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A new divergence measure for basic
probability assignment and its applications in

extremely uncertain environments
Liguo Fei, Yong Hu, Yong Deng and Sankaran Mahadevan

Abstract—Information fusion under extremely uncertain
environments is an important issue in pattern classification
and decision-making problem. Dempster-Shafer evidence
theory (D-S theory) is more and more extensively applied to
information fusion for its advantage to deal with uncertain
information. However, the results opposite to common sense
are often obtained when combining the different evidences
using Dempster’s combination rules. How to measure the
difference between different evidences is still an open
issue. In this paper, a new divergence is proposed based
on Kullback-Leibler divergence in order to measure the
difference between different basic probability assignments
(BPAs). Numerical examples are used to illustrate the com-
putational process of the proposed divergence. Then the
similarity for different BPAs is also defined based on the
proposed divergence. The basic knowledge about pattern
recognition is introduced and a new classification algorithm
is presented using the proposed divergence and similarity
under extremely uncertain environments, which is illustrated
by a small example handling robot sensing. The method
put forward is motivated by desperately in need to develop
intelligent systems, such as sensor-based data fusion ma-
nipulators, which need to work in complicated, extremely
uncertain environments. Sensory data satisfy the conditions
1) fragmentary and 2) collected from multiple levels of
resolution.

Index Terms—Dempster-Shafer evidence theory, Basic
probability assignment, Divergence, Pattern classification,
Extremely uncertain environments, Uncertainty management.

I. INTRODUCTION

The information fusion problems are investigated for
extremely uncertain environments, such as deep-sea ex-
ploration [1] and robot sensing [2], [3]. There exist many
key problems need to be handled in pattern classification
[4], [5] and decision making [6] under extremely uncer-
tain environments. Dempster-Shafer evidence theory (D-
S theory) [7], [8] has been widely focused and adopted
in recent years with its great advantage to handle and
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analyze uncertain information. This theory is widely
used in object classification [9], decision making [10],
[11], [12], [13], risk assessment [14], [15] and informa-
tion fusion [16], [17]. In these applications, Dempster’s
combination rule is very important to combine multiple
sources for an aggregated result. However, the rule has
been criticized by many researchers [18], [19] because
the counter-intuitive conditions often occur when fusing
the high conflicting evidences using this rules [19], [20].
And this kind of results have a serious influence for the
accuracy of evidence fusion.

It is so necessary and significant for researchers to
remedy this weakness of Dempster’s [7] combination
rules. To improve this shortcoming, a series of alternative
combination rules are presented [17], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32] current-
ly. Generally speaking, there exist two categories of
methods to deal with this problem. One is to improve
the Dempster’s combination rules and to reallocate the
conflict. For example, in [23], [33], Lefevre used the part of
the conflicting evidence and distributed the conflict into
the focal element sets of all the evidence proportionally.
In [26], the conflict of evidence is abandoned to utilize
because Yager believe it is useless and distribute them
into the universal set. However, sometimes it enlarges
the uncertainty of evidence and gets the unreasonable
fusion results. And the other one is to modify the
conflicting evidences before the fusion. Schubert [17] and
Han [30] proposed the modified algorithms to obtain the
weights of evidence. In [24], Deng proposed a method
about the evidence support based on the Jousselme
distance function and determine a weighted average of
all the evidence. In [28], Murphy presented a problem,
the failure to balance multiple evidence, then illustrated
the proposed solutions and described their limitations.

All of these methods can improve the fusion results
in part and make up some weakness of the combination
rule from different perspectives. However, some essence
is ignored to figure out this problem for a long time.
To resolve the problem in essence, in this paper, a new
divergence measure is proposed for difference between
BPAs based on the modified Kullback-Leibler diver-
gence. Some numerical examples are given to illustrate
the computational process.

Similarity measures are very useful in clustering and
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classification. However, classical these measures are not
fully reasonable. So, in this paper, a new similarity is
proposed based on the presented divergence and with
beautiful properties.

