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In the article, the Gauss’s problem on the number of integer points for a circle and a ball in the 

framework of an integer lattice is reformulated in an equivalent way and reduces to solving two combinatorial 

tasks for a circular and spherical "layer" in the framework of Quantum Discrete Space. These tasks are 

solved using trigonometric functions defined on a set of integers whose range of values is also integers, 

and other new mathematical tools. It comes not about evaluative solutions, but about exact solutions, which, 

if necessary, can be transferred to a circle and a ball. In doing so not only specific formulas for determine 

the exact number of solutions are presented, but also the formulas for enumerating the corresponding 

pairs and triples of integers. The importance of obtained solutions lies in the fact that they determine the 

analytical likenesses of not only the circumference and the sphere in the Quantum Discrete Space, but 

also point to the possibility of constructing of the likenesses of ellipse, cone, hyperboloid and other figures. 
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Introduction 

 

Gauss's problem is put in the following way: “Definition. The point M with coordinates (x, y) is called 

an integer point if the numbers x and y are integers. We consider the circle х
2
+у

2
≤R, and we denote by K(R) 

the number of integer points inside this circle. For large R the value of K(R) is approximately πR, the area 

of the circle. We denote by Δ(R) the difference between K(R) and πR, that is, Δ(R)=K(R)-πR. Gauss's 

problem on the number of integer points inside a circle is to determine the correct order of magnitude of Δ(R) 

as R→∞.” [1] By Gauss and then by other mathematicians, various asymptotic estimates have been 

proposed, for example, in the works of Voronoi G.F., Landau E.H., Huxley M.N., Hardy G. H.  and 

Littlewood J.E. And the problem of the determining of integer points in a ball was being solved, for example, 

in the works of Vinogradov I.M., Chamizo F. and Iwaniec H., Chen J.R. In doing so some of obtained 

estimates are called unimprovable, and it is believed that there is no the exact solution of Gauss's problem. 

Yes, indeed, there is no the exact solution of Gauss's problem within the framework of the integer 

lattice of points, but the exact solution exists within the framework of Quantum Discrete Space. The best 

proof of this statement is the presenting of an exact solution within the framework of Quantum Discrete 

Space. It is talking namely about this solution in this article. In doing so Gauss's problem for a circle and a 

ball is reformulated in an equivalent way and reduces to solving the following two combinatorial tasks for 

a circular and spherical "layer", respectively. 

Task 1: Specify the quantity and list the pairs of numbers (xi,yi), where i=0÷n, nЄN, such that the following 

conditions are fulfilled (the sign "÷" means – successively runs through the values): 

                                                 (R-1)
2
<xi

2
+yi

2
<(R+1)

2
 

                                                   -R≤xi≤R 

                                                   -R≤yi≤R, where R≥0.   

 

Task 2: Specify the quantity and list the triples of numbers (xi,yi,zi), where i=0÷n, nЄN, such that the 

following conditions are fulfilled: 

                                                                 (R-1)
2
<xi

2
+yi

2
+zi

2
<(R+1)

2
 

                                                                 -R≤xi≤R 

                                                                 -R≤yi≤R 

                                         -R≤zi≤R, where R≥0. 

 

The solutions of these tasks for a circular and spherical "layer", if necessary, can be transferred to a 

circle and a ball. Before start to the solving of tasks, we shall previously introduce the basic concepts and 

definitions with respect to the Quantum Discrete Space and trigonometric functions defined on a set of 

integers whose range of values is also integers. Other necessary definitions will be introduced in the course 

of solving tasks 1 and 2. 
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   Fig.1.  

   T-square(R=8). 

1. The Basic Concepts of Quantum Discrete Space 

 

Axiom (the beginning of the Universe): At the beginning of origin of the physical component of the 

Universe, there was the unique unit cube. 

Definition 1 (the space): A unit cube without inner content is called a unit empty cube. An ordered set 

of unit empty cubes, each of which, at any moment of time, is combining its own facets with six others, 

forms the space. 

Definition 2 (unit layer of space): An ordered set of unit empty cubes, each of which, at any moment of time, 

is combining its own facets with four others, and the other two, free facets, are opposite, forms a unit layer 

of space that can be frontal, vertical or horizontal. The space is a totality of like-named unit layers of space. 

