Two-dimensional Fourier transformations and Mordell integrals

Martin Nicholson

Several Fourier transformations of functions of one and two variables are evaluated and
then used to derive some integral and series identities. It is shown that certain two-
dimensional Mordell integrals factorize into product of two integrals and that the square
of the absolute value of the Mordell integral can be reduced to a single one-dimensional
integral. Some connections to elliptic functions and lattice sums are discussed.

I. Introduction: self-reciprocal Fourier transformations

Define the cosine and sine Fourier transformations by the usual formulas
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Functions that are equal to their own cosine Fourier transform, i.e. that satisfy the equation f(x) = f.(x),
are called self-reciprocal functions of the first kind, and functions that are equal to their own sine Fourier
transform f(x) = fs(x), are called self-reciprocal functions of the second kind[I]. Some examples of the
functions of the first kind include
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And here are some functions of the second kind
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The first three functions of and the first two functions of were known to Ramanujan and their
detailed study can be found in the book [3]. The third function in is taken from the article [2] where
many other hyperbolic self reciprocal functions are given along with a general method for generating them.
The last two functions in and the last function in appear to be new. One can show that are the
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There is a well known general recipe to find self reciprocal functions ([4, ch. 9]). Since (f.). = f, the sum

only self reciprocal functions of the form

f(@) + fe(x)

is a self-reciprocal function of the first kind for an arbitrary function f(x). Obviously this approach works
also for functions of the second kind.

It might seem that this settles the question of finding all self-reciprocal functions completely. However
this is not so because this approach is not helpful in finding interesting particular self-reciprocal functions.
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It is much more gratifying to now that the functions in are self-reciprocal as opposed to knowing that
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is self-reciprocal. A more useful general theory suitable for these purposes of finding particular trans-

the function

formations has been developed by Goodspeed, Hardy and Titchmarsh (see [4] for a nice account of this
theory).

One might ask, what are these particular transformations useful for? The answer is they lead to some
interesting integral and series transformation formulas, among other things. For example, Hardy and
Ramanujan [IJ5] used self reciprocal functions to obtain transformation formulas such as
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Another type of identltles are obtained by apphcatlon of the Poisson summation formula, which for an
even function ¢(x) can be stated in the symmetric form [4]
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Similarly, for an odd function ¥ (x)
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where x(n) = sm% is a primitive character of modulus 4. For example, application of to the first

function in gives
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Let ¢ = e ™ be the base of elliptic functions with modulus k, ¥’ = v/1 — k2 the complementary modulus
and K = K(k), K' = K(K') the complete elliptic integrals of the first kind. Then [6, ch. 22.6] ¢/ = e is
the base of elliptic functions with modulus &’ and
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So is nothing but ¢ = e~ ™% in the more familiar notation of the theory of elliptic functions.
Functions , imply certain symmetric relations for the Lerch zeta function ([3], ch. 18.5). For example
the fourth function in leads to the identity
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II. Functions of two variables

One may also consider self reciprocal Fourier functions of two variables. Apart from the non-interesting
factorizable functions of this form there are quite non-trivial functions. To find some of them we use the
following observation: If f(z,y) = f(y,x) and

\/i/ f(z,y) cosazxdr = g(a,y) = g(y,a),
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(in other words, if partial Fourier transform of a symmetric function is symmetric) then f(z,y) is a self-
reciprocal Fourier function of two variables, i.e.
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Ezample : Since ([7], formula 3.981.8)
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we get a pair of self-reciprocal Fourier transformations
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Though not a self reciprocal function, note the curious transformation
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More self-reciprocal functions of one and two variables can be found in [12].
Poisson summation formula is easily generalized to even functions of two variables as follows

Vs Z d(am, fn) = /76 Z ¢c(ym, on), ay = 6 = 2m, (16)

where
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It is instructive to see what happens if is applied to . Straightforward calculation shows that
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Here it is assumed that the terms with m = 0 or n = 0 on the RHS of are understood as the limits
lim, g, lim,_,g. Setting § = a, v = 8 and making the replacement o — /27w, f — V27w one obtains
(care should be taken to simplify the sum on the right)
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with the same notations as in and E = E(k) complete elliptic integral of the second kind. Therefore
is Legendre’s relation EK' 4+ E'K — KK' = 7 in disguise.
Hyperbolic functions provide many other transformations. Let’s start with the calculation of the integral
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By formula 3.981.10 from [7]:
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so finally
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We see that the right hand side is the original function (taken with the minus sign) up to an additional
term, which a factorizable function.
Applying Poisson summation to one finds
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is equivalent to the modulus transformation of Landen’s transform, i.e. (1 + k1)(1 4+ k') = 2 in the

notation of the book [6]. Indeed, if o = %, 8= ﬁgi}g, then
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Since dn (%, k) = V1+Ek, eq. reduces to (1 + k)(1 + k}) = 2, as required.
There is an integral analogous to involving odd functions:
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More comphcated pair of integrals:
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Of course it is possible to derive both and from the theory of elliptic functions. However it is not
at all obvious that such symmetric relations exist in the first place and moreover the methodology developed
in this section is useful in derivation of identities that probably can not be obtained from the theory of
elliptic functions in a straightforward manner. One such identity is
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ITII. Two-dimensional Mordell integrals
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Let’s multiply @ by e~ 777 and integrate with respect to @ and b
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This can be written in the following symmetrical form
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Note the similarity of with the Landen transform . Since Mordell integrals can be understood
as continous analogs of theta functions [3], can be understood as Landen’s transform for Mordell
integrals. However the factorization on the left side of does not occur because of the function cos2xy
in the integrand (in the discrete case it was possible to choose the parameters so that cos2zy didn’t have
any mixing effect on the two series, so the double series factorized; unfortunately this is not possible for an
integral).