Pattern recognition is a branch of machine learning
that focuses on the recognition of patterns and classifica-
tions in data [34], [35]. Recently, pattern recognition has
been widely applied in different areas: character recogni-
tion, speech recognition, fingerprint recognition, remote
sensing, medical diagnosis and especially extremely un-
certain environments. However, the inevitable problems
in pattern recognition become increasingly prominent,
and the signification of uncertainty has been aware in
recent years for the securable information from sensors
of the intelligent robot is collected at multiple levels of
resolution. It is generally fuzzy, inaccurate and incom-
plete from extremely uncertain environment. Although a
lot of algorithms have been developed for pattern recog-
nition, such as K-Nearest Neighbor(K-NN) [36], Bayes
Classifier [37], Principle Component Analysis(PCA) [38]
and Linear Discriminant Analysis(LDA) [39]. These men-
tioned uncertain features of intelligent systems motivate
us to explore the evidential classification approaches
for sensor-based information fusion. In this paper, a
new algorithm is proposed for deducing overall infor-
mation derived from local information in the field of
pattern recognition based on the proposed divergence
and similarity. The purpose of this section is to design
an algorithmic framework for the fusion of multi-aspect
information in the intelligent systems in complicated,
irregularly and extremely uncertain environments. An
application example is conducted about classification
and the results demonstrated the effectiveness of our
algorithm.

The remainder of this paper is constituted as follows.
Section II introduces the D-S theory and its basic rules
and some necessary related concepts about Kullback-
Leibler Divergence. The proposed definition of diver-
gence and similarity are presented in Section III. Section
IV proposes an algorithm applying in pattern recognition
and conducts an example in a correlative application.
Conclusion is given in Section V.

II. PRELIMINARIES

A. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory (D-S theory) is pro-
posed by Dempster [7] and developed later by Shafer[8].
This theory extends the elementary event space in prob-
ability theory to its power set named as frame of dis-
cernment and constructs the basic probability assign-
ment(BPA) on it. In addition, there is a combination
rule presented by Dempster to fuse different BPAs. In
particular, D-S theory can definitely degenerate to the
probability theory if the belief is only assigned to single
elements. The basic definitions about D-S theory are
shown as follows:

1) Frame of discernment: D-S theory supposes the defi-
nition of a set of elementary hypotheses called the frame
of discernment, defined as:

Θ = {H1, H2, ..., HN} (1)

Where Θ is a set of mutually exclusive and collectively
exhaustive events. Let us denote 2Θ the power set of Θ.

2) Mass function: A mass function is also called a BPA
and defined as follows.

m : 2Θ → [0, 1] (2)

which satisfies the following conditions: m(ϕ) = 0,
∑A∈2Θ m(A) = 1.

3) Dempster’s combination rule: Dempster [7] proposed
orthogonal sum to combine these BPAs for a final result.
Suppose m1 and m2 are two mass functions. The Demp-
ster’s rule of combination denoted by m = m1

⊕
m2 is

defined as follows:

m(A) =
∑B

∩
C=A m1(B)m2(C)

1 − K
(3)

with
K = ∑

B
∩

C=ϕ

m1(B)m2(C) (4)

The K is also considered as the conflict coefficient to
measure the conflict degree of different BPAs.

B. Pignistic probability distance

In 2006, Liu [19] presented the pignistic probability
distance to measure the conflict between evidences.

Suppose m is a BPA, the pignistic probability function
[40] is defined as:

BetPm(A) = ∑
B⊆Θ

|A ∩ B|
|B|

m(B)
1 − m(ϕ)

, ∀A ⊆ Θ (5)

where |A| is the cardinality of A. The pignistic prob-
ability distance is defined as follows.

di f BetPm2
m1 = maxA⊆Θ(|BetPm1(A)− BetPm2(A)|) (6)

C. Kullback-Leibler Divergence

The Kullback-Leibler divergence [41], [42](KL diver-
gence) proposed by Kullback and Leibler is a non-
symmetric measure of the difference between two prob-
ability distributions P and Q, is also called information
divergence, information gain or relative entropy in prob-
ability theory and information theory. Usually, P denotes
the ”real” distribution of data or a precisely calculated
theoretical distribution. The probability distribution Q
generally represents a theory, model, description, or ap-
proximation of P. And its definition is shown as follows:

I(P||Q) = ∑
x∈X

P(x) ln
P(x)
Q(x)

(7)
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where P and Q are the probability distributions of the
discrete random variable X and usually have the same
type.

In theory, it is the average of the logarithmic difference
between the probabilities P and Q, where the average is
taken using the probabilities P. The KL divergence is
only defined if P and Q both sum to 1 and if Q(x) > 0
for any x such that P(x) > 0. If the quantity 0 × ln(0)
appears in the formula, it is interpreted as zero.

KL divergence has the following properties that KL
divergence is always non-negative, namely I(P||Q) ≥ 0,
a result known as Gibbs’ [43] inequality, with I(P||Q) =
0 if and only if P = Q.

