
Reinforcement Learning with Swingy Monkey

Kevin Eskici∗, Luis A. Perez†, Aidi Zhang‡
Harvard University

Abstract
This paper explores model-free, model-based, and mixture mod-
els for reinforcement learning under the setting of a Swingy-
Monkey game 1. SwingyMonkey is a simple game with well-
defined goals and mechanisms, with a relatively small state-
space. Using Bayesian Optimization 2 on a simple Q-Learning
algorithm, we were able to obtain high scores within just a few
training epochs. However, the system failed to scale well after
continued training, and optimization over hundreds of iterations
proved too time-consuming to be effective. After manually ex-
ploring multiple approaches, the best results were achieved using
a mixture of ε-greedy Q-Learning with a stable learning rate,α,
and δ ≈ 1 discount factor. Despite the theoretical limitations of
this approach, the settings, resulted in maximum scores of over
5000 points with an average score of x̄ ≈ 684 (averaged over
the final 100 testing epochs, median of m̄ = 357.5). The results
show an continuing linear log-relation capping only after 20,000
training epochs.

Introduction
Recent advancements in reinforcement learning have led to an
increase in activity in the field. In particular, three main ap-
proaches have surfaced [2].

Overview of Reinforcement Learning
The first approach can be thought of model-based reinforce-
ment learning in which the agent, in our particular case termed
Monkey, attempts to learn a model of the world. Learning a
model is as simple as learning the transition probabilities for
each (s, a, s′) triplet in the world, where s, s′ ∈ S are prede-
fined states (labeled P). We also have that action a at state
s leads to s′ with some non-zero probability. The essence of
the model based-approaches is to learn these probabilities. In
addition, the model based approach also learns a model of the
rewards received at each state-action tuple, R. Once the model
(P,R) is known, training occurs in the form of finding the op-
timal policy, π∗, which is typically accomplished using either
Policy Iteration or Value Iteration as described by Avi Pfeffer
[1]. Typically, the agent is allowed a phase or episode of a cer-
tain number of epochs during which he uses the previous opti-
mal policy π∗i to make decisions. At the end of each episode,
∗keskici@alumni.harvard.edu
†luisperez@alumni.harvard.edu
‡aidizhang@alumni.harvard.edu

Computer Science 181: Machine Learning
Practical 2, Harvard University

1The code is hosted on a public repository here under the prac4
directory.

2The optimization took place using the open-source software made
available by HIPS here.

the agent now has a better model of the world and performs an
optimization on this new model, leading to

π∗i+1 ← OPT{(P,R)i}

where (P,R)i is the currently learned model.

A second approach is the well-known and often-used Q-
Learning Algorithm. This is a model-free learning mechanism
which only implicitly learns transition probabilities through
the maximization of the Q : S × A → R function. The objec-
tive is to take the rewards obtained from different sequences
of actions in particular states as samples in approximating
the true total value of a state-action tuple (s, a), given by
Q(s, a). The approach is theoretical grounded in the idea of
stochastic gradient ascent, and typically involves a learning
rate parameter α > 0 which can be tweaked, as we do in this
paper, to improve the rate of convergence onto an optimal
policy (convergence is not always guaranteed). The simplicity
with which Q-Learning can be implemented is surprising, as
it is the method which led to some of the best results after
optimizing the parameters.

A third approach utilizes a mixture of model-free and model-
based learning. While the model-based approach learns a
model of the world and then solves for an optimal action pol-
icy π∗, a method known as Temporal Difference Learning does
away with finding the optimal policy. It instead collects in-
formation on the world, developing a model P of transition
probabilities on state-action-state triplets and a model R of the
rewards for each state-action tuple. It then uses an approach
where it attempts to estimate the value function V (s) for each
s ∈ S. This leads to faster propagation of negative rewards,
and typically faster learning. Once the value function has been
defined, the action of choosing the optimal policy involves a
simple expectation maximization procedure.
Lastly, in this paper we also introduce the topic of parameter
optimization through Bayesian optimization, as discussed by
Snok, Larochelle, and Adams [3]. TD Learning and Q Learn-
ing were both heavily optimized, and model based learning
only slightly so. While the theoretical properties of conver-
gence of both model-based and TD learning would have led us
to belief in them performing better , we actually found that Q-
Learning, along with Bayesian Optimization of the parameters,
led to both an incredibly short training epoch (under 10 epochs)
as well as an impressively robust, long-term model.

https://github.com/kandluis/machine-learning
https://github.com/HIPS/Spearmint

Figure 1: The SwingyMonkey game windows, with different
state parameters labeled.

