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Abstract

How to efficiently handle uncertain information is still an open issue. In this paper, a new

method to deal with uncertain information, named as two dimensional belief function

(TDBF), is presented. A TDBF has two components, T=(mA,mB). The first component,

mA, is a classical belief function. The second component, mB, also is a classical belief

function, but it is a measure of reliability of the first component. The definition of TDBF

and the discounting algorithm are proposed. Compared with the classical discounting

model, the proposed TDBF is more flexible and reasonable. Numerical examples are

used to show the efficiency of the proposed method.

Keywords: Two Dimensional Belief Function, Dempster-Shafer evidence theory, belief

function, Z-numbers, conflict management.

1. Introduction

It is inevitable to deal with uncertain information in real word[1, 2]. To address this

issue, many methods has been proposed, such as probability theory[3], Dempster-Shafer

evidence theory[4, 5], fuzzy set[6–8], rough sets[9], Z-numbers[10], D numbers[11] and

so on.

Among these methods, Dempster-Shafer evidence theory[4, 5] is one of the most

widely used math tools[12–20]. Evidence theory has many advantages to handle un-
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certain information[21–23]. For example, the belief function is more flexible to model

uncertainty compared with probability distribution. In addition, Dempster’s combina-

tion rule is used to combine evidences from different sources without prior information.

However, illogical results may be obtained by classical Dempster combination rule when

collected evidence highly conflicts each other[24–26].

Z-numbers is proposed by Zadeh[10]. A Z-number has two components, Z=(A,B).

The first component, A, is a restriction (constraint) on the values which a real-valued

uncertain variable, X, is allowed to take. The second component, B, is a measure of re-

liability (certainty) of the first component[10]. Similarly, in evidence theory, discounting

coefficient is a measure of sensor report’s reliability. e.g. discounting factors based on

dissimilarity measure[27], dynamic discounting rates[28]. Nevertheless, the simple val-

ue is not enough and reasonable to express the experts evaluation. To solve this problem,

a new math model named as two dimensional belief function, TDBF, is proposed in this

paper.

A TDBF is an ordered pair of basic probability assignments denotes as T = (mA,mB).

The first component mA is a classical basic probability assignment (BPA), which usually

is collected from the sensors. The second component mB is a measure of reliability for

the first component, which can be collected by the experts. The frame of discernment

of mB set Θ = {Y, N}, where ’Y’ denotes ’positive’ and ’N’ denotes ’negative’. The

power set of Θ = {Y, N} consists of two singletons {Y} and {N}, an universal Θ and

the empty set ∅. So, the TDBF can carry more information than not only classical BPA,

but also the discounting BPA with single value discounting coefficient. In addition, the

following research shows that the combination of TDBF also can partially address the

issue of evidence conflicts.

The paper is organized as follows. The preliminaries of Dempster-Shafer theory[4, 5],

Z-numbers[10] and classical discounting method[5] are briefly introduced in Section 2.

In Section 3, the TDBF (Two Dimensional Belief Function) has been presented. In Section
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4, we use some numerical examples to illustrate the application of the proposed method.

Finally, this paper is concluded in Section 5.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. D-S evidence theory

Some basic definitions of D-S theory are briefly introduced as following[4, 5]:

Definition 1. A set of hypotheses Θ is the exhaustive hypotheses of variable, X. The ele-

ments are mutually exclusive in Θ. Then Θ is called the frame of discernment, defined as

follows[4, 5]:

Θ = {H1, H2, · · · , Hi, · · · , HN} (1)

The power set of Θ is denoted by 2Θ, and

2Θ = {∅, {H1}, · · · , {HN}, {H1, H2}, · · · , {H1, H2, · · · , Hi}, · · · , Θ} (2)

where ∅ is an empty set.

Definition 2. A BPA function m is a mapping of 2Θ to a probability interval [0, 1], formal-

ly defined by[4, 5]:

m : 2Θ → [0, 1] (3)

which satisfies the following conditions:

m(∅) = 0 ∑
A∈2Θ

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ (4)

The mass m(A) represents how strongly the evidence supports A.

For the same evidence, the different BPAs come from the different evidence resources.

The Dempster’s combination rule can be used to obtain the combined evidence[4]:










m(∅) = 0

m(A) =
∑

B
⋂

C=A
m1(B)m2(C)

1−K

(5)
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where K = ∑
B
⋂

C=∅

m1(B)m2(C).

