
Two-dimensional Fourier transformations and Mordell integrals

Martin Nicholson

Several Fourier transformations of functions of one and two variables are evaluated and

then used to derive some integral and series identities. It is shown that certain two-

dimensional Mordell integrals factorize into product of two integrals and that the square

of the absolute value of the Mordell integral can be reduced to a single one-dimensional

integral. Some connections to elliptic functions and lattice sums are discussed.

I. Introduction: self-reciprocal Fourier transformations

Define the cosine and sine Fourier transformations by the usual formulas

fc(t) =

√
2

π

∫ ∞
0

f(x) cos tx dx, (1)

fs(t) =

√
2

π

∫ ∞
0

f(x) sin tx dx. (2)

Functions that are equal to their own cosine Fourier transform, i.e. that satisfy the equation f(x) = fc(x),

are called self-reciprocal functions of the first kind, and functions that are equal to their own sine Fourier

transform f(x) = fs(x), are called self-reciprocal functions of the second kind[1]. Some examples of the

functions of the first kind include

1

cosh
√

π
2x
,

cosh
√
πx
2

cosh
√
πx
,

1

1 + 2 cosh
√

2π
3 x

,
cosh

√
3πx
2

2 cosh
√

4π
3 x− 1

,
cosh

√
3π
2 x

cosh
√

2πx− cos
√

3π
. (3)

And here are some functions of the second kind

sinh
√
πx
2

cosh
√
πx
,

sinh
√

π
6x

2 cosh
√

2π
3 x− 1

,
sinh

√
2π
3 x

cosh
√

3π
2 x

,
sinh
√
πx

cosh
√

2πx− cos
√

2π
. (4)

The first three functions of (3) and the first two functions of (4) were known to Ramanujan and their

detailed study can be found in the book [3]. The third function in (4) is taken from the article [2] where

many other hyperbolic self reciprocal functions are given along with a general method for generating them.

The last two functions in (3) and the last function in (4) appear to be new. One can show that (3) are the

only self reciprocal functions of the form coshαx
coshx+c .

There is a well known general recipe to find self reciprocal functions ([4, ch. 9]). Since (fc)c = f , the sum

f(x) + fc(x)

is a self-reciprocal function of the first kind for an arbitrary function f(x). Obviously this approach works

also for functions of the second kind.

It might seem that this settles the question of finding all self-reciprocal functions completely. However

this is not so because this approach is not helpful in finding interesting particular self-reciprocal functions.
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It is much more gratifying to now that the functions in (3) are self-reciprocal as opposed to knowing that

the function

e−x +

√
2

π

1

1 + x2

is self-reciprocal. A more useful general theory suitable for these purposes of finding particular trans-

formations has been developed by Goodspeed, Hardy and Titchmarsh (see [4] for a nice account of this

theory).

One might ask, what are these particular transformations useful for? The answer is they lead to some

interesting integral and series transformation formulas, among other things. For example, Hardy and

Ramanujan [1,5] used self reciprocal functions to obtain transformation formulas such as

√
α

∞∫
0

e−x
2

coshαx
dx =

√
β

∞∫
0

e−y
2

coshβy
dy, αβ = π, (5)

√
α

∞∫
0

cosh αx
2

coshαx
e−x

2

dx =
√
β

∞∫
0

cosh βy
2

coshβy
e−y

2

dy, αβ = 2π, (6)

√
α

∞∫
0

sinh αx
2

sinhαx
xe−x

2

dx =
√
β

∞∫
0

sinh βy
2

sinhβy
ye−y

2

dy, αβ = 2π. (7)

Another type of identities are obtained by application of the Poisson summation formula, which for an

even function φ(x) can be stated in the symmetric form [4]

√
α

∞∑
n=−∞

φ(αn) =
√
β

∞∑
n=−∞

φc(βn), αβ = 2π. (8)

Similarly, for an odd function ψ(x)

