
Multiplicative Versions of Infinitesimal Calculus

What happens when you replace the summation of standard integral calculus with 
multiplication?

Compare the abbreviated definition of a standard integral
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Call these later two “integrals” multigrals of Type I and II.
 (Note: unlike “normal” products, these products are not discrete but continuous over
an interval). 

Consider each in turn.

Multigrals (Type I)

By standard operations ( ) ( ln( ( )) )f x dx e f x dx = Õ ò

By not taking limits, a finite product approximation can be obtained.

For example, let f(x)= x from 0 to 1. Then the Type I multigral of x from 0 to 1 is:
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Which tends to 1/e=0.36788… (use Stirling’s Formula to support this).
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For f(x)=tan(x) in radians from 0 to pi/2,  
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The above approximations of the multigral can be likened to the mid-point-rule when
approximating standard integrals. Like standard integrals, multiplicative analogs of 
the Trapezoidal Rule and Simpson’s Rule can be found, like:

“Simpson’s” Product:
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Consider the following approximations:

22

1 1

( ln( ) (2 ln(2) 2 1) 4 / 1.471517765...Y x dx e x dx e e=  =  =  - + = =Õ ò
Multiplicative Analog of ….
Mid-point Rule Trapezoidal Rule Simpson’s Rule

∆x=1 1.5 [(1)(2)]^(1/2)
=1.4142….

n.a.

∆x=1/2 [(1.25)(1.75)]^(1/2)
=1.4790199…

[(1)(2)]^(1/4)
*[1.5]^(1/2)
=1.4564753…

[(1)(2)]^((1/2)(1/3))
*[1.5]^((4/3)(1/2))
=1.47084…

∆x=1/3 [(7/6)(9/6)(11/6)]^(1/3)
=1.474890668…

[(1)(2)]^(1/6)
*[(4/3)(5/3]^(1/3)
=1.46476345….

n.a.

∆x=1/4 [(9/8)(11/8)(13/8)
(15/8)]^(1/4)
=1.473423…

[(1)(2)]^(1/8)
*[(5/4)(6/4)(7/4)]^(1/4)
=1.4677043….

[(1)(2)]^((1/4)(1/3))
*[(1.25)(1.75)]^((4/3)(1/4))
*[1.5]^((2/3)(1/4))
=1.471466559….

Like standard calculus you can define a multiplicative analog of the derivative ( the 
m-derivative), construct a multiplicative version of the Fundamental Theorem of 
Calculus, construct a multiplicative analog of Maclaurin’s Series, etc.



The m-derivative for Type I multigrals is:
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The Fundamental Theorem is:

* ( ) ( )
( ) (( ) )

( ) ( )

b b

I
a a

f x f b
x dx e dx

f x f a
f

¢
 =  =Õ Õ

Compare with the Fundamental Theorem of Standard Calculus:
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Small programs can be written to approximate the above results by finite products for 
those who doubt.

Type I multigrals find application in the area of population dynamics. With stochastic 
birth- and death- rates, the conventional approach is to use means (ie: expectations). 
Without migration, mean populations E(P) remain constant iff mean birth-rates E(b)= 
mean death-rates E(d) under the stochastic recursive equation 1 (1 )*n nP b d P+ = + - .

But, while mathematically correct, this result is misleading.

In certain circumstances, simulations show that mean birth-rates can significantly 
exceed mean death-rates yet MOST population trials decline, even though the mean 
population of many trials stays constant. True.

Let G(x)= ( ( ) )x p x dxÕ where X= the random variable of (1+b-d) and p(x) is its 

probability density function. It can be shown that the MODE of populations (Pn) tends
to {G(x)↑n}*P0 as n→∞. In general G(x) is < E(x)=E(1+b-d). Thus when E(b)=E(d), 
the mode of Pn →0 as n→∞ even though E(Pn) = P0.

Thus the stochastic recursive equations (where ran# is a random number between 0 
and 1)
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which are constant in the long-term mean but tend to zero in the mode. (Try 
simulating using Excel if you don’t believe).

Now consider…

Multigrals (TypeII)

Consider 
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which tends to sqr(e)=1.648721271…

This is due to the non-standard integral 
1
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 (which is not of the form ( )f x dxò ) 

and thus
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In general,

(1 ( ) ) ( ( ) )f x dx e f x dx+ = Õ ò  provided ( ( ) ) 0f x dx n =ò   for 2nÎN ³ .

Functions f(x) which fail the later condition appear to be few.

For instance, f(x)=1/x fails this test from 0 to 1 as 
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p =ò   (look at the 

limit definition of the integral under equal ∆x subintervals to see this). 

But for most other functions ( ( ) ) 0f x dx n =ò   for 2nÎN ³

For Type II multigrals, the m-derivative is: 
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And the Fundamental Theorem is:  
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Higher order m-derivatives can be also used, like:
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And so on. In general, the Fundamental Theorem becomes more complicated for 
higher order m-derivatives, unlike (say) polynomials with standard calculus.
For instance,
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For example, let f(x)=ln(x+2) then f'(x)=1/(x+2), f''(x)=-1/(x+2)^2, f'''(x)=2/(x+2)^3 
and f(0)=ln(2), f(1)=ln(3), etc. Then 
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Approximating using N x subintervals gives:

N 10 100 1000
approximation 0.5096103 0.520198 0.5212327

Whacko! 

Like standard calculus you can change variables in the standard way:
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And thus, for example:
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Product and Quotient Rules for Type I and II multigrals are:
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Surprisingly Type II multigrals have the same sort of “Maclaurin’s” Product as Type 
I.  It is
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And the two types of multigral can be related by

( ) (1 ln( ( )) )f x dx f x dx = +Õ Õ  for acceptable f(x).

Other Types of Multigral

With type II multigrals, problems arise for functions like f(x)=1/x due to the fact that
( ( ) ) 0f x dx n ¹ò   for 2nÎ ³¥ . But sometimes related multigrals can be evaluated 

using certain theta functions. For instance,
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However, these type III multigrals have certain unusual properties like
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So take care when playing around with.

Type IV Multigrals

Surprisingly the multigral
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These type of multigrals are more restricted (in range) than type I and II, but can still 
be used to derive certain stochastic limits such as
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Where mod is “the mode” and ran# is a random number between 0 and 1.

Unanswered Questions

1. How many types of multigrals are there? Do they all have m-derivatives, 
Fundamental Theorems, analogs of Simpson’s Rule, Maclaurin Series, etc?

2. What do multigrals do in the complex plane?

Answers please. Happy multigrating!

All comments welcome. Please send to: everythingflows@hotmail.com
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