2.2. Z-numbers

Z-numbers is a new tool to model uncertain information[10, 29].

Definition 3. A Z-number is an ordered pair of fuzzy numbers, Z = (A, B). A Z-number

is associated with a real-valued uncertain variable, X, with the first component, A, is a re-

striction (constraint) on X. The second component, B, is a measure of reliability (certainty)

of the first component.

2.3. Classical discounting method

A discounting coefficient is between 0 and 1. So, let mj be a belief mass given by the

source Sj and let xj be a coefficient which represents the confidence degree one has in

source Sj. Denote mxj,j the belief mass mj discounted by a coefficient (1− xj) and defined

as follows[5, 30]:

mxj,j(A) = xjmj(A) ∀A ⊂ Θ,

mxj,j(Θ) = 1 − xj + xjmj(Θ).
(6)

3. TDBF: Two Dimension Belief Function

3.1. The definition of TDBF

Definition 4. A TDBF, T=(mA,mB), consists of two basic probability assignments. mA is

a classical BPA, and mB also is a classical BPA and a measure of reliability (certainty) of

mA.

The frame of discernment of mB set Θ = {Y, N}, in which ’Y’ denotes ’support’ and

’N’ denotes ’not-support’. The power set of Θ = {Y, N} consists of two singletons {Y}

and {N}, a universal Θ and the empty set ∅. Then the m({Y}) express how reliable mA

is, the m({N}) express how unreliable mA is, and the m(Θ) express that is no idea to
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measure the reliability of mA. According to the definition of TDBF, if a body of evidence

is close to real value, its m({Y}) will be high and m({N}) will be low. On the contrary,

if a body of evidence is distant to real value, its m({Y}) will be low and m({N}) will be

high. Compared with single value discounting coefficient, the proposed mode is more

reasonable, flexible and comprehensive.

Example 3.1. Assume the frame of discernment is Θ = {x1, x2, x3} we given a BPA from a

sensor as mA({x1}) = 0.6, mA({x2}) = 0.1, mA({x3, x4}) = 0.3. There are ten experts to

measure this BPA. Seven experts think it is reliable, two experts think it is unreliable, and one has

no idea and do not give any opinion. So, we can confirm the mB:

mB({Y}) = 0.7, mB({N}) = 0.2, mB({Θ}) = 0.1. (7)

3.2. The combination of TDBF

Given two TDBFs, the combination rule is defined as follows:



















mZ(A) = mA({xi})× mB(Y) + mB(N)× (1 − mA({xi})), ∀xi ⊂ Θ

mZ(A) = mA(Ai)× mB(Y), ∀Ai ⊂ Θ

mZ(Θ) = mA(Θ)× mB(Y) + mB(Θ)

(8)

Where Ai is multi subset of Θ, and xi is single subset of Θ, i = 1, 2, 3, · · · , n.

The mass of m({Y}) is distributed to the mA(Ai) proportionally. This value is fron-

t support of this subset. The mass of mB({N}) is distributed to the reverses of single

subsets proportionally. This value is side support of this subset. Why don’t distribute

mB({N}) to reverses of multi subsets? The reason is that the masses of multi subsets will

focus on single subsets in procedure of combination finally. And the mass of mB({Θ}) is

distributed to the mA({Θ}) all. The addition of the front support and side support is the

total support of mZ(Ai). The procedure is illustrated in Fig.1. We can get a new mass after

normalization. When all mB({N}) = 0, the combination of TDBF degenerate the classical
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discounting method. When all mB({Y}) = 1, the combination of TDBF degenerate the

Dempster’s combination rule.

If there are n pieces of evidence, one can use the classical Dempster’s rule to combine

the new masses n − 1 times.

4. Numerical Example

The real world, such as human sociality is very complex since the fact in complex

systems are interact each other dynamically [31–33]. How to model this complexity is still

an open issue. Some tools are used, for example, complex networks, to address this issue

[34–37]. Among these tools, MADM is a common used tool to model complex system.

In this section, some numerical examples on decision making are used to illustrate the

application of our approach.