√
α

∞∑
n=1

χ(n)ψ(αn) =
√
β

∞∑
n=1

χ(n)ψs(βn), αβ =
π

2
, (9)

where χ(n) = sin πn
2 is a primitive character of modulus 4. For example, application of (8) to the first

function in (3) gives
√
α

∞∑
n=−∞

1

coshπαn
=
√
β

∞∑
n=−∞

1

coshπβn
, αβ = 1. (10)

Let q = e−πα be the base of elliptic functions with modulus k, k′ =
√

1− k2 the complementary modulus

and K = K(k), K ′ = K(k′) the complete elliptic integrals of the first kind. Then [6, ch. 22.6] q′ = e−πβ is

the base of elliptic functions with modulus k′ and

K =
π

2

∞∑
n=−∞

1

coshπαn
. (11)

So (10) is nothing but q = e−π
K′
K in the more familiar notation of the theory of elliptic functions.

Functions (3),(4) imply certain symmetric relations for the Lerch zeta function ([3], ch. 18.5). For example

the fourth function in (4) leads to the identity

∞∑
n=−∞

sin(
√

2πn
p )∣∣∣n+ p√
2

∣∣∣ 12 =

∞∑
n=−∞

sin(
√

2πn
q )∣∣∣n+ q√
2

∣∣∣ 12 , pq = 1,
1√
2
< p <

√
2. (12)
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II. Functions of two variables

One may also consider self reciprocal Fourier functions of two variables. Apart from the non-interesting

factorizable functions of this form there are quite non-trivial functions. To find some of them we use the

following observation: If f(x, y) = f(y, x) and√
2

π

∫ ∞
0

f(x, y) cos axdx = g(a, y) = g(y, a),

(in other words, if partial Fourier transform of a symmetric function is symmetric) then f(x, y) is a self-

reciprocal Fourier function of two variables, i.e.

2

π

∞∫
0

∞∫
0

f(x, y) cos ax cos bydxdy = f(a, b).

Example : Since ([7], formula 3.981.8)

∞∫
0

sinxy

sinh(
√
πx)

cos axdx =

√
π

2

sinh(
√
πy)

cosh(
√
πy) + cosh(

√
πa)

we get a pair of self-reciprocal Fourier transformations

2

π

∞∫
0

∞∫
0

cos ax cos by

cosh
√
πx+ cosh

√
πy
dxdy =

1

cosh
√
πa+ cosh

√
πa
, (13)

2

π

∞∫
0

∞∫
0

sinxy

sinh(
√
πx) sinh(

√
πy)

cos ax cos bydxdy =
sin ab

sinh(
√
πa) sinh(

√
πb)

. (14)

Though not a self reciprocal function, note the curious transformation

2

π

∞∫
0

∞∫
0

cosxy

cosh
√

π
2x · cosh

√
π
2 y

cos ax cos by dxdy =
sin ab

sinh
√

π
2a · sinh

√
π
2 b
. (15)

More self-reciprocal functions of one and two variables can be found in [12].

Poisson summation formula (8) is easily generalized to even functions of two variables as follows

√
αβ

∞∑
m,n=−∞

φ(αm, βn) =
√
γδ

∞∑
m,n=−∞

φc(γm, δn), αγ = βδ = 2π, (16)

where

φc(t, s) =
2

π

∫ ∞
0

∫ ∞
0

φ(x, y) cos tx cos sy dxdy.

It is instructive to see what happens if (16) is applied to (15). Straightforward calculation shows that

√
αβ

∞∑
m,n=−∞

cosαβmn

cosh
√

π
2αm · cosh

√
π
2βn

=
√
γδ

∞∑
m,n=−∞

sin γδmn

sinh
√

π
2γm · sinh

√
π
2 δn

, αγ = βδ = 2π.
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Here it is assumed that the terms with m = 0 or n = 0 on the RHS of are understood as the limits

limm→0, limn→0. Setting δ = α, γ = β and making the replacement α →
√

2πα, β →
√

2πβ one obtains

(care should be taken to simplify the sum on the right)

∞∑
n=−∞

1

coshπnα

∞∑
n=−∞

1

coshπnβ
=

2

π
+ 4

∞∑
n=1

αn

sinhπnα
+ 4

∞∑
n=1

βn

sinhπnβ
, αβ = 1. (17)

It is known that [6, ch. 22.735]
∞∑
n=1

n

sinhπnα
=
K(K − E)

π2
,

with the same notations as in (11) and E = E(k) complete elliptic integral of the second kind. Therefore

(17) is Legendre’s relation EK ′ + E′K −KK ′ = π
2 in disguise.