SwingyMonkey
SwingyMokey is a simple game, similar in kind to the popu-
lar, now defunct, FlappyBird 3. The mechanics of the game
are simple, and are discussed in more detail in Section . The
purpose of the game is to cross have the Monkey cross through
as many tree “gaps” as possible by “swinging” from branch to
branch.
In this paper, we explore described reinforcement learning ap-
proaches and provide both a theoretical foundations as well as
experiment results. The code for the simulations is open-source
and available on gitHub (git@github.com:kandluis/machine-
learning.git). Where deemed relevant, we present snippets
from the code.

Methods
In this section, we introduce a thorough representation of the
game dynamics as well as in-depth theoretical foundations for
the RL methods utilized. Additionally, we discuss the parame-
ters for each method and their expected effect on training. We
finalize the section with a short discussion on parameter opti-
mization through the use of the Spearmint software package.

SwingyMonkey Mechanics
We now introduce the mechanics of the SwingyMonkey game,
as well as a description of parameters used throughout the mod-
els described in subsequent sections.
In Figure 1, we have the SwingyMokey game window. Look-
ing at the image, we see that we actually have access to a total
of seven variables for use in the description of the state space.
The window size used for the monkey were 600× 4004.
Reward definitions are as follows:

• Reward of +1 for passing a tree trunk

• Reward of -5 for hitting a tree trunk

• Reward of -10 falling out of the game screen

At this point, it’s of interest to note that the above rewards are
well geared for negative reward propagation in Q-Learning.
Q-Learning tends to suffer from the inability to propagate
negative rewards quickly (due to the maximization aspect of
the propagation, which tends to favor positive values).

3Information on FlappyBird an online version of the game can be
found here.

4Other parameters utilized are defined in parameters.py.

The first challenged in the training of the monkey the bucketing
of the above state space in order to facilitate learning. While
it is possible to train on a large state space, faster learning can
occur with a smaller set of feasible states. Additionally, some
states are redundant. It’s not necessary to know the absolute
location of the monkey or the trees. Given that the tree itself
never moves off screen in the vertical direction, simply having
the distance from the monkey to the tree vertically and horizon-
tally should be enough. We therefore define our states s ∈ S
as s = (h,w, v) (triplets) of three values. Let dv be the vertical
distance in pixels of the the monkey from the tree, dh be the
horizontal distance, and vm be the reported vertical velocity of
the monkey in pixels per second. The values are given by:

h = round(dh/ph) (1)
w = round(dw/pw) (2)
v = round(vm/pv) (3)

where p = (ph, pw, pv) is our current parameter vector.
Intuitively, the value pw × ph defines a discretization of the
screen into buckets of that dimension. The parameter pv does
the same thing for the possible values of the velocity. With this
definition, not only have we reduced the state space, we have
introduced just three parameters which allow use to tweak the
total size of the state-space. Naively, we would expect smaller
state-spaces to learn more quickly but perform more poorly
than larger state spaces.

Given the above definition of our parameterized state space,
from now on referred to as S for succinctness, we now focus
on defining the action space, A. In the case of SwingyMokey,
the action space is relatively simple, with only two possible
actions in every state, “jump” and “no jump”. For simplicity,
we will define this action space as A = {0, 1} where 0
corresponds to “no jump” and 1 to “jump”.

The goal of the monkey is to receive as high a reward as
possible, which is directly correlated with how many trees is
can successfully pass without dying. The monkey is always
attempting to maximize his reward, with the exception of a few
of our implementation which include an ε-greedy approach.

For the above reasons, we chose to consider this problem in
the general case. We define then our reward function in terms
of the total reward that the monkey obtains after T ticks of
the clock (which is how often Monkey reports his state and
reward).

Rtotal = lim
T→∞

T∑
t=1

R(st, at) (4)

With the above in mind, we have generalized our problem to a
infinite horizon reinforcement learning problem.

