Abstract: We make the following Ansatz for the mass ratio of the neutron to the electron:

$$
\begin{equation*}
m_{n} / m_{e} \approx(4 \pi)(4 \pi-1 / \pi)(4 \pi-2 / \pi)+\ln (4 \pi)=1838.682763 \tag{1}
\end{equation*}
$$

where m_{n} is the neutron rest mass and m_{e} is the electron rest mass. The CODATA value is 1838.68366158 . The neutron decays into a proton and an electron. If $\ln (4 \pi)$ is the neutron-proton mass difference, then $m_{p} / m_{e} \approx$ $(4 \pi)(4 \pi-1 / \pi)(4 \pi-2 / \pi)$, where m_{p} is the proton rest mass. ${ }^{12}$

Mass Ratio: The two particles whose rest masses are most often studied are the electron and the proton. The electron is considered to be a fundamental particle. ${ }^{3}$ The electron is also considered to be a perfect ball (solid sphere). ${ }^{4}$ The proton, on the other hand is claimed to be composed of fundamental particles, such as quarks, color, and gluons. ${ }^{5}$

The Formulas: Consider the following expression:

$$
\begin{equation*}
\frac{m_{n}}{m_{e}} \approx(4 \pi)\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)+\ln (4 \pi)=1838.682763 \tag{2}
\end{equation*}
$$

where m_{n} is the neutron rest mass and m_{e} is the electron rest mass. The CODATA value is $1838.68366158 .{ }^{6}$ The neutron decays into a proton and an electron. If $\ln (4 \pi)$ is the neutron-proton mass difference, then $m_{p} / m_{e} \approx$ $(4 \pi)(4 \pi-1 / \pi)(4 \pi-2 / \pi)$, where m_{p} is the proton rest mass.

$$
\begin{equation*}
\frac{m_{p}}{m_{e}} \approx(4 \pi)\left(4 \pi-\frac{1}{\pi}\right)\left(4 \pi-\frac{2}{\pi}\right)=1836.151739 \ldots \tag{3}
\end{equation*}
$$

The Higgs Boson $\left(H^{0}\right)$ to electron mass ratio can also be approximated:

$$
\begin{equation*}
\frac{m_{H^{0}}}{m_{e}} \approx \frac{m_{p}}{m_{e}} \cdot\left(4 \pi-\frac{3}{\pi}\right)\left(4 \pi-\frac{4}{\pi}\right) \tag{4}
\end{equation*}
$$

[^0]For convenience, we look at the mass ratio of the Higgs Boson to the proton ${ }^{7}$

$$
\begin{equation*}
\frac{m_{H^{0}}}{m_{p}} \approx\left(4 \pi-\frac{3}{\pi}\right)\left(4 \pi-\frac{4}{\pi}\right)=131.1295246 \ldots \tag{5}
\end{equation*}
$$

This compares well with the current estimate of $\left(m_{H^{0}} / m_{p}\right)$ of 133.
Geometry: Associated with the number m_{p} / m_{e}, we have a variety of objects in solid geometry whose volume equals said number. Likewise, the mass differences between the m_{n} and m_{p} offer more information from their arithmetic value.

The tri-axial ellipsoid with semi-axes $\{4 \pi,(4 \pi-1 / \pi),(4 \pi-2 / \pi)\}$ has a volume in 3D of $(4 \pi)(4 \pi-1 / \pi)(4 \pi-2 / \pi)$. The ball (solid ellipsoid) of axis $=(4 \pi-1 / \pi)$ with the ellipsoid of axes $\{(4 \pi-1 / \pi),(1 / \pi),(1 / \pi)\}$ removed. The ball of axis $=(4 \pi-1 / \pi)$ with the wedge (ungula) or sector of curved surface area of $(4 \pi) \cdot(1 / \pi)(1 / \pi)$ removed.

[^1]
[^0]: ${ }^{1}$ https://en.wikipedia.org/ wiki/Isospin
 ${ }^{2}$ https://arxiv.org /abs/hep-lat/0608023
 ${ }^{3} \mathrm{https}: / / \mathrm{www}$. google.com/search?client=ubuntu\&channel=fs\&q=electron+fundamental\&ie=utf-8\&oe=utf-8
 ${ }^{4}$ https://www.sciencedaily.com/releases/2011/05/110525131707.htm
 ${ }^{5}$ https://www.reddit.com/r/askscience/comments/1trc8h/are-electrons-protons-and-neutrons-actually/
 ${ }^{6}$ https://physics.nist.gov/cgi-bin/cuu/Value?mnsmesearch_for=neutron+mass

[^1]: ${ }^{7}$ https://en.wikipedia.org/wiki/Higgs_boson