III. THE PROPOSED DIVERGENCE AND SIMILAIRTY FOR
BPAS

A. The proposed correlative definition for BPAs

As a kind of uncertainty processing method, D-S
theory has been widely applied to multi-source infor-
mation combination. The combination rule plays an
important role in dealing with uncertain information,
and the counter-intuitive fusion results will be obtained
if there exist any errors in combination. As is known
that the unreasonable results typically derived from the
conflict among different original evidences. There appear
so many methods to measure the conflict between evi-
dences.

It is obvious that the conflict coefficient K and the
pignistic probability distance di f BetP provide a good
methodology to determine whether two BPAs are in
conflict. However, they can not discriminate two BPAs
which are different but coordinate. To be precise, the zero
value can be obtained of K and di f BetP for different
BPAs.

Example III.1. Let us suppose a frame of discernment
X = {θ1, θ2, θ3, θ4, θ5}, two mass functions are defined as:
m1(θ1) = m1(θ2) = m1(θ3) = m1(θ4) = m1(θ5) = 0.2;
m2{θ1, θ2, θ3, θ4, θ5} = 1.

It can be seen that the two BPAs are different, but
the calculation results are K = 0 based on Eq. (4) and
di f BetP = 0 using Eqs. (6) and (5) .

From Example III.1, a conclusion can be drawn that
the conflict coefficient K and the pignistic probability
distance di f BetP could not always be correctly to reflect
the difference between BPAs. In many real cases, the
mass function m1 denotes that the system supports each
proposition with the same probability 0.2, while m2
represents the system could not provide any information
for all the proposition. That is to say m1 provides much
more information in the specific application than m2.
Through above analysis, a kind of divergence measure
needs to be proposed to distinguish different BPAs. It is
obvious that the KL divergence is undefined if Q(x) = 0
and P(x) ̸= 0 for any x ∈ X. To break through this
shortcoming and apply it into BPAs, a new divergence
is proposed and defined as follows.

E(m1||m2) = ∑
i

m1(Fi) ln
m1(Fi)

1
2 m1(Fi) +

1
2 m2(Fi)

(8)

where Fi is a proposition in mass function m1 and m2,
respectively. The new divergence is similar with the KL
divergence in form, but it uses mass functions instead
of probability distribution functions. Specially, the BPA
will turn into probability if it’s only assigned to single
elements, and the new divergence will also degenerate
to modified KL divergence at the same time. It is note-
worthy that the Eq. (8) is the divergence degree of mass
function m1 from mass function m2, and E(m1||m2) is not
symmetric on account of its properties. So, we propose
a symmetric divergence information measure based on
E(m1||m2), shown as.

div(m1||m2) =
1
2
[E(m1||m2) + E(m2||m1)] (9)

There are several properties of the proposed definition.
The related theorems and proofs are shown as follows.

Theorem III.1. Non-Negativeness:
div(m1||m2) ≥ 0 and div(m1||m2) = 0 iff m1 is same as

m2.

Proof. Based on known knowledge ln(x) ≤ x − 1, for Eq.
(8), we have:

−E(m1||m2) =− ∑
i

m1(Fi) ln
m1(Fi)

1
2 m1(Fi) +

1
2 m2(Fi)

=∑
i

m1(Fi) ln
1
2 m1(Fi) +

1
2 m2(Fi)

m1(Fi)

≤ ∑
i

m1(Fi)[
1
2 m1(Fi) +

1
2 m2(Fi)

m1(Fi)
− 1]

= ∑
i

m1(Fi)[
1
2 m2(Fi)− 1

2 m1(Fi)

m1(Fi)
]

= ∑
i
[
1
2

m2(Fi)−
1
2

m1(Fi)]

=
1
2 ∑

i
m2(Fi)−

1
2 ∑

i
m1(Fi) = 0

So, E(m1||m2) ≥ 0, and based on Eq. (9), we have
div(m1||m2) ≥ 0. It is obvious that div(m1||m2) = 0 if
and only if m1 is same as m2.

Theorem III.2. Orthogonality:
div(m1||m2) ≤ 1 and div(m1||m2) = 1 iff m1 and m2 are

orthogonal.

