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Adaptively evidential weighted classifier
combination

Liguo Fei, Bingyi Kang, Van-Nam Huynh and Yong Deng

Abstract—Classifier combination plays an important role
in classification. Due to the efficiency to handle and fuse
uncertain information, Dempster-Shafer evidence theory is
widely used in multi-classifiers fusion. In this paper, a
method of adaptively evidential weighted classifier combi-
nation is presented. In our proposed method, the output of
each classifier is modelled by basic probability assignment
(BPA). Then, the weights are determined adaptively for
individual classifier according to the uncertainty degree of
the corresponding BPA. The uncertainty degree is measured
by a belief entropy, named as Deng entropy. Discounting-
and-combination scheme in D-S theory is used to calculate
the weighted BPAs and combine them for the final BPA for
classification. The effectiveness of the proposed weighted
combination method is illustrated by numerical experimental
results.

Index Terms—Classifier combination, Dempster-Shafer ev-
idence theory, Deng entropy, Classification, Weight.

I. INTRODUCTION

Classification is a method of integrated learning [1]
which belongs to machine learning techniques [2], [3],
[4], [5], [6], [7], [8] as one branch. It attracts much
attention of researchers along with the perfection of the
theoretical basis. And its application is widely published
in different fields, such as text classification and retrieval
[9], image recognition and speech recognition [10], [11].
There exist a large number of well-known classifiers:
support vector machine (SVM) [6], [12], radial basis
function (RBF) [13], naive Bayes (NB) [14], decision tree
learner (REPTree), multilayer perceptron (MP), 1 nearest
neighbor (1NN, or IB1), and RBFnetwork (RBFN). NB
and SVM are in the top ten data-mining algorithms [15].
However, it is noteworthy that the ability to collect and
deal with information for a single classifier is limited
[16]. Moreover, this limitation has a serious impact to the
accuracy of the classification results [17]. On the other
hand, it’s apparent that there exist a lot of patterns that
cannot be classified using different learning algorithms
or techniques in the classification systems. And these sets
of patterns will not overlap necessarily [18]. It means that
different classifiers can provide different information
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from different aspects, which can complement each other
for better classification results [19]. In other words, the
combination of different classifiers is more beneficial to
take advantages of their own strengths to improve the
quality of the classification.

Taking notice of the significance and the potential
applications of classifiers combination, more and more
researches and exploration are done to build an ensem-
ble classifier [20] which could perfect the performance
of the individual classifier. Fattah et al. [21] presented
the comprehensive investigation of different proposed
new term weighting schemes for sentiment classification,
and exploit the class space density based on the class
distribution in the whole documents set as well as in
the class documents set. Dłez-Pastor et al. [22] proposed
a new approach to build ensembles of classifiers for two-
class imbalanced data sets which can lead to larger AUC
compared to other ensembles of classifiers. Ahmadvand
et al. [23] applied the combination of multiple classifiers
to medical image processing to supervise the segmen-
tation of MRI brain images. Moosavian et al. [24] put
forword a new method to recognize the spark plug fault
based on sensor fusion and classifier combination using
Dempster-Shafer evidence theory. Due to the effective-
ness to handle uncertainty , D-S theory is paid more
and more attention in multi-classifiers fusion. Yager
et al. [25] proposed the ordered weighted averaging
(OWA) to aggregate the information in the uncertainty
profile for obtaining representative values in decision-
making. Quost et al. [26] presented optimized t-norm
in the Dempster-Shafer framework based combination
rules to combine non independent classifiers. Marek et
al. [27] built ensemble classifiers using belief functions
and OWA operators for classification.