4.1. Target recognition

Example 4.1. There are three known targets, x1, x2, x3. So the frame of discernment is Θ =

{x1, x2, x3}. A target appeared, three bodies of evidences are given by radars. The TDBFs of these

evidences are given in Table 1 and Table 2. Then identify the target:

First step, using Eq.8 to combine mA and mB of T = (mA, mB):

mZ,1({x1}) = mA,1({x1})× mB,1({Y}) + (1 − mA,1({x1}))× mB,1({N})

= 0.5 × 0.8 + (1 − 0.5)× 0.1

= 0.45

(9)

mZ,1({x2}) = mA,1({x2})× mB,1({Y}) + (1 − mA,1({x2}))× mB,1({N})

= 0 × 0.8 + (1 − 0)× 0.1

= 0.1

(10)
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A: m({x1})...m({xi})...m({xn}) 

m(A1)...m(Ai)...m(An)
B: m({Y})  m({N})  m( )

m( )

m(Ai)×m({Y})

m({xi})×m({Y})+m({N})

×(1-m({xi}))
m({xi})

m(  )+m(  )m(  )

m({N})

m({Y})

+

+

m(Ai)

Figure 1: The procedure of TDBF’s combination
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mZ,1({x3}) = mA,1({x3})× mB,1({Y}) + (1 − mA,1({x3}))× mB,1({N})

= 0 × 0.8 + (1 − 0)× 0.1

= 0.1

(11)

mZ,1({x1, x2}) = mA,1({x1, x2})× mB,1({Y})

= 0.2 × 0.8

= 0.16

(12)

mZ,1(Θ) = mA,1(Θ)× mB,1({Y}) + mZ,1(Θ)

= 0.3 × 0.8 + 0.1

= 0.34

(13)

We can get mZ,2 and mZ,3 using the same method:

mZ,2 : mZ,2({x1}) = 0.26, mZ,2({x2}) = 0.2, mZ,2({x3}) = 0.29,

mZ,2({x1, x3}) = 0.25, mZ,2(Θ) = 0.3

mZ,3 : mZ,3({x1}) = 0.5, mZ,3({x2}) = 0.25, mZ,3({x3}) = 0.2,

mZ,3({x1, x3}) = 0.21, mZ,3(Θ) = 0.1

After normalization:

mZ,1 : mZ,1({x1}) = 0.3913, mZ,1({x2}) = 0.0870, mZ,1({x3}) = 0.0870,

mZ,1({x1, x2}) = 0.1391, mZ,1(Θ) = 0.2956

mZ,2 : mZ,2({x1}) = 0.2, mZ,2({x2}) = 0.1538, mZ,2({x3}) = 0.2231,

mZ,2({x1, x3}) = 0.1923, mZ,2(Θ) = 0.2308

mZ,3 : mZ,3({x1}) = 0.3968, mZ,3({x2}) = 0.1984, mZ,3({x3}) = 0.1587,

mZ,3({x1, x3}) = 0.1667, mZ,3(Θ) = 0.0794

Given result by using the classical Dempster’s rule to combine these three masses two times:

m : m({x1}) = 0.6643, m({x2}) = 0.1067, m({x3}) = 0.1547, m({x1, x2}) = 0.0056,

m({x1, x3}) = 0.0566, m(Θ) = 0.0121

If using the classical discounting method to combine these evidence, the result as follows:
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m : m({x1}) = 0.4843, m({x2}) = 0, m({x3}) = 0.0721, m({x1, x2}) = 0.0873,

m({x1, x3}) = 0.1201, m(Θ) = 0.2402

It can be seen from these results, both the classical discounting method and the pro-

pose TDBF can correctly recognize the target is x1. However compared with classical

discounting method, combination of TDBF is more reasonable since not only the support

degree but also the disagree is taken into consideration.

Example 4.2. The other example of target recognition is shown as Table 3 and Table 4. The result

by using classical discounting method as follows:

m : m({x1}) = 0.3678, m({x2}) = 0.2194, m({x3}) = 0.0796, m({x1, x2}) = 0.0606,

m({x1, x3}) = 0.0130, m(Θ) = 0.2596

However, the result by using the combination of TDBF is:

m : m({x1}) = 0.6145, m({x2}) = 0.2374, m({x3}) = 0.1437, m({x1, x2}) = 0.0015,

m({x1, x3}) = 0.0008, m(Θ) = 0.0021

Which are graphically shown in Fig.2.

As can be seen from Fig.2, when the reliability of one evidence source is small, al-

though the classical discounting method can recognize the target, the value of m({x1}) is

small and no more than 0.5. However, the proposed method not only can recognize the

target, but also support the target strongly. In this case, the proposed method is superior

to classical discounting method.

4.2. Conflict management

Example 4.3. The combination of TDBF can partially address the issue of evidence conflict. From

three different sensors, the system has collected three bodies of evidence are shown as Table 5, the

information by experts is shown as Table 6.