Proof. (1):

1) div(m1||m2) ≤ 1
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Based on Eq. (8), we have

E(m1||m2) = ∑
i

m1(Fi) ln
m1(Fi)

1
2 m1(Fi) +

1
2 m2(Fi)

= ∑
i

m1(Fi) ln
m1(Fi)

m1(Fi) + m2(Fi)
+ ∑

i
m1(Fi)

= ∑
i

m1(Fi) ln
m1(Fi)

m1(Fi) + m2(Fi)
+ 1

Since
m1(Fi) ≤ m1(Fi) + m2(Fi)

it follows that

⇒ m1(Fi)

m1(Fi) + m2(Fi)
≤ 1 ⇒ ln

m1(Fi)

m1(Fi) + m2(Fi)
≤ 0

⇒ ∑
i

m1(Fi) ln
m1(Fi)

m1(Fi) + m2(Fi)
≤ 0 ⇒ E(m1||m2) ≤ 1

According to Eq. (9), it is obvious div(m1||m2) ≤ 1. (2):
1) div(m1||m2) = 1 iff m1 and m2 are orthogonal

When m1 and m2 are orthogonal, it should satisfy that:
1) Fi

∩
Fj = ϕ, where Fi and Fj are propositions in mass

function m.
2) m1(Fi) = m2(Fj) = 1.
In this case it is easy to get the conclusion that:

E(m1||m2) = 1 and E(m2||m1) = 1, so div(m1||m2) =
1.

Theorem III.3. Symmetry: div(m1||m2) = div(m2||m1).

Proof. According to Eq. (9), we have

div(m1||m2) =
1
2 [E(m1||m2) + E(m2||m1)]

div(m2||m1) =
1
2 [E(m2||m1) + E(m1||m2)]

}
⇒ div(m1||m2) = div(m2||m1)

Theorem III.4. Reflexivity: if E(m1||m2) = 0 or
E(m2||m1) = 0, then m1 = m2.

Proof.

E(m1||m2) = 0 ⇒ ∑
i

m1(Fi) ln
m1(Fi)

1
2 m1(Fi) +

1
2 m2(Fi)

= 0

⇒ m1(Fi)
1
2 m1(Fi) +

1
2 m2(Fi)

= 1

⇒ m1(Fi) =
1
2

m1(Fi) +
1
2

m2(Fi)

⇒ m1(Fi) = m2(Fi)

corollaries, if E(m2||m1) = 0 , then m2 = m1.

By the definition of the proposed divergence and
its related properties, it is obvious that the divergence
is also a kind of distance, which is used to measure
the difference between BPAs. Similarity measures is the
other side of divergence measure. Namely, we can define
our similarity measure based on divergence measures.

Definition III.1.

sim(m1, m2) = 1 − div(m1||m2) (10)

By Theorem III.1 and Theorem III.2, we know that 0 ≤
div(m1||m2) ≤ 1. Therefore, the similarity also has the
property 0 ≤ sim(m1||m2) ≤ 1.

B. Numerical examples
Let us go back to the Example III.1. The divergence

between m1 and m2 is 0.6931 using Eq. (9), instead of
0 value of K and di f BetP. So, the new divergence can
distinguish the two different BPAs.

Next, some numerical examples are given to illustrate
the effectiveness of the proposed new divergence.

Example III.2. Let us suppose a frame of discernment
X={θ1,θ2,θ3}, two mass functions in three differen conditions
as follows:
Case 1: m1(θ1) = 0.4, m1(θ2) = m1(θ3) = 0.3; m2(θ1) = 0.4,
m2(θ2) = m2(θ3) = 0.3
Case 2: m1(θ1, θ2) = 0.4, m1(θ1, θ3) = 0.6 ; m2(θ1, θ2) = 0.4,
m2(θ1, θ3) = 0.6
Case 3: m1(θ1, θ2, θ3) = 1 ; m2(θ1, θ2, θ3) = 1

the calculation process of divergence and similarity for three
cases as follows:
Case 1: div = 1

2 × [(0.4 × ln 0.4
1
2×0.4+ 1

2×0.4
+ 0.3 ×

ln 0.3
1
2×0.3+ 1

2×0.3
+ 0.3 × ln 0.3

1
2×0.3+ 1

2×0.3
) + (0.4 ×

ln 0.4
1
2×0.4+ 1

2×0.4
+ 0.3 × ln 0.3

1
2×0.3+ 1

2×0.3
+ 0.3 ×

ln 0.3
1
2×0.3+ 1

2×0.3
)] = 0

sim = 1 − div = 1 - 0 = 1
Case 2: div = 1

2 × [(0.6 × ln 0.6
1
2×0.6+ 1

2×0.6
+ 0.4 ×

ln 0.4
1
2×0.4+ 1

2×0.4
) + (0.6 × ln 0.6

1
2×0.6+ 1

2×0.6
+ 0.4 ×

ln 0.4
1
2×0.4+ 1

2×0.4
)] = 0

sim = 1 − div = 1 - 0 = 1
Case 3: div = 1

2 × [(1 × ln 1
1
2×1+ 1

2×1
) + (1 ×

ln 1
1
2×1+ 1

2×1
)] = 0

sim = 1 − div = 1 - 0 = 1

From the the three conditions of Example III.2, it can
be seen that the divergence is zero for the same BPAs.