Hyperbolic functions provide many other transformations. Let’s start with the calculation of the integral

J =

∞∫
0

∞∫
0

cosxy

cosh px cosh(πy/p)
cos ax cos by dxdy.

By formula 3.981.10 from [7]:

J =

∞∫
0

cos by

cosh(πy/p)
dy

∞∫
0

cosxy

cosh px
cos ax dx

=

∞∫
0

cos by

cosh(πy/p)
· π
p

cosh πa
2p cosh πy

2p

cosh πa
p + cosh πy

p

dy

=
π

p

cosh πa
2p

cosh πa
p

·
∞∫

0

(
cosh πy

2p

cosh(πy/p)
−

cosh πy
2p

cosh πa
p + cosh πy

p

)
cos bydy

=
π√
2
·

cosh πa
2p cosh pb

2

cosh πa
p cosh pb

− π

2
· cos ab

cosh πa
p cosh(pb)

,

so finally

2

π

∞∫
0

∞∫
0

cosxy

cosh px cosh(πy/p)
cos ax cos by dxdy =

√
2 ·

cosh πa
2p cosh pb

2

cosh πa
p cosh pb

− cos ab

cosh πa
p cosh pb

. (18)

We see that the right hand side is the original function (taken with the minus sign) up to an additional

term, which a factorizable function.

Applying Poisson summation (16) to (18) one finds

√
2

∞∑
m=−∞

1

coshπαm

∞∑
n=−∞

1

coshπβn
=

∞∑
m=−∞

cosh παm
2

coshπαm

∞∑
n=−∞

cosh πβn
2

coshπβn
, αβ = 2. (19)

(19) is equivalent to the modulus transformation of Landen’s transform, i.e. (1 + k1)(1 + k′) = 2 in the

notation of the book [6]. Indeed, if α = K(k′)
K(k) , β = Λ(k1)

Λ(k′
1) , then

Λ′ =
π

2

∞∑
n=−∞

1

coshπβn
,
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dn

(
iK ′

2
, k

)
=

π

2K

∞∑
n=−∞

cosh παn
2

coshπαn
,

dn

(
iΛ

2
, k′1

)
=

π

2Λ′

∞∑
n=−∞

cosh πβn
2

coshπβn
.

Since dn
(
iK′

2 , k
)

=
√

1 + k, eq. (19) reduces to (1 + k)(1 + k′1) = 2, as required.

There is an integral analogous to (18) involving odd functions:

2

π

∞∫
0

∞∫
0

sinxy

cosh px cosh(πy/p)
sin ax sin by dxdy =

√
2 ·

sinh πa
2p sinh pb

2

cosh πa
p cosh pb

− sin ab

cosh πa
p cosh pb

. (20)

More complicated pair of integrals:

4

π

∞∫
0

∞∫
0

cosxy cos ax cos by

(1 + 2 coshx)(1 + 2 cosh 2πy
3 )

=
√

3 sin ab
cosh b

2

sinh 3b
2

cosh πa
3

sinhπa
− 1 + cos ab

(1 + 2 cosh 2πa
3 )(1 + 2 cosh b)

, (21)

4

π

∞∫
0

∞∫
0

sinxy sin ax sin by

(1 + 2 coshx)(1 + 2 cosh 2πy
3 )