Models
Model-based Learning As discussed in by Pfeffer [1], RL
can be thought of as a Markov decision process. We can
therefore attempt to learn by first creating a model for the
world. We label our approximation for the model at episode
i as Mi = (Pi, Ri) where Pi : S × A × S → [0, 1] and
Ri : S × A → R are our summaries of our collected statistics
(the transition probabilities and the rewards). This information
can easily be collected, and we do so, during the each action of

2

http://flappybird.io/

the monkey takes 5. We keep a running total of:

Rtotal : S ×A → R (5)
SAtotal : S × A→ N (6)

SAStotal : S ×A× S → N (7)

The purpose of Function 5 is to simply keep a running total
of the rewards received for each state-action tuple. Similarly,
Function 6 keeps a running count of the number of times state
s ∈ S has been visited and action a ∈ A has taken place.
Lastly, Function 7 keeps count of the number of times that
state s′ ∈ S has been reached after taking action a from state s.

With these parameters, it becomes possible to reconstruct the
model 6. The parameters can be estimated using the formulas:

E[R(s, a)] =
Rtotal(s, a)

SAtotal(s, a)
(8)

P (s, a, s′) =
SAStotal(s, a, s

′)

SAtotal(s, a)
(9)

We now have a way to approximate our transition model,M.
Therefore, after each epoch, our implementation of model-
based learning 7 simply needs to calculate the optimal policy,
π∗i : S → A. This can be done using either Value Iteration or
Policy Iteration. For factors of simplicity, our implementation
make use of Value Iteration to approximate the best policy. Our
initial policy is defined as ∀s ∈ S:

π∗0(s) = 0 (10)

In addition to the paramers defined previously, model based
learning also takes as input a discount rate, γ.

Model based learning is theoretically able to learn faster.
However, it runs into issues of over-exploitation rather than
exploration. Our simple implementation does not address these
issues directly, though it’s possible to do so using something
like ε-greedy learning or Boltzmann temperature learning.

The results of our implementation can be found in the file mod-
elbased.py. The model can be used using the command:
@: python run.py --live-train=50 ModelBased

TD-Learning In addition to a model-based learner, we also
implemented a mixed approach termed Temporal Difference
Learning 8. The theory behind temporal difference learning is
that rather than calculating an optimal policy every episode, as
is done in model-based learning, requiring the use of either Pol-
icy Iteration or Value Iteration, it is possible to instead sample
the rewards and perform stochastic gradient ascent on the value
function, V : S → R. For each s ∈ S, we have that V (s) is the
expected value of the state. If we can approximate the value
function, then at each step, we can choose the optimal policy:

π∗(s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V (s′)

]
(11)

Intuitively, Equation 11 simply attempts to pick the action a
which maximizes our expected reward. The reward we receive

5See tdlearner.py (from whom modelbased.py inherits).
6See tdlearner.py for more information.
7The implementation of the model based learning class can be

found in modelbased.py.
8A good explanation of TD-Learning can be found at Wikipedia.

now, plus the expected reward from whatever new state s′ we
transition into. The action is then the optimal. How does one
approximate the function V . Note that by the above, we can
actually consider V (s) to be a random variable, and borrowing
ideas introduced in the Q-Learning Section, we can generate
the following update rule for the value on visiting state s′ and
receiving reward r:

V (s) = V (s) + α [(r + γV (s′))− V (s)] (12)

where we can note that r+ γV (s′) is the sample for V (s), and
α is a new parameter, the learning parameter, which we use to
control the importance of new observations.

The advantages of TD-Learning over Model-Based learning
lies in the simplicity of implementation of TD-Learning (you
don’t need to implement either Policy Iteration or Value
Iteration). The disadvantage, of course, is that the model
might not learn quickly enough. Due to the α factor, there
exists some level of exploration that occurs. However, the
risk of exploitation is still present, so introducing an ε-greedy
approach is still recommended with this approach.