Example III.3. Suppose a frame of discernment X={θ1,θ2},
two mass functions:

m1(θ1) = a, m1(θ2) = 1-a, a ∈ [0, 1]; m2(θ1) = 0.5, m2(θ2)
= 0.5

the divergence degree of Example III.3 is: div = 1
2 ×

[(a × ln a
1
2×a+ 1

2×0.5
+ (1 − a)× ln 1−a

1
2×(1−a)+ 1

2×0.5
) + (0.5 ×

ln 0.5
1
2×0.5+ 1

2×a
+ 0.5 × ln 0.5

1
2×0.5+ 1

2×(1−a)
)].

The divergence and similarity between m1 and m2 in
Example III.3 is shown in Figure 1 and Figure 2 with
the parameter a has changed, respectively. It is obvious
that when the value of a changes in the interval [0, 0.5],
the difference between m1 and m2 getting smaller and
smaller, and their divergence decreases correspondingly.
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Next, the divergence degree turns into 0 when m1 and
m2 are exactly the same. It is also equally obvious that
when the parameter a changes in the interval [0.5, 1],
the difference between m1 and m2 is growing, and their
divergence increases correspondingly. The similarity is
in like manner.

IV. A PATTERN CLASSIFICATION ALGORITHM
FRAMEWORK UNDER EXTREMELY UNCERTAIN

ENVIRONMENTS

Pattern recognition, is also called pattern classification
which is a branch of machine learning that focuses on
the recognition of patterns and regularities in data [34].
There exist many algorithms for pattern recognition,
such as K-Nearest Neighbor(K-NN) [36], Bayes Classifier
[37], Principle Component Analysis(PCA) [38], Linear
Discriminant Analysis(LDA) [39], Non-negative Matrix
Factorization(NMF) [44]. In this section, an algorithm
will be introduced for pattern recognition based on the
proposed new divergence and similarity between BPAs,
then an example will be conducted which is proposed in
[2] to illustrate the effectiveness of the proposed method.

A. Introduction of the background

In this example, the purpose of pattern classification
algorithm is to classify 3-D objects from incomplete
sensory information. The object which waiting to be
identified in this example is the available portion among
most objects in a complex environment. There are four
kinds of objects which may be extracted from a ”coffee
cup and a cube of sugar on a saucer” environment in
the knowledge base which are shown as Figure 3.

They are Pyramid, L-shape, Handle and Cylinder,
and we will call them P, L, H and C in the follow-
ing for convenience, respectively. Each classification can
been seen as an attribute of a mass function in the
frame of discernment. So, the knowledge base can be
denoted as FF = {P, L, H, C}. For an object, it can be
observed from three aspects: faces, edges and vertices.
For example, there are six faces for a cube considering
from the point of face. Thus, if focusing on the face
only, a triad can be used to represent a 3-D object as
(number, type, curvature). Based on the proposed frame
of discernment, we make the following provisions:

• The number of faces satisfies: number ∈ [1, 8].
• The type of faces satisfies: type ∈
{triangle(T), square(S), rectangle(R),
bracket(B), circle(C), disk(D)}.

• The curvature of faces satisfies: curvature ∈
{planar(P), curved(Q)}.

For above mentioned cube, it can be denoted using a
triad as (6, S, P). So, the four classifications in FF could
include 8 × 6 × 2 = 96 kinds of way to describe all
the combination. That is, there should be 96 triads to
represent all the possibility in the frame of discernment
FF. In the knowledge base, each classification includes

(a) Pyramid

(b) L − Shape

(c) Handle

(d) Cylinder

Fig. 3. Graspable objects in complex environment

its prototype objects, and denoted by mass functions.
There are three prototypical objects for Pyramid and L-
Shape, two for Handle and one for Cylinder. The mass
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functions corresponding by prototypical objects of four
classifications in FF are shown as Table I.

Each prototypical object is denoted by a list of these
attributes weighted based on the degree to which they
characterize the object. The weight distributed to FF can
identify the incompleteness of the list of the attributes.