=

√
3(1− cos ab) cosh b

2 cosh πa
3

sinh 3b
2 sinhπa

− sin ab

(1 + 2 cosh 2πa
3 )(1 + 2 cosh b)

. (22)

Eqs. (21), (22) lead to identities

α

∞∑
n=1

n cosh παn√
3

sinh
(
παn
√

3
) +

1

α

∞∑
n=1

n cosh πn
α
√

3

sinh
(
πn
√

3/α
) = − 1

2π
√

3
+
α

4

( ∞∑
n=−∞

1

cosh 2παn√
3

+ 1
2

)2

, (23)

√
3

4

∞∑
n=0

1
1
2 + cosh πα(2n+1)√

3

∞∑
n=0

1
1
2 + cosh πβ(2n+1)√

3

=

∞∑
n=1

χ(n)
cosh παn

2
√

3

sinh πα
√

3
2

∞∑
n=1

χ(n)
cosh πβn

2
√

3

sinh πβ
√

3
2

. (24)

Of course it is possible to derive both (23) and (24) from the theory of elliptic functions. However it is not

at all obvious that such symmetric relations exist in the first place and moreover the methodology developed

in this section is useful in derivation of identities that probably can not be obtained from the theory of

elliptic functions in a straightforward manner. One such identity is

f2
β(θ)− 2 cos θfβ(θ)fβ(2θ) +

cos θ

sin2 θ
fβ(θ) =

∞∑
n=−∞

1

(coshβn− cos θ)2
+ 4

∞∑
n=1

n coth βn
2

coshβn− cos 2θ

where

fβ(θ) =

∞∑
n=−∞

1

coshβn− cos θ
.

III. Two-dimensional Mordell integrals

Let’s multiply (18) by e−
a2

2
− b2

2 and integrate with respect to a and b

∞∫
0

∞∫
0

cosxy

cosh px cosh(πy/p)
e−

x2

2
− y

2

2 dxdy =

√
2 ·

∞∫
0

∞∫
0

cosh πa
2p cosh pb

2

cosh πa
p cosh pb

e−
a2

2
− b2

2 dadb−
∞∫

0

∞∫
0

cos ab

cosh πa
p cosh pb

e−
a2

2
− b2

2 dadb.
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This can be written in the following symmetrical form

√
2 ·

∞∫
0

∞∫
0

cos 2xy

coshαx coshβy
e−x

2−y2dxdy =

∞∫
0

cosh αx
2

coshαx
e−x

2

dx ·
∞∫

0

cosh βy
2

coshβy
e−y

2

dy, αβ = 2π. (25)

Note the similarity of (25) with the Landen transform (19). Since Mordell integrals can be understood

as continous analogs of theta functions [3], (25) can be understood as Landen’s transform for Mordell

integrals. However the factorization on the left side of (25) does not occur because of the function cos 2xy

in the integrand (in the discrete case it was possible to choose the parameters so that cos 2xy didn’t have

any mixing effect on the two series, so the double series factorized; unfortunately this is not possible for an

integral).

Combining (25) with (6) leads to

∞∫
0

∞∫
0

e−x
2−y2 cos 2xy

coshαx cosh(2πy/α)
dxdy =

α

2
√
π

 ∞∫
0

cosh αx
2

coshαx
e−x

2

dx

2

. (26)

Corollary 1.
∞∫

0

∞∫
0

cos π2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
dxdy =

√
n

2
I2

1 −
√
n

2
I2

2 +
√
nI1I2,

∞∫
0

∞∫
0

sin π
2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
dxdy =

√
n

2
I2

2 −
√
n

2
I2

1 +
√
nI1I2,

where I1 =

∞∫
0

cosh πx
2

coshπx
cos

πnx2

2
dx, I2 =

∞∫
0

cosh πx
2

coshπx
sin

πnx2

2
dx, n > 0.

