion of the particle and the resistance manifests itself as the mass of the particle via 

the linear first integral given in Equation (26).  
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