Recently, Huynh et al. [28] presented an evidential
reasoning based framework for weighted combination
of classifiers for word sense disambiguation (WSD).
Within this framework, the probability distributions (PD)
are obtained from multi-classifiers. Then, the authors
presented a method to weight the PDs for discounting
their own uncertainty measured by Shannon entropy.
Next, the BPAs are determined from each classifier’s
PD by the discounting operation. Finally, all obtained
BPAs are combined using Dempster’s rule to obtain the
final results as the ensemble classifier for classification.
What is certain is that the evidential reasoning based
framework conducts itself well for WSD than others con-
generic method by their experimental results. However,
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this algorithm still has its limitations to handle more
general case. The method of Huynh et al. [28] obtains
PDs firstly. However, the output of each classifier may
be BPA due to the high uncertain environment. In other
works, the output ψi(x) can be BPAs directly instead of a
posterior probability distribution on φ in many practical
application. In these situations, the method of Huynh
et al. [28] will be no more applicable. To address this
issue, we proposed a new evidential reasoning based
framework based on D-S theory. And the process of the
two methods are comparing in Figure 1.

Comparing with the method of Huynh et al. [28],
our proposed method deals with the BPAs from clas-
sifiers directly. It is recognized that BPA itself exists
uncertainty degree, and the higher uncertainty degree
of the BPA, the less information provided by the output
of a classifier and then the lower weight it should be
assigned. The weighting process is obvious different in
the two methods. A new method named Deng entropy
[29] is utilized to measure the uncertainty degree of
BPAs, and the weight with regard to each classifier
are defined adaptively based on the input pattern un-
der classification. Finally, we combine multi-classifiers
with Dempster’s rule based on the weighed BPAs. In
conclusion, there are two major improvements in the
proposed method comparing with the method of Huynh
et al. [28]. The first one is that we use BPAs instead
of PDs to represent more uncertain information. The
second one is that the Deng entropy is made use of
to determine the weights of multi-classifiers. It should
be pointed out the proposed method can be seen as
the generalization of the method of Huynh et al. [28]. If
the output of classifiers are PDs, the proposed method
degenerated as the method in [28]. From this aspect, the
proposed method is more efficient to handle uncertain
information. In addition, one of the advantages of the
proposed method keeps obtaining the BPAs dynamic
with the changes of the output of classifiers. Then the
weights and the weighted BPAs also change adaptively.
This fully embodies the characteristics of our method
adaptive and this recognizes the adaptive quality of our
proposed method profoundly.

The organization of the rest of this paper is as follows.
Section 2 starts with a brief presentation of the D-S
theory and its basic rules and some necessary related
concepts. The proposed method for the D-S theory based
framework for weighted combination of classifiers is p-
resented in Section 3. Section 4 presents and analyzes the
experimental results. Conclusion is presented in Section
5.

A. Dempster-Shafer evidence theory
Dempster-Shafer evidence theory (D-S theory) is pro-

posed by Dempster and developed later by Shafer [30],
[31]. This theory extends the elementary event space
in probability theory to its power set named as frame
of discernment and constructs the basic probability as-
signment(BPA) on it. In addition, there is a combination

rule presented by Dempster to fuse different BPAs. In
particular, D-S theory can definitely degenerate to the
probability theory if the belief is only assigned to single
elements. Therefore, the D-S theory is the generalization
of probability theory with the purpose of handling un-
certainty and is widely used to uncertainty modeling
[32], [33], [34], decision making [35], [36], [37], [38], [39],
[40], information fusion [41], [42] and uncertain infor-
mation processing [43], [44], [45]. The basic definitions
about D-S theory is shown as follows:

1) Frame of discernment: D-S theory supposes the defi-
nition of a set of elementary hypotheses called the frame
of discernment, defined as:

θ = {H1, H2, ..., HN} (1)

That is, θ is a set of mutually exclusive and collectively
exhaustive events. Let us denote 2θ the power set of θ.

2) Mass functions: When the frame of discernment is
determined, a mass function m is defined as follows.

m : 2θ → [0, 1] (2)

which satisfies the following conditions:

m(ϕ) = 0 (3)

∑
A∈2θ

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic
probability assignment (BPA).

3) Evidence discounting: The discounting operation is
used when an evidence provides a BPA, but the evidence
is believed by probability α. In this circumstances, The B-
PA mα is redefined based on the probability of reliability
α as follows

mα(A) = α × m(A), A ⊂ θ (5)

mα(θ) = (1 − α) + α × m(θ) (6)

where A is the focal element, and m is the mass
function.