In analogous manner (20) and (7) give

∞∫
0

∞∫
0

xye−x
2−y2 sin 2xy

coshαx cosh(2πy/α)
dxdy =

α

2
√
π

 ∞∫
0

sinh αx
2

coshαx
xe−x

2

dx

2

. (27)

Corollary 2.
∞∫

0

∞∫
0

cos π2

(
nx2 − y2

n

)
sinπxy

coshπx coshπy
xy dxdy =

√
n3

2

(
I2

4 − I2
3 + 2I3I4

)
,

∞∫
0

∞∫
0

sin π
2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
xy dxdy =

√
n3

2

(
I2

3 − I2
4 + 231I4

)
,

where I3 =

∞∫
0

x sinh πx
2

coshπx
cos

πnx2

2
dx, I4 =

∞∫
0

x sinh πx
2

coshπx
sin

πnx2

2
dx, n > 0.

Ramanujan showed that integrals I1 − I4 have closed form expressions for rational n [3]. So the corre-

sponding two-dimensional integrals also have closed form expressions.
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Examples.
∞∫

0

∞∫
0

cos π2

(
3x2 − y2

3

)
cosπxy

coshπx coshπy
dxdy =

√
3− 1

2
√

6
,

∞∫
0

∞∫
0

sin π
2

(
3x2 − y2

3

)
cosπxy

coshπx coshπy
dxdy =

2−
√

3

4
√

2
,

∞∫
0

∞∫
0

cos π2
(
x2 − y2

)
sinπxy

coshπx coshπy
xy dxdy =

1

8
√

2π2
.

It is possible to calculate even more general integrals. In analogy with Ramanujan’s integral analogs of

theta functions [3] define

Φα,β (θ, φ) =

∞∫
0

∞∫
0

cosπxy cos θx cosφy

coshπx coshπy
exp

{
−π

2

(
αx2 + βy2

)}
dxdy.

Then √
αβ exp

{
1

2π

(
θ2

α
+
φ2

β

)}
Φα,β (θ, φ) + Φ 1

α
, 1
β

(
iθ

α
,
iφ

β

)

=
√

2

∞∫
0

cosh πx
2 cosh θx

α

coshπx
exp

{
−πx

2

2α

}
dx ·

∞∫
0

cosh πy
2 cosh φy

β

coshπy
exp

{
−πy

2

2β

}
dy. (28)

Equation (28) generalizes (26). Now one can apply the method developed by Ramanujan [3] to the function

Φα,β (θ, φ). From the definition of Φα,β (θ, φ) it follows that

Φα,β (θ + πi, φ) + Φα,β (θ − πi, φ) = exp

{
− θ2

2πα

}√
2

α

∞∫
0

cosφy cosh θy
α

coshπy
exp

{
−π

2

(
β +

1

α

)
y2

}
dy. (29)

Now combine (28) and (29) to get√
β

2
exp

{
φ2

2πβ

}(
exp

{
(θ + πα)2

2πα

}
Φα,β (θ + πα, φ) + exp

{
(θ − πα)2

2πα

}
Φα,β (θ − πα, φ)

)
=

− exp

{
θ2

2πα

} ∞∫
0

cos θy cosh φy
α

coshπy
exp

{
−π

2

(
α+

1

β

)
y2

}
dy+

√
2 exp

{
πα

8
+

θ2

2πα

}
cosh

θ

2
·
∞∫

0

cosh πy
2 cosh φy

β

coshπy
exp

{
−πy

2

2β

}
dy.

These formulas reduce the problem to the calculation of one-dimensional Mordell integrals. Similar formulas

also exist for

Ψα,β (θ, φ) =

∞∫
0

∞∫
0

sinπxy sin θx sinφy

coshπx coshπy
exp

{
−π

2

(
αx2 + βy2

)}
dxdy.
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IV. Absolute value of the Mordell integral

For real α one has for the square of the absolute value of the Mordell integral

4|I(α)|2 =

∫ ∞
−∞

eiαx
2

coshπx
dx ·

∫ ∞
−∞

e−iα(x+y)2

coshπ(x+ y)
dy

=

∫ ∞
−∞

∫ ∞
−∞

e−iαy
2−2iαxy

coshπx coshπ(x+ y)
dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−2iαxy

coshπ(x− y/2) coshπ(x+ y/2)
dxdy

= 2

∫ ∞
−∞

dy

∫ ∞
−∞

e−2iαxy

cosh 2πx+ coshπy
dx

= 4

∫ ∞
−∞

sinαy2

sinhπy sinhαy
dy.