In Table I, (4,T,P) represents for four planar triangular
faces; (1, S, P) for one planar square face; (1, R, P) for one
planar rectangular face; (2, B, P) for two planar bracket
faces; (2, C, P) for two planar circle faces; (1, R, C) for
one curved rectangular face, etc.

For the proposed pattern classification method, the
input is a mass function(BPA) in frame of discernment
FF which can reflect the uncertainty derived from the
imperfections of sensors. In this example, there are four
sensors observe shape primitives at the same time, then
provide four mass functions(BPAs) shown as follows.

Y1 = [{(1, R, P), FF}, {0.8, 0.2}],
Y2 = [{(1, S, P), FF}, {0.6, 0.4}],
Y3 = [{(2, S, P), FF}, {0.7, 0.3}],
Y4 = [{(2, T, P), FF}, {0.5, 0.5}].

That is, the first evidence supports that there exists a
planar rectangular face in the observed object with the
probability of 0.8; The second supports exists a planar
square face with the probability of 0.6; The third has the
belief that two planar square faces in with the credibility
of 0.7; The last one determine two planar triangular faces
with half of the trust.

B. The proposed algorithm for pattern classification
Here, we will introduce how to recognize the right

classification using the above proposed divergence and
similarity.

The matching algorithm for one input evidence with
the knowledge base FF = {Γ1, ..., Γn} is listed as follows.

Step 1:
1) Calculating the divergence div(Y, Xij) between Y

and each element Xij in Γi.
2) Calculating the corresponding similarity

sim(Y, Xij) based on Eq. (10).

3) Selecting the maximal similarity between Y and Xij
as the similarity of Y and Γi.

sim(Y, Γi) = maxjsim(Y, Xij) (11)

4) Assigning basic probability to each classification
in the knowledge base. The basic probability for
universal set FF is:

M(FF) = 1 − maxisim(Y, Γi) (12)

The remaining n classifications is shown as follows.

M(Γi) = (1 − M(FF)) · sim(Y, Γi)

∑i sim(Y, Γi)

= maxisim(Y, Γi) ·
sim(Y, Γi)

∑i sim(Y, Γi)

(13)

5) Determining the matching degree between the in-
put evidence Y and each classification based on the
obtained mass function(BPA).

Using the above steps, multiple mass functions(BPAs)
can be obtained based on corresponding input evidences.
The flow chart of the proposed recognition algorithm is
shown in Figure 4.

C. Experimental results and analysis
Based on above algorithm and calculation flow, at first,

calculating the divergences between all the prototypical
objects in knowledge base and the input evidences from
Y1 to Y4, and the results are shown in Table II.

Obtaining the similarities between all the prototypical
objects in knowledge base and the input evidences from
Y1 to Y4 based on Eq. (10), and the results are shown in
Table III.

Selecting the maximum similarity between Yi and
prototypical objects of each classification as the similarity
between Yi and corresponding classification, and the
results are shown in Table IV.

Determining four mass functions with respect to all
the classifications based on the results in Table IV and
Eqs. (12) and (13). The first evidence Y1 is token as an
example,
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TABLE I
KNOWLEDGE BASE

Classification Prototypical Object

Pyramid P1 = [{(4, T, P), (1, S, P), F}; {0.5, 0.3, 0.2}]
P2 = [{(4, T, P), (1, R, P), F}; {0.5, 0.25, 0.25}]
P3 = [{(4, T, P), F}; {0.7, 0.3}]

L-Shape L1 = [{(4, T, P), (2, L, P), (5, R, P)(1, S, P), F}; {0.2, 0.4, 0.1, 0.2, 0.1}]
L2 = [{(2, T, P), (1, S, P), (5, R, P), F}; {0.4, 0.2, 0.1, 0.3}]
L3 = [{(6, R, P), F}; {0.5, 0.5}]

Handle H1 = [{(2, B, P), (6, R, P), (2, S, P), F}; {0.4, 0.2, 0.2, 0.2}]
H2 = [{(2, C, P), (1, R, Q), F}; {0.4, 0.4, 0.2}]

Cylinder C1 = [{(2, C, P), (1, R, Q), F}; {0.4, 0.4, 0.2}]

M BPAs come from sensors 

N recognition classifications 

in knowledge base

In
p

u
t

Calculating the divergence 

between Y and Г

Calculating the similarity 

between Y and Г

Fusing                   for  the final BPA 

to make decision  using 

dempster s combination rule.

...