4) Dempster’s rule of combination: In a real system,
there may be many evidence originating from different
sensors, so we can get different BPAs. Dempster [31] pro-
posed orthogonal sum to combine these BPAs. Suppose
m1 and m2 are two mass functions. The Dempster’s rule
of combination denoted by m = m1

⊕
m2 is defined as

follows:

m(A) =
∑B

∩
C=A m1(B)m2(C)

1 − K
(7)

with
K = ∑

B
∩

C=ϕ

m1(B)m2(C) (8)

Note that the Dempster’s rule of combination is only
applicable to such two BPAs which satisfy the condition
K < 1.
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Fig. 1. The comparion between the proposed method and the method in [28]



4

B. Deng entropy
Deng entropy [29] is presented to measure the un-

certainty degree of basic probability assignment as a
generalized Shannon entropy in D-S evidence theory.
Deng entropy can be described as follows

Ed = −∑
i

m(Fi) log
m(Fi)

2|Fi | − 1
(9)

where Fi is a proposition in mass function m, and |Fi|
is the cardinality of Fi.

Deng entropy is similar with Shannon entropy in form.
The difference is that the belief for each proposition
Fi is divided by a term (2Fi − 1) which represents the
potential number of states in Fi (The empty set is not
included). So Deng entropy is the generalization of Shan-
non entropy, which is used to measure the uncertainty
degree of BPA [29].

Specially, Deng entropy can definitely degenerate to
the Shannon entropy if the belief is only assigned to
single elements. The process is shown as follows [29]

Ed = −∑
i

m(θi) log
m(θi)

2|θi | − 1
= −∑

i
m(θi) log m(θi)

(10)
Numerical examples are given to illustrate the com-

putational process of Deng entropy.

Example I.1. Supposed a frame for discernment X =
{S, C, V}, for a mass function m(C) = 0.5554, m(C, V) =
0.4420, m(S, C, V) = 0.0026.

Ed = −0.5554 × log 0.5554
21−1 − 0.4420 × log 0.4420

22−1 − 0.0026 ×
log 0.0026

23−1 = 1.7220

Example I.2. And another mass function m(S) = m(C) =
m(V) = 1/19, m(S, C) = m(S, V) = m(C, V) =
3/19, m(S, C, V) = 7/19.

Ed = − 1
19 × log 1/19

21−1 − 1
19 × log 1/19

21−1 − 1
19 × log 1/19

21−1 −
3
19 × log 1/19

22−1 − 3
19 × log 3/19

22−1 − 3
19 × log 3/19

22−1 − 7
19 ×

log 7/19
23−1 = 4.2479

II. THE PROPOSED METHOD OF WEIGHTED
COMBINATION OF CLASSIFIERS

Let us suppose that there are M classes in the decision
system representing as φ = {c1, ...., cM}. Also suppose
that there are R classifiers ψi(i = 1, ...., R) can be used
for combination. For each input pattern X, let us denote
by

ψi(x) = [mi1(x), ...., mi2M (x)]

the right-hand side of this equality is a mass function
obtained from ith classifier. We determine the BPA of
each classifier from the selected training set using the
normal distribution method which is mentioned above.

Each BPA ψi(x) is now considered as the belief degree
distribution derived from information source provided

by classifier ψi for classifying x. However, the evidence
has a certain extent uncertainty by itself resulting in a
decline in the degree of trust. Therefore, it is necessary
to quantify somehow the quality of information offering
form ψi regarding the classification of x and to consider
the uncertainty degree when combining classifiers. Ob-
viously, the greater the uncertainty degree, the lower
the accuracy of classification and the larger confusion
to us to make classification. Based on these findings we
define weights with respect to classifiers according to
Deng entropy as follows

wi(BPA) = 1 − Ed(BPAi)

max[Ed(BPAi)]
(11)

where Ed is the Deng entropy expression of the BPA, i.e.
The weights are different from one classifier to another
depending on how much belief degree the BPA has
provided from each classifier.