We can write this as∫ ∞
0

sinαx2

sinhπx sinhαx
dx =

(∫ ∞
0

cosαx2

coshπx
dx

)2

+

(∫ ∞
0

sinαx2

coshπx
dx

)2

. (30)

Analogous considerations lead to other formulas of similar kind∫ ∞
0

sin 2αx2

sinhπx sinhαx
dx =

∫ ∞
0

cos 2αx2

coshπx coshαx
dx =

∣∣∣∣∫ ∞
0

cosh πx
2

coshπx
e
iαx2

2 dx

∣∣∣∣2 , (31)

π

∞∫
0

sin 3αx2

4π coth x
2 coth αx

2 −
1√
3

cos 3αx2

4π

(1 + 2 coshx)(1 + 2 coshαx)
dx =

∣∣∣∣∣
∫ ∞

0

e
3iαx2

4π

1 + 2 coshx
dx

∣∣∣∣∣
2

, (32)

and to the following curious closed form∫ ∞
0

tanhπx tanhαx cos 2αx2 dx = 0. (33)

Here we give an explanation for the first equality in (31) and for (33). For the first, starting from (15)

we put b = αa

2

π

∞∫
0

∞∫
0

cosxy

cosh
√

π
2x · cosh

√
π
2 y

cos ax cosαay dxdy =
sinαa2

sinh
√

π
2a · sinh

√
π
2αa

and integrate with respect to a from 0 to ∞ to obtain∫ ∞
0

cos 2αx2

coshπx coshαx
dx =

∫ ∞
0

sin 2αx2

sinhπx sinhαx
dx.

For the second, starting from (14) and its sine analog

2

π

∞∫
0

∞∫
0

cosxy

sinh(
√
πx) sinh(

√
πy)

sin ax sin bydxdy =
1

2
tanh

√
πa

2
tanh

√
πb

2
− 1− cos ab

sinh(
√
πa) sinh(

√
πb)

, (34)
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[by the way (34) implies the self reciprocal function 1−cosxy
sinh(

√
πx) sinh(

√
πy)

] we put b = αa in both, take the sum

of (14) multiplied by e
iα

2
a2

and (34) multiplied by ie
iα

2
a2

, integrate from 0 to ∞ using formulas∫ ∞
0

cos ax cosαay e
iα

2
a2

da =

√
πi

2α
e−

i

2α
(x2+α2y2) cosxy,

∫ ∞
0

sin ax sinαay e
iα

2
a2

da = i

√
πi

2α
e−

i

2α
(x2+α2y2) sinxy,

to obtain

0 =
i

2

∫ ∞
0

tanh

√
πa

2
tanh

√
παa

2
e
iα

2
a2

da+

∫ ∞
0

−i(1− cosαa2) + sinαa2

sinh(
√
πa) sinh(

√
παa)

e
iα

2
a2

da.

From this it is straightforward to deduce (33) and as a byproduct∫ ∞
0

2 sin αx2

2

sinhπx sinhαx
dx =

∫ ∞
0

tanhπx tanhαx sin 2αx2 dx.