Obtaining m BPAs for 

O
u

tp
u

t

                  

o make dec

Obtaining the comprehensive 

support degree for  each 

classification based on        , then 

recognizing the right classification

r  eac

       ,

Fig. 4. The flow chart of the proposed algorithm for pattern recognition

TABLE II
DIVERGENCES BETWEEN Yi AND ALL THE PROTOTYPICAL OBJECTS

P L H C

P1 P2 P3 L1 L2 L3 H1 H2 C1
Y1 0.5545 0.2504 0.5249 0.5977 0.5249 0.4838 0.5545 0.5545 0.5545
Y2 0.2158 0.4766 0.4541 0.3431 0.2292 0.3840 0.5022 0.5022 0.5022
Y3 0.5249 0.5037 0.4852 0.5807 0.4852 0.4285 0.2865 0.5249 0.5249
Y4 0.4838 0.4545 0.4285 0.5580 0.1194 0.3466 0.4838 0.4838 0.4838
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TABLE III
SIMILARITIES BETWEEN Yi AND ALL THE PROTOTYPICAL OBJECTS

P L H C

P1 P2 P3 L1 L2 L3 H1 H2 C1
Y1 0.4455 0.7496 0.4751 0.4023 0.4751 0.5162 0.4455 0.4455 0.4455
Y2 0.7842 0.5234 0.5459 0.6569 0.7708 0.6160 0.4978 0.4978 0.4978
Y3 0.4751 0.4963 0.5148 0.4193 0.5148 0.5715 0.7135 0.4751 0.4751
Y4 0.5162 0.5455 0.5715 0.4420 0.8806 0.6534 0.5162 0.5162 0.5162

TABLE IV
THE SIMILARITY BETWEEN Yi AND EACH CLASSIFICATION

P L H C
Y1 0.7496 0.5162 0.4455 0.4455
Y2 0.7842 0.7788 0.4978 0.4978
Y3 0.5148 0.5715 0.7135 0.4751
Y4 0.5715 0.8806 0.5162 0.5162

M1(FF) = 1 − maxisim(Y1, Γi) = 1 − 0.7496 = 0.2504

Next, the probability of M1(P), M1(L), M1(H) and
M1(C) are determined from the remaining 0.7496 based
on Eq. (13). The result is shown as follows.

Θ = {P, L, H, C, PLHC},
M1 = {0.2605, 0.1795, 0.1548, 0.1548, 0.2504}.

Consistent with the above method, the others mass
function can been obtained as follows.

M2 = {0.2411, 0.2370, 0.1531, 0.1531, 0.2157},
M3 = {0.1615, 0.1792, 0.2238, 0.1490, 0.2865},
M4 = {0.2026, 0.3121, 0.1830, 0.1830, 0.1193}.

Obtaining the final mass function for making decision
using the Dempster’s combination rule(Eq. (4)).

Θ = {P, L, H, C, PLHC},
Mg = {0.2893, 0.3388, 0.1929, 0.1622, 0.0168}.

Considering the similarity overall between the input
evidence Y1, Y2, Y3 and Y4 and each classification in
knowledge base, a conclusion can be drawn from the
mass function Mg that the classification L − Shape gets
the highest support, and then Pyramid, Handle and
Cylinder, respectively. That is, the decision making based
on the proposed algorithm determining the observation
target is a L-Shape. What’s more, the result is in agree-
ment with [2]. In other word, the evidential input has the
largest correlation with class L, and is therefore classified
as L-shape.

V. CONCLUSION

Under extremely uncertain environments, information
fusion is an effective and significant method to handle
such as pattern recognition problems. Dempster-Shafer

evidence theory is very important in the field of infor-
mation fusion and applied widely in many processes
because of its powerful features to handle the uncer-
tainty. However, the counter-intuitive results are often
obtained if there exist the larger conflict between differ-
ent evidences. To resolve this serious problem effectively,
in this paper, a new divergence is proposed based on
Kullback-Leibler divergence to measure the difference
between BPAs, then a similarity measure is introduced
based on the new proposed divergence. Numerical ex-
amples are used to illustrate the efficiency of the new
divergence and similarity. A brief introduction about
pattern recognition is given and a new algorithm for
classification under the extremely uncertain environment
is presented based on the proposed divergence and sim-
ilarity. And the results of an application for classification
demonstrate the effectiveness of the presented algorithm.
In the future study, the conceptual framework of the
presented pattern classification methodology based on
the proposed divergence and similarity can be improved
further. And in order to verify the effectiveness of the
proposed algorithm, more other applications should be
conducted by it.