Combining with @ leads to
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In analogous manner and give
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Ramanujan showed that integrals I; — Iy have closed form expressions for rational n [3]. So the corre-
sponding two-dimensional integrals also have closed form expressions.



Examples.

cosh z cosh 7y y 26

Oooocosz sz—%z)coswxy V3—1
dxd
0 0

/ 3:U —§>cos7mcy p 27\/3
/ cosh mx cosh 7y * 4f
0 0
oo o0 ) .

sin Tzy 1

dxdy = .

/ / cosh T cosh 7y Ty aray 8+/272
0 0

It is possible to calculate even more general integrals. In analogy with Ramanujan’s integral analogs of
theta functions [3] define
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Equation generalizes . Now one can apply the method developed by Ramanujan [3] to the function
P, (0,¢). From the definition of ®, g (0, ¢) it follows that
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Now combine and to get
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These formulas reduce the problem to the calculation of one-dimensional Mordell integrals. Similar formulas

also exist for
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IV. Absolute value of the Mordell integral

For real a one has for the square of the absolute value of the Mordell integral
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Here we give an explanation for the first equality in and for . For the first, starting from

we put b = aa

sin aa®
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and integrate with respect to a from 0 to oo to obtain
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For the second, starting from and its sine analog

i cos Ty ) ) 1 Vra /b 1 — cosab

— bydxdy = — tanh —— tanh — 34
T / / sinawsinbydedy = 5 tanh 5= tanh = — oy Y
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sinh(y/7z) sinh(y/7y)
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1—coszy
1nh(ﬁx) sinh(y/7y)
and (34) multiplied by ie’s a* , integrate from 0 to oo using formulas
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ia 2 Y i (.2 2,2

cosazrcosaay ez da =/ —e 22 (THY) cog py,
0 2a
00 .
ﬂ 2 . T
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From this it is straightforward to deduce and as a byproduct

[by the way (34]) implies the self reciprocal function | we put b = aa in both, take the sum

1042

of (14 . multiplied by ez

to obtain

00 s az? oo

2sin <5~ ) 9

—_— % dx= tanh 7z tanh ax sin 2ax” dz.
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Compare to the integral of Ramanujan ([8], generalizations are given in [9/10])

o
/0 zzz]ﬁ :i cos ax?dr = % cos %. (35)
They both contain trigonometric function of the argument ax? and hyperbolic functions of the arguments
mx and ax. However the crucial difference between them is that the integrand in has poles not only at
the zeroes of cosh mz, but also at the zeroes of cosh ax. Integrals of this sort are related to integrals for the
product of two hyperbolic self-reciprocal functions studied by Ramanujan ([5], formula (10)). Put in (18]
and b = aa and integrate with respect to a. The result is

\[/ cos ax? d — /°° cosh % cosh % iz, (36)
0

cosh x cosh ax cosh mx cosh ax

\f/ sin ax? dr — /°° sinh % sinh % . (37)
0

cosh wx cosh ax cosh mx cosh ax

V. Connection to lattice sums

1
Multiplying (18]) and (20) by \/—7) and integrating with respect to a and b leads to
a

00 00 00 5 2
cos L d:cdy cosh -
2 = 2d 38
\f// cosh :L'2 cosh 12 / coshz2 ™" | (38)
00 0
00 5 2
sin & y dxdy sinh &
= d . 39
\[// cosh :1;2 cosh 12 / coshz? 0 (39)
0

The RHS of and contain integral representation of certain Dirichlet L-series, while the LHS are
2D-lattice sums of Bessel and Neumann functions, as shown below on a formal level. Evaluation of double
sums of Bessel functions in terms of Dirichlet L-series is well known [11].
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Consider the double integral on the LHS of . First, the functions sech 22 are expanded into the

—x2

powers of e™® . This results in a double sum of double integrals

oo o0
2m-4-1)22—(2n+1)y? 932?/2
/ / e~ AP —Ent ) oo  TY
T
0 0

where m and n are non-negative integers. The integral over y is easily calculated

2,2
/OO ety o Y dy = T ! + ! )
0 ™ 2\ m@m+1) +ix2  /7(2m + 1) —iz?

To calculate the integral over z we need formula 3.364.3 from [7]

—(2n+1
(2n+1)=? _ 1( 1)m+ne:F

dx
\/7r 2m + 1) + a2 2

3mi

Ko <$7;i(2m +1)(2n + 1))> .

Note that Ko(iz) = —5(Yo(z) + iJo(x)), * € R. As a result the double integral in reduces to a
combination of double sums

i Zo (g(Qm +1)(2n + 1)) :
m,n=0

where Zj is either Bessel Jy or Neumann Yj function.
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