Compare (33) to the integral of Ramanujan ([8], generalizations are given in [9,10])∫ ∞
0

coshαx

coshπx
cosαx2dx =

1

2
cos

α

4
. (35)

They both contain trigonometric function of the argument αx2 and hyperbolic functions of the arguments

πx and αx. However the crucial difference between them is that the integrand in (33) has poles not only at

the zeroes of coshπx, but also at the zeroes of coshαx. Integrals of this sort are related to integrals for the

product of two hyperbolic self-reciprocal functions studied by Ramanujan ([5], formula (10)). Put in (18)

and (20) b = αa and integrate with respect to a. The result is

√
2

∫ ∞
0

cosαx2

coshπx coshαx
dx =

∫ ∞
0

cosh πx
2 cosh αx

2

coshπx coshαx
dx, (36)

√
2

∫ ∞
0

sinαx2

coshπx coshαx
dx =

∫ ∞
0

sinh πx
2 sinh αx

2

coshπx coshαx
dx. (37)

V. Connection to lattice sums

Multiplying (18) and (20) by
1√
ab

and integrating with respect to a and b leads to

√
2

∞∫
0

∞∫
0

cos x
2y2

π dxdy

coshx2 cosh y2
=

 ∞∫
0

cosh x2

2

coshx2
dx

2

, (38)

√
2

∞∫
0

∞∫
0

sin x2y2

π dxdy

coshx2 cosh y2
=

 ∞∫
0

sinh x2

2

coshx2
dx

2

. (39)

The RHS of (38) and (39) contain integral representation of certain Dirichlet L-series, while the LHS are

2D-lattice sums of Bessel and Neumann functions, as shown below on a formal level. Evaluation of double

sums of Bessel functions in terms of Dirichlet L-series is well known [11].
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Consider the double integral on the LHS of (38). First, the functions sech x2 are expanded into the

powers of e−x
2

. This results in a double sum of double integrals

∞∫
0

∞∫
0

e−(2m+1)x2−(2n+1)y2 cos
x2y2

π
dxdy,

where m and n are non-negative integers. The integral over y is easily calculated∫ ∞
0

e−(2n+1)y2 cos
x2y2

π
dy =

π

2

(
1√

π(2m+ 1) + ix2
+

1√
π(2m+ 1)− ix2

)
.

To calculate the integral over x we need formula 3.364.3 from [7]∫ ∞
0

e−(2n+1)x2√
π(2m+ 1)± ix2

dx =
1

2
(−1)m+ne∓

3πi

4 K0

(
∓πi

2
(2m+ 1)(2n+ 1))

)
.

Note that K0(ix) = −π
2 (Y0(x) + iJ0(x)), x ∈ R. As a result the double integral in (38) reduces to a

combination of double sums
∞∑

m,n=0

Z0

(π
2

(2m+ 1)(2n+ 1)
)
,

where Z0 is either Bessel J0 or Neumann Y0 function.

Acknowledgements. The author of this paper wish to thank Dr. Lawrence Glasser for valuable correspon-

dence and comments.

1 G.H. Hardy, Note on the function
∫∞
x
e

1
2 (x

2−t2)dt, Quart. J. Pure Appl. Math., 35, 203 (1903).
2 B. Cais, On the transformation of infinite series (unpublished).
3 B. Berndt and G.E. Andrews, Ramanujan’s lost notebook, part IV, Springer New York (2005).
4 E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd.ed., Oxford University Press (1948).
5 S. Ramanujan, Some definite integrals, Mess. Math., XLIV, 10 - 18 (1915).
6 E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge university press (1996).
7 I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, Boston (2000).
8 S. Ramanujan, Some definite integrals, J. Indian Math. Soc., XI, 81-87 (1919).
9 M.L. Glasser, Generalization of a definite integral of Ramanujan, J. Indian Math. Soc., 37, 351 (1973).

10 M.L. Glasser, A Remarkable Definite Integral, arXiv:1308.6361v2 (2013).
11 J.M. Borwein, M.L. Glasser, R.C. McPhedran, J.G. Wan, I.J. Zucker, Lattice sums then and now, Cambridge

University Press (2013).
12 www.someformulas.blogspot.com

http://arxiv.org/abs/1308.6361
www.someformulas.blogspot.com

	Introduction: self-reciprocal Fourier transformations
	Functions of two variables
	Two-dimensional Mordell integrals
	Absolute value of the Mordell integral
	Connection to lattice sums
	References

