Abstract: We make the following *Ansatz* for the mass ratio of the neutron to the electron:

$$m_n/m_e \approx (4\pi)(4\pi - 1/\pi)(4\pi - 2/\pi) + \ln(4\pi) = 1838.682763$$
 (1)

where m_n is the neutron rest mass and m_e is the electron rest mass. The CODATA value is 1838.68366158. The neutron decays into a proton and an electron. If $\ln(4\pi)$ is the neutron-proton mass difference, then $m_p/m_e \approx (4\pi)(4\pi - 1/\pi)(4\pi - 2/\pi)$, where m_p is the proton rest mass.¹²

Mass Ratio: The two particles whose rest masses are most often studied are the electron and the proton. The electron is considered to be a fundamental particle.³ The electron is also considered to be a perfect ball (solid sphere).⁴ The proton, on the other hand is claimed to be composed of fundamental particles, such as quarks, color, and gluons.⁵

The Formulas: Consider the following expression:

$$\frac{m_n}{m_e} \approx (4\pi) \left(4\pi - \frac{1}{\pi}\right) \left(4\pi - \frac{2}{\pi}\right) + \ln(4\pi) = 1838.682763 \tag{2}$$

where m_n is the neutron rest mass and m_e is the electron rest mass. The CODATA value is 1838.68366158.⁶ The neutron decays into a proton and an electron. If $\ln(4\pi)$ is the neutron-proton mass difference, then $m_p/m_e \approx (4\pi)(4\pi - 1/\pi)(4\pi - 2/\pi)$, where m_p is the proton rest mass.

$$\frac{m_p}{m_e} \approx (4\pi) \left(4\pi - \frac{1}{\pi} \right) \left(4\pi - \frac{2}{\pi} \right) = 1836.151739\dots$$
(3)

The Higgs Boson (H^0) to electron mass ratio can also be approximated:

$$\frac{m_{H^0}}{m_e} \approx \frac{m_p}{m_e} \cdot \left(4\pi - \frac{3}{\pi}\right) \left(4\pi - \frac{4}{\pi}\right) \tag{4}$$

¹https://en.wikipedia.org/ wiki/Isospin

²https://arxiv.org/abs/hep-lat/0608023

 $^{^{3}} https://www.google.com/search?client=ubuntu&channel=fs&q=electron+fundamental&ie=utf-8&ce=utf-8$

⁴https://www.sciencedaily.com/releases/2011/05/110525131707.htm

⁵https://www.reddit.com/r/askscience/comments/1trc8h/are-electrons-protons-and-neutrons-actually/

⁶https://physics.nist.gov/cgi-bin/cuu/Value?mnsmesearch_for=neutron+mass

For convenience, we look at the mass ratio of the Higgs Boson to the proton⁷

$$\frac{m_{H^0}}{m_p} \approx \left(4\pi - \frac{3}{\pi}\right) \left(4\pi - \frac{4}{\pi}\right) = 131.1295246\dots$$
 (5)

This compares well with the current estimate of (m_{H^0}/m_p) of 133.

Geometry: Associated with the number m_p/m_e , we have a variety of objects in solid geometry whose volume equals said number. Likewise, the mass differences between the m_n and m_p offer more information from their arithmetic value.

The tri-axial ellipsoid with semi-axes $\{4\pi, (4\pi - 1/\pi), (4\pi - 2/\pi)\}$ has a volume in 3D of $(4\pi)(4\pi - 1/\pi)(4\pi - 2/\pi)$. The ball (solid ellipsoid) of axis $= (4\pi - 1/\pi)$ with the ellipsoid of axes $\{(4\pi - 1/\pi), (1/\pi), (1/\pi)\}$ removed. The ball of axis $= (4\pi - 1/\pi)$ with the wedge (ungula) or sector of curved surface area of $(4\pi) \cdot (1/\pi)(1/\pi)$ removed.

⁷https://en.wikipedia.org/wiki/Higgs_boson