Based on the mass function and its corresponding
weight wi(BPA), we can obtain the discounted mass
function before combining them, expressed as follows

mw
i (A) = wi(BPA)× mw

i (A) (12)

mw
i (θ) = (1 − wi(BPA)) + wi(BPA)× mi(θ) (13)

where θ is the universal set of mass function.
As of now the weighted BPAs have been determined

for individual classifiers. Next, we devote to combine all
the evidence’ BPAs originating from each classifier ψi on
the classification of input x, based on the combining rule
of D-S theory, to determine an overall mass function for
making the final classification decision. The final mass
function can be calculated for the expression as follows

mi(BPA) =
R⊕

i=1

(mw
i (BPA)) (14)

where
⊗

is a combination operator.
Until now, we have determined BPAs of individual

classifier as well as their weights, respectively. Moreover,
we also obtain the weighted BPAs by making use of the
combination rule of D-S theory. Next, we describe the
core algorithm of this paper as follows.

In the following section we will use Iris dataset [46]
to conduct some experiments to illustrate our method
and demonstrate its effectiveness as well as the dynamic
and adaptive nature for classification applying to the
combination of multi-classifiers.

III. EXPERIMENTS AND ANALYSIS

A large amount of methods for determining the BPA
have been proposed by researchers with the more and
more application in D-S theory. Zhu et al. [47] presented
the method using fuzzy membership degrees to obtain
the mass function. Within this method, fuzzy c-means
(FCM) plays a key role to denote the gray levels as fuzzy
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Algorithm 1 The classifier combination algorithm based on Dempster’s rule

Initialization:
Determine the BPAs of each classifier expressed as BPAi(x) (i = 1,....,R)

Iteration:
1: for i = 1 to R do
2: Calculate wi(BPA) via (11)
3: Calculate mw

i via (12) and (13)
4: endfor
5: Combine all pieces of mw via (14)
output:

The final BPA of all the classifiers

sets. Yager et al. [48] applied the D-S belief structure
to the entire class of fuzzy measures, and studied the
entropy from the point of fuzzy measure. Bloch et al.
[49] associated cluster centers with distance to determine
the BPA. Bloch et al. used an unsupervised way to
obtain the BPA and considered the ambiguity between
pixels in medical image processing making use of fuzzy
membership functions. It is vagueness instead of ran-
domness leading to the ambiguity. Le Hegarat-Mascle et
al. [50] and Salzenstein et al. [51] used probability density
functions (PDFs) to simulate the knowledge derived
from all the information source. And then they put
forward a subtractive scheme to transform these PDFs
into belief degree. Wang et al. [52] got mass functions
from common multivariate data spaces systematically.
In recent years, Xu et al. [53] proposed a new method
to determine basic probability assignment from training
data based on normal distribution assumption. Within
his method, normality test is performed for the training
set firstly, it will be transformed to an equivalent normal
space if training set doesn’t meet the normal distribution.
And then to construct the models for different attributes.
Next, the relationship between the test sample and the
normal distribution models will be determined. Finally,
the BPA can be calculated on the basis of the intersections
of the selected attributes. Comparing with the above-
mentioned measures for determining BPA, we consider
that the method based on normal distribution is more
effective and practical. So in this paper, we will use this
method to obtain BPA for each classifier as the prepara-
tion for weighted combination of multi-classifiers.

The experiment is based on the Iris data. There are
150 samples of Iris data including 4 attributes for each
sample named as Sepal Length (SL), Sepal Width (SW),
Petal Length (PL) and Petal Width (PW), respectively.
These samples are divided into three classes named as
Setosa, Versicolour and Virginica, respectively. There are
50 samples for each of the three classes, and 30 samples
are selected randomly as the training set, and the remain-
ing 20 samples regarded as the test set. Each of the four
attributes is considered as an information source as well
as a classifier, and there are three training sets and three
test sets correspondingly. In other words, each attribute
is treated as an evidence from a classifier ψi. The data can
be obtained form the UCI repository of machine learning
databases (http://archive.ics.uci.edu/ml/dataset/Iris).