The results by combination rule of Dempster and TDBF are shown in Table 5.
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x1 x2 x3 x1,x2 x1,x3 x2,x3 x1,x2,x3

Ai

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
(A

i)

TDBF

Discounting

Figure 2: The results of TDBF’s combination and discounting method

Sources

mA,1 mA,1({x1})=0.5 mA,1({x1,x2})=0.2 mA,1(Θ)=0.3

mA,2 mA,2({x1})=0.2 mA,2({x3})=0.3 mA,2({x1,x3})=0.5

mA,3 mA,3({x1})=0.6 mA,3({x2})=0.1 mA,3({x1,x3})=0.3

Table 1: mA of T = (mA, mB) in Example4.1

Sources

mB,1 mB,1({Y})=0.8 mB,1({N})=0.1 mB,1(Θ)=0.1

mB,2 mB,2({Y})=0.5 mB,2({N})=0.2 mB,2(Θ)=0.3

mB,3 mB,3({Y})=0.7 mB,3({N})=0.2 mB,3(Θ)=0.1

Table 2: mB of T = (mA, mB) in Example4.1
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Sources

mA,1 mA,1({x1})=0.5 mA,1({x2})=0.3 mA,1({x3})=0.1 mA,1({x1,x2})=0.1

mA,2 mA,2({x1})=0.3 mA,2({x2})=0.3 mA,2({x3})=0.2 mA,2({x1,x3})=0.2

mA,3 mA,3({x1})=0.7 mA,3({x2})=0.2 mA,3({x3})=0.1

Table 3: mA of T = (mA, mB) in Example4.2

Sources

mB,1 mB,1({Y})=0.7 mB,1({N})=0.2 mB,1(Θ)=0.1

mB,2 mB,2({Y})=0.2 mB,2({N})=0.7 mB,2(Θ)=0.1

mB,3 mB,3({Y})=0.8 mB,3({N})=0.1 mB,3(Θ)=0.1

Table 4: mB of T = (mA, mB) in Example4.2

Sources

mA,1 mA,1({x1})=0.9 mA,1({x2})=0.1 mA,1({x3})=0

mA,2 mA,2({x1})=0 mA,2({x2})=0.9 mA,2({x3})=0.1

mA,3 mA,3({x1})=0.6 mA,3({x2})=0.1 mA,3({x1,x3})=0.3

Table 5: mA of T = (mA, mB) in Example4.3

Sources

mB,1 mB,1({Y})=0.8 mB,1({N})=0.1 mB,1(Θ)=0.1

mB,2 mB,2({Y})=0.4 mB,2({N})=0.2 mB,2(Θ)=0.4

mB,3 mB,3({Y})=0.7 mB,3({N})=0.2 mB,3(Θ)=0.1

Table 6: mB of T = (mA, mB) in Example4.3
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combination rule m1, m2 m1, m2, m3

Dempster

m({x1}) = 0, m({x1} = 0,

m({x2}) = 1, m({x2}) = 1,

m({x3}) = 0 m({x1, x3}) = 0,

m({x3}) = 0

TDBF

m({x1}) = 0.6085, m({x1}) = 0.7462,

m({x2}) = 0.2267, m({x2}) = 0.1331,

m({x3}) = 0.1116, m({x3}) = 0.0970,

m({Θ}) = 0.0532 m({x1, x3}) = 0.0161,

m(Θ) = 0.0076

Table 7: The results of combination by different rules

As can be seen in Table 5, when combining conflicting evidences, the classical Demp-

ster’s rule products illogical results, Dempster’s combination results show that, though

more bodies of evidence collected later support target x1, only a body of evidence don’t

support target x1 at all, the result is zero after combining. On the contrary, TDBF’s com-

bination provides reasonable results due to the consideration of evidence reliability.

5. Discussions and Conclusions

Dempster-Shafer evidence theory is an effective method to handle uncertain informa-

tion, but it lacks the reliability of evidence, it assumes every evidence is factual. But the

issue of reliability of information is of pivotal importance in planning, decision-making,

formulation of algorithms and management of information[38, 39]. In TDBF, it uses a

BPA to express the reliability of evidence, not only the support degree but also the dis-

agree is taken into consideration. Compared with classical BPA and discounting BPA

with single value discounting coefficient, TDBF is more complete, reasonable and flexi-
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ble to handle uncertain information. In addition, combination of TDBF can deal with the

evidence conflict.
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