ACKNOWLEDGMENTS

The work is partially supported by National Natu-
ral Science Foundation of China (Grant Nos. 61174022,
61573290, 61503237).

REFERENCES

[1] W. H. D., “Deep sea explorations,” The American Naturalist, vol. 4,
no. 12, pp. 744–746, 1871.

[2] A. M. Erkmen and H. E. Stephanou, “Information fractals for
evidential pattern classification,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 20, no. 5, pp. 1103–1114, 1990.

[3] J.-R. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez,
“Exploiting semantic knowledge for robot object recognition,”
Knowledge-Based Systems, vol. 86, pp. 131–142, 2015.

[4] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved
method to construct basic probability assignment based on the
confusion matrix for classification problem,” Information Sciences,
vol. s 340341, pp. 250–261, 2016.

[5] D. Han, W. Liu, J. Dezert, and Y. Yang, “A novel approach
to pre-extracting support vectors based on the theory of belief
functions,” Knowledge-Based Systems, vol. 110, pp. 210–223, 2016.

[6] R. R. Yager and N. Alajlan, “Decision making with ordinal payoffs
under dempstershafer type uncertainty,” International Journal of
Intelligent Systems, vol. 28, no. 11, pp. 1039–1053, 2013.

[7] A. P. Dempster, “Upper and lower probabilities induced by a mul-
tivalued mapping,” Annals of Mathematics and Statistics, vol. 38,
no. 2, pp. 325–339, 1967.

[8] G. Shafer, A Mathematical Theory of Evidence. Princeton: Princeton
University Press, 1976.



9

[9] V.-N. Huynh, T. T. Nguyen, and C. A. Le, “Adaptively entropy-
based weighting classifiers in combination using dempster–shafer
theory for word sense disambiguation,” Computer Speech & Lan-
guage, vol. 24, no. 3, pp. 461–473, 2010.

[10] L. V. Utkin, “A new ranking procedure by incomplete pairwise
comparisons using preference subsets,” Intelligent Data Analysis,
vol. 13, no. 2, pp. 229–241, 2009.

[11] X. Su, S. Mahadevan, P. Xu, and Y. Deng, “Dependence assess-
ment in Human Reliability Analysis using evidence theory and
AHP,” Risk Analysis, vol. 35, pp. 1296–1316, 2015.

[12] Y. Deng, “Generalized evidence theory,” Applied Intelligence,
vol. 43, no. 3, pp. 530–543, 2015.

[13] J.-B. Yang and D.-L. Xu, “Evidential reasoning rule for evidence
combination,” Artificial Intelligence, vol. 205, pp. 1–29, 2013.

[14] X. Deng, Y. Hu, F. T. Chan, S. Mahadevan, and Y. Deng, “Pa-
rameter estimation based on interval-valued belief structures,”
European Journal of Operational Research, vol. 241, no. 2, pp. 579–
582, 2015.

[15] X. Deng, Y. Deng, and F. T. Chan, “An improved operator of
combination with adapted conflict,” Annals of Operations Research,
vol. 223, no. 1, pp. 451–459, 2014.

[16] F. Cuzzolin, “A geometric approach to the theory of evidence,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), vol. 38, no. 4, pp. 522–534, 2008.

[17] J. Schubert, “Conflict management in Dempster-Shafer theory
using the degree of falsity,” International Journal of Approximate
Reasoning, vol. 52, no. 3, pp. 449–460, 2011.

[18] L. A. Zadeh, “A simple view of the dempster-shafer theory of
evidence and its implication for the rule of combination,” AI
magazine, vol. 7, no. 2, p. 85, 1986.

[19] W. Liu, “Analyzing the degree of conflict among belief functions,”
Artificial Intelligence, vol. 170, no. 11, pp. 909–924, 2006.

[20] L. A. Zadeh, A simple view of the Dempster-Shafer theory of evidence.
Berkeley Cognitive Science Program, Institute of Cognitive Stud-
ies, University of California, Berkeley, 1984.

[21] J. Ma, “Measuring divergences among mass functions,” in Proceed-
ings on the International Conference on Artificial Intelligence (ICAI).
The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (World-
Comp), 2013, p. 1.

[22] X. Wang, J. Zhu, Y. Song, and L. Lei, “Combination of unreli-
able evidence sources in intuitionistic fuzzy mcdm framework,”
Knowledge-Based Systems, vol. 97, pp. 24–39, 2016.
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