TABLE I
FOUR BPAS OF THE TEST SAMPLE

Attribute (classifier) BPA

SL m({C}) m({C, V}) m({S, C, V})

0.5554 0.4420 0.0026

SW m({C}) m({C, V}) m({S, C, V})

0.6019 0.3771 0.0210

PL m({V}) m({C, V}) m({S, C, V})

0.5691 0.4308 0.0001

PW m({V}) m({C, V}) m({S, C, V})

0.9555 0.0444 0.0001

Next step, we will determine the BPAs of each at-
tribute of the Iris data, namely, the mass functions of
individual classifiers using the above mentioned normal
distribution assumption.

Now an example is given to show the process of the
classifier combination for classification. Supposing that
the training sets and test sets have been obtained from
Iris data using normal distribution method. We then
select an instance as test sample from the test set of
Virginica. The four attribute values are shown as follows:

SL = 6.3cm, SW = 2.5cm, PL = 5.0cm, PW = 1.9cm

The BPAs of this attributes (classifiers) are show in
Table 1, and the S, V and C represent class Setosa,
Versicolour and Virginica, respectively.

Taking the attribute SL as an example to explain the
calculation of the proposed algorithm.

It is obvious the Deng entropy of attribute SL is
1.7220 from Example 2.1. And it can be proved for three
elements in frame of discernment, the Deng entropy gets
maximal value when the BPA distributes as Example 2.2.
So, the max[Ed(BPA)] is 4.2479 in this exmaple. Then the
weight can be obtained by Eq. (12) as follows

WSL(BPA) = 1 − 1.7220
4.2479 = 0.5946

Also, the weighted BPA can be calculated by Eqs. (13)
and (14).

m({C}) = 0.5946 × 0.5554 = 0.3303
m({C, V}) = 0.5946 × 0.4420 = 0.2628

m({S, C, V}) = (1 − 0.5946) + 0.5946 × 0.0026 = 0.4069
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TABLE II
THE FOUR DENG ENTROPY AND WEIGHT OF TEST SAMPLE

Attribute (classifier) Deng entropy weight

SL 1.7220 0.5946
SW 1.7451 0.5892
PL 1.6706 0.6067
PW 0.3342 0.9213

TABLE III
FOUR DISCOUNTED BPAS OF THE TEST SAMPLE

Attribute (classifier) BPA

SL m({C}) m({C, V}) m({S, C, V})

0.3303 0.2628 0.4069

SW m({C}) m({C, V}) m({S, C, V})

0.3546 0.2222 0.4232

PL m({V}) m({C, V}) m({S, C, V})

0.3452 0.2614 0.3934

PW m({V}) m({C, V}) m({S, C, V})

0.8803 0.0409 0.0788

The weights and weighted BPAs of the other three
attributes are shown in Table 2 and Table 3.

Now we are committed to combine all the four BPAs
from individual classifiers ψi on the classification of the
test sample by Eq. (18). The result is show as follows

mw({C}) = 0.0933, mw({V}) = 0.8356
mw({C, V}) = 0.0599, mw({S, C, V}) = 0.0112

The process of our experiment is over for this test
sample. The combination results illustrate that the be-
lief degree for V (Virginica) is 0.8314 in the combined
BPA, and the effectiveness can be demonstrate from this
experiment. Other discounted BPAs of rest test samples,
namely, the classification of input x, can be obtained by
this process. In order to demonstrate the results of our
experiments more visually and effectively, another parts
of experiment results are given based on Iris dataset
using the proposed method. The results are shown in
Figures 2-4.

In Figure 2-4, the x-coordinate represents 20 test sam-
ples of three test sets from Setosa, Versicolour and
Virginica, respectively. And the y-coordinate means the
probability values of the class which the test sample
belong to in the BPAs of individual classifiers. We can
find that the all probability values of Setosa test set are
close to 1, and for Versicolour the most values exceed 0.9.
There exist a few classifiers out of operation in making
classification of Virginica test set, but most of the rest
part perform a good job. Suppose that 0.5 is the demar-
cation point deciding whether the the proposed method
is effective. Thus, the recognition rate of all pieces of
classifiers using our method approaches reaches to 95%
approximately in this experiment.