The results of our implementation can be found in two files,
tdlearner.py and tdlearnerbayes.py. The models can be run
one after the other using:

@: python run.py [opts] TDLearner TDLearnerBayes

Q-Learning Q-Learning is a model free approach to rein-
forcement learning. In fact, this is the approach we found the
most successful for our problem, and is therefore the one for
which we made the most optimization and attempted the most
number of iterations. We begin our discussion with the theory
behind Q-Learning. Reinforcement learning can be thought of
as simply attempting to solve for the function Q : S ×A → R.
Once this function has been obtained, the task of calculating
the optimal actions is simple:

π∗(s) = argmax
a∈A

Q(s, a) (13)

Q-learning takes the approach of stochastic gradient ascent,
which makes sense in the problem setting given that the re-
wards received can be taken to be samples from a distribution.
Recalling the definition of the Q function for the infinite hori-
zon case with γ as the discount factor, we have:

Q(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a) max
a′∈A

Q(s′, a′) (14)

= R(s, a) + γEs′
[
max
a∈A

Q(s′, a′)

]
(15)

= Es′
[
R(s, a) + γmax

a∈A
Q(s′, a′)

]
(16)

where we have defined P (s′ | s, a) as the probability of transi-
tioning into state s′ ∈ S given that we take action a ∈ A from
state s ∈ S . If we take the above look at Q, an approxima-
tion can be done relatively simply. On each transition to a new
state s′ ∈ S , we can simply update our value for Q(s, a) for
our previous state s and our previous action a given our new
observation of the reward, r + γmaxa′∈AQ(s′, a′):

Q(s, a)← Q(s, a) + α

[
(r + max

a′∈A
Q(s′, a′))−Q(s, a)

]
(17)

3

http://en.wikipedia.org/wiki/Temporal_difference_learning

The intuition for this is that we’re updating our current estimate
of Q(s, a) by our observed sample of the value of Q(s, a). We
have now extended our set of possible parameters further with
the following:

p = p ◦ [γ, α] (18)

This simple implementation of Q-Learning can be found in the
file qlearner.py.
Something of particular interest, however, is the learning rate
α used by our model. In particular, the code in qlearner.py
contains a definition of alpha as follows:

lambda i : a l p h a

The idea behind this anonymous function is that we can actu-
ally make the learning rate depend on some counter value i.
In fact, looking at at the file qlearner2.py, we find a slightly
more complex implementation of Q-Learning which sets the
discount factor, γ, at the Bayesian optimized value 9, and re-
places then further replace the learning rate α with two new
parameters, x0 and k. The two parameters are in fact intended
to model an inverted logistic function with the following for-
mula:

lambda(i) =
1

1 + ek(i−x0)
(19)

While this does not satisfy the theoretical properties guarantee-
ing convergence of Q-Learning [2], the model does work rela-
tively well once it is optimized. Note that the input parameter
i is simply:

i = SAtotal(s, a)

where (s, a) is the state-action tuple that our Equation 17 is
updating.

However, if we wish to decay our learning rate so that the fol-
lowing properties hold:

∞∑
i=1

αi =∞ (20)

∞∑
i=1

α2
i <∞ (21)

we take a modified harmonic simple harmonic function. That
is, we have:

lambda(i) =
pα
i

(22)

where we take the above value ⇐⇒ lambda(i) ≤ 1. We take
pα as an additional parameter.

This is in fact implemented within the file qlearer3.py. The
default parameters have been optimized (only briefly) using
the method explained in Section .

Furthermore, in qlearner3.py we also introduce the idea
of ε-greedy learning. In order to balance exploration with
exploitation, our learner also utilizes a scaled function similar
to that defined in Equation 22 with parameter pε. Then, at each
decision-making step, the algorithm will, with probability ε,
take a random action. Note that ε scales with the number of
decisions that the monkey has made.

9See Section for more information

The above learner had good results, as is discussed in Section
. However, we went a step further and modified the learning
so that a different decay function and ε-exploration function
could be used. The code for this final iteration of our learner
can be found in qlearner4.py.

All of the above Learner can be run relatively simply with:

@: python run.py [opts] QLearnerX

for X ∈ {1, 2, 3, 4}.