We select a test sample which was worst suitable in
classification for class Virginica to analyze the causes of
this phenomenon. And we give the four classifiers’ BPAs,
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Fig. 2. The classification results based on class Setosa using the
proposed method
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Fig. 3. The classification results based on class Versicolour using the
proposed method

their weights, and the four weighted BPAs in Table 4,
5 and 6, respectively. For this input classification, the
combination results of corresponding four classifiers are
shown as follows.

mw({C}) = 0.7595, mw({V}) = 0.1093
mw({C, V}) = 0.1088, mw({S, C, V}) = 0.0224

From Tables 4-6, we find that there exist three classifiers
providing BPAs to support the class Versicolour, so the
weighted BPAs still support class Versicolour resulting
in the final combination results confirm the input classi-
fication belongs to the class Versicolour. By the above
examples and analysis we come to a conclusion that
the cause of error classification results come from the
classifiers instead of our proposed classification method.
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Fig. 4. The classification results based on class Virginica using the
proposed method

TABLE IV
FOUR BPAS OF THE TEST SAMPLE

Attribute (classifier) BPA

SL m({C}) m({C, V}) m({S, C, V})

0.5554 0.4420 0.0026

SW m({C}) m({C, V}) m({S, C, V})

0.4821 0.4372 0.0807

PL m({V}) m({C, V}) m({S, C, V})

0.6809 0.3189 0.0002

PW m({C}) m({C, V}) m({S, C, V})

0.8711 0.1289 0.0000

In addition, we conduct 100 times random experi-
ments with the purpose of further explaining the ac-
curacy of the proposed classification method. We list
the average classification accuracy rates for Class Setosa,
Versicolour, Virginica and the average of the three classes
conducting the random experiments 10, 20,...,100 times,
respectively. The results are shown in Table 4.

For expressing the results more unambiguous and vi-
sualized, we give the results of the average classification
accuracy rates varying the random experiments from 1
to 100 in Figure 5.

From Table 4 and Figure 5, we can find that the
average classification accuracy rates of the three classes

TABLE V
THE FOUR DENG ENTROPY AND WEIGHT OF TEST SAMPLE

Attribute (classifier) Deng entropy weight

SL 1.7220 0.5946
SW 2.2419 0.4722
PL 1.4118 0.6676
PW 0.7587 0.8214

TABLE VI
FOUR DISCOUNTED BPAS OF THE TEST SAMPLE

Attribute (classifier) BPA

SL m({C}) m({C, V}) m({S, C, V})

0.3303 0.2628 0.4069

SW m({C}) m({C, V}) m({S, C, V})

0.2276 0.2065 0.5659

PL m({V}) m({C, V}) m({S, C, V})

0.4546 0.2129 0.3325

PW m({C}) m({C, V}) m({S, C, V})

0.7155 0.1059 0.1786

and their average are considerably high. In conclusion,
the experiments manifests classification validity of our
proposed weighted combination algorithm for multi-
classifiers based on D-S theory.

IV. CONCLUSION

In this paper, the basic framework of D-S theory has
been constructed for weighted combination of multi-
classifiers for classification. A new method has been
proposed to define adaptively weights of individual clas-
sifier based on Deng entropy which is used to measure
the uncertainty degree of BPAs. Then we combine the
weighted BPAs derived from individual classifier to ob-
tain the final BPA for the classification decision. It should
be pointed out that the proposed method can be seen as
the generalization of the method of Huynh et al. [28]. If
the output of classifiers are PDs, the proposed method
is degenerated as the method of Huynh et al. [28]. From
this point of view, the proposed method is more efficient
to handle uncertain information. Moreover, our method
can determine corresponding BPAs as the output of
classifiers have changed, namely the proposed method
has good adaptability.

In the experimental section, we determine BPAs of
three test sets using normal distribution method based
on Iris dataset. Then, the weights are calculated and
weighted BPAs are determined making use of our
proposed method for each classification. Finally, these
weighted BPAs are combined by Dempster’s rule. The
experimental results illustrate the effectiveness of our
method for classification.
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