Optimizing the Parameters
One particular problem with an ever expanding set of model
parameters p is selecting the correct value for each parameter.
It’s not immediately clear what the values should be, though
we can typically bound them by both their type τ : P →
{INT,FLOAT} and their ranges. For example, we have the
following restrictions on the parameters common to all of our
models, ph, pw, pv:

τ(ph) = τ(pw) = τ(pv) = INT (23)
1 ≤ ph ≤ 400 (24)
1 ≤ pw ≤ 600 (25)

1 ≤ pv ≤ 2̃000 (26)

We can define similar bounds for other parameters. For exam-
ple, we have the following:

τ(α) = τ(ε) = τ(γ) = FLOAT (27)
0 ≤ α ≤ 1 (28)
0 ≤ γ ≤ 1 (29)
0 ≤ ε ≤ 1 (30)

Similar restrictions apply to all of the parameters used in our
implementations. If no restriction can be placed, the simply
giving a large enough state space should suffice for finding
a local optimization. In restricting the possible values of our
parameters by both type and size, we create a space Z . The
problem is then to optimize some objective function, f , by
traversing this space of possible values. For each z ∈ Z , we
calculate the objective f(x) and use this value to inform us as
to what the optimal might be and where it might occur. We
then choose a new z′ ∈ Z which is likely to inform us the most
about the optimal value and location.

The above process can be accomplished quickly using
Bayesian optimization, as discussed in by Adams et al.[3]. For
our purposes, the description of how this is accomplished is
outside the scope of this paper. Instead, we simple explain the
software used and the parameters that needed to be set for our
uses.
The software used is the open source system Spearmint, hosted
on github. 10. We defined are objective function rather simply
as follows:

1. First, we load our SwingyMonkey game and train over 100
epochs (live/death cycles)

2. Next, we continue our training for another 100 epochs.

3. Lastly, we average the results of the last 100 epochs and return
the negation of this value, −s̄.

The negation is returned because by default the Spearmint soft-
ware system serves to minimize a function. In our particular

10https://github.com/HIPS/Spearmint

4

https://github.com/HIPS/Spearmint

example, we wish to maximize. The reason we chose the above
parameters is due to our definition of “good” learning as learn-
ing both quickly and well. After multiple iterations, we found
that 200 iterations appeared to be a good middle ground. In the
git repository for this project, the files used by Spearmint can
be found in the root directory under different names.

Results and Discussion
In this section, we present the empirical results of our different
models, and discuss the possible trade-offs between each.
First, we note that as unsupervised learning, the first difficulty
faces is in what is termed to be a “good.” Intuitively, we now
illustrate this dilemma with a quick example. Let S be our
state space. The suppose we have |S1| << |S2|. Then it makes
sense for training on S2 to take significantly longer. Simply
exploring the state space will take longer. However, it might be
possible that the second state space will lead to better results
in the long-run, while the initial state space, because of its
limited size, will learn quickly and converge quickly.

We’ve discussed this problem already in Section . As discussed
there, one metric that we used involves quick learning. We
actually optimized the majority of our models so that they
would learn as quickly as possible over 200 epochs by running
them through the SpearMint optimizer.

First, it is important to mention that the results for our model-
based learner we rather disappointing. We’re still exploring the
possibility of a bug keeping us from achieving good results. As
such, we exclude any preliminary results of the model based
approach from discussion, focusing instead on TD-Learning
and Q-Learning.

Long-Term Learning
For Figure 3, the mean for the final 1000 iterations is
≈ 130.107 and the median is 89. These are the results of
TD-Learning on the same parameter space as Q-Learning
without optimization. Neither takes advantage of ε-greedy
learning or of decaying learning rates. Intuitively, we would
have expected TD Learning to perform significantly better
than Q-Learning. However, this does not appear to be the
case. The statistics for Q-Learning are a mean of 603.99 and a
median of 406. Clearly, the Q-Learning performed better. We
can also observer this in the distribution of scores, as can be
seen in Figure ??.

In an attempt to improve TD-Learning, we tried different
sets of parameters. As we can see in Figure 2, the parameter
changes led to an improvement in the scores. The mean and
median became ≈ 215.23752 and 144 for the final 1000
epochs. However, this is still much worse than our best
performing Q-Learner.

Another interesting property in all of the below graphs, which
can be seen most clearly when analyzing the Q-Learning re-
sults (Figure 4), is that the initial learning phase is clearly ex-
ponential in nature. In the log-plot, we can see a clear linear
relationship in the first 2000 or so iterations. After that point,
the learning begins to slow significantly. This is likely due to a
saturation in the state space or a limitation of the model itself.
The limitation seems least apparent in TD learning using the
same parameters as Q-Learning, but this might have just been
due to the fact that the learning mechanism was spectacularly
poor.

Figure 2: Plot of score vs epoch for our TD-Learner, along with
distribution of scores. Parameters used: α = 0.186493, γ =
1.0, ph = 236, pw = 530, pv = 816

5

Figure 3: Plot of score vs epoch for our TD-Learner, along
with distribution of scores. Parameters used: α = 0.15, γ =
0.95, ph = 2, pw = 2, pv = 2 (note these are the same as
Figure 4)

Figure 4: Plot of score vs epoch for our Q-Learner, along
with distribution of scores. Parameters used: α = 0.15, γ =
0.95, ph = 2, pw = 2, pv = 2

6

Short-Term Learning
We now turn our attention to the rate of learning. As discussed
previously, we actually utilized the Spearmint software to
obtain parameters over the first 200 iterations. The results
are shown below in Figures 5 (For TD-Learning) and 6 (For
Q-Learning). It’s incredible to see how quickly the monkey
learns, in both models. For average statistics, we have that the
Bayes optimized TD-Learner achieved a mean of 118.67 and
median of 65.5 and the Bayes optimized Q-Learner achieved a
mean of 44.5 and median of 26.5.

In this scenario, it’s surprising to see that the Q-Learner is out-
performed by the TD-Learner. We propose two possibilities for
this:
• Propagation of negative reward. The TD-Learning algorithm

will learn more quickly not to die. We can see that TD-
Learning takes rises much more sharply at the beginning.
However, this does not explain everything, since the score is
actually an average of the final 100 epochs.

• TD-Learner was optimized for a longer period of time using
Spearmint. The optimization took over 300 data points, while
the optimization for Q-Learner only utilized 156 data points.

We lean towards the second explanation, given the fact that Q-
Learner does much better than TD-Learner in the long-run for
the purposes of our tests.

Conclusion
In conclusion, our analysis demonstrates a remarkable
improvement of any method through the use of Bayesian
parameter optimization. Given more computational resources
and time, we are led to believe that optimizing the parameters
for longer training periods (such as periods of 2048, 4096)
and averaging over longer testing periods (such as 1024)
would have led. For futher work, we would expect that
allowing for more complex decay functions in the learning
rate would improve the final results. In our preliminary tests
with qlearner4.py, we already see some of these results.
However, another area of interests would be to apply Dyna-Q
or other non-converging algorithms to this problem. More
research remains to be done into this particular problem, but
from our results above, it seems that ε-greedy Q-learning with
optimized parameters using Spearmint perform well, learning
both quickly and well in the long-run.

In conclusion, a Bayesian optimized Q-Learning algorithm ap-
pears to do well enough for the purposes of training the monkey
to swing.

References
[1] Avi Pfeffer; revised by David Parkes and Ryan Adams.

“Markov Decision Processes (continued)”. Lecture notes
given for Spring Semester 2015, Harvard University.

[2] Avi Pfeffer; revised by David Parkes and Ryan Adams.
“Reinforcement Learning”. Lecture notes given for
Spring Semester 2015, Harvard University.

[3] Hugo Larochelle Jasper Snoek and Ryan Precott Adams.
“Practical Bayesian Optimization of Machine Learning
Algorithms”. In: Advances in Neural Information Pro-
cessing Systems (2012).

Figure 5: Plot of Score vs Epoch for our TD-Learner with
Bayes Optimization over 200 Epochs, along with distribu-
tion of scores. Parameters used: α = 0.303168, γ =
0.954306, ph = 227.0, pw = 442, pv = 440

7

Figure 6: Plot of score vs epoch for our Q-Learner, along with
distribution of scores. Parameters used: α = 0.368372, γ =
1.0, ph = 16, pw = 85, pv = 1000

8

	Introduction
	Overview of Reinforcement Learning
	SwingyMonkey

	Methods
	SwingyMonkey Mechanics
	Models
	Optimizing the Parameters

	Results and Discussion
	Long-Term Learning
	Short-Term Learning

	Conclusion