Definition 3 (unit channel of space): Two unlike-named unit layers of space intersect, forming the unit 

channel of space. The unit layer of space is the totality of the corresponding unit channels of space. 

Definition 4 (the quantum of space): Three unlike-named unit layers of space intersect, forming the 

common unit empty cube, which is the quantum of space. The unit channel of space is the totality of the 

corresponding quanta of space. 

Definition 5 (Cartesian coordinate system): Every quantum of space is unique, and therefore can be 

regarded as some beginning, relative to which the position of geometric or physical body in space is 

determined. Through the chosen quantum of space, which we shall assume to be zero, three unlike-named 

unit layers of space are passing, which pairwise have common unit channels of space. Let’s specify the 

directions for these channels and sequentially numbered the quanta of space from which they consist, by 

positive numbers from zero in the side of chosen direction and by negative numbers in the opposite 

direction. In doing so the minus sign is formal, and indicates only on the direction, opposite to the chosen 

one. We call these three channels by coordinate axes, and their common quantum by the origin of coordi-

nates. The frontal coordinate axis directed at us will be called the abscissa axis and denoted by X, and 

the corresponding numbers of coordinate quanta will be called by abscises. The horizontal coordinate 

axis directed to the right will be called the ordinate axis and denoted by Y, and the corresponding numbers 

of coordinate quanta will be called by ordinates. The vertical coordinate axis directed upwards will be 

called the applicate axis and denote by Z, and the corresponding numbers of coordinate quanta will be 

called by applicates. The chosen origin of coordinates and the three coordinate axes, which are passing 

through it, will be called the Cartesian coordinate system. The unit layer of space, in which two coordinate 

axes lie, is called the main coordinate layer XY, XZ or YZ, respectively. Any other frontal, vertical or 

horizontal unit layer of space contains in itself one and only one coordinate quantum of the coordinate axis 

of abscissa, ordinate or applicate respectively, and hence any quantum of space can be unambiguously 

indicated in the chosen Cartesian coordinate system. 

Definition 6 (coordinate packet): A unit layer of space, which is passing through a given non-zero 

quantum of the coordinate axis, will be called an additional coordinate layer. For example, the notation 

XY (z=-5) will mean that the additional coordinate layer is parallel to the main coordinate layer XY, and 

the corresponding two coordinate axes pass through the coordinate quantum of the applicate axis with the 

number n=-5. The totality of additional coordinate layers, which are passing through the quanta of the 

corresponding coordinate axis with numbers from a to b, where a;bЄZ, is called a coordinate packet, and 

is designated, for example, as follows: XY (z=a÷b). 

Definition 7 (the main trigonometric rhombus): The totality of the quanta of 

space with coordinates {(R-i,i,-R+i),…,(-i,R-i,i),…,(-R+i,-i,R-i),…,(i,-R+i,-i),…}, 

where RЄN, i=0÷R-1, is called the main trigonometric rhombus of radius 

R, and is designated as follows way: R◊. The main trigonometric rhombus 

consists of 4R quanta of space, which can be figuratively represented if in the 

cube with edge 2R+1, whose central quantum coincides with the origin of 

coordinates of the chosen Cartesian coordinate system, consistently to connect  

four quanta with the following coordinates: (R,0,-R), (0,R,0), (-R,0,R), (0,-R,0). 

Definition 8 (trigonometric square): The totality of the quanta of space lying in 

one coordinate layer with a given coordinate, the corresponding two other coordi-

nates of which are equal to – {(R-i,i),…,(-i,R-i),…,(-R+i,-i),…,(i,-R+i),…}, 

where R≥0, i=0÷R-1, i≥0, is called the trigonometric square of radius R, 

briefly T-square(R) (Fig.1), and is designated as follows way: R□. T-square (R) 

consists of the 4R quanta of space. Any quantum of space can be considered as  

the T-square of zero radius – 0□. 
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Fig. 2.  

T-Octahedron(R=7).  
The model has been composed up of  

wooden cubes with the edge of 2 cm. 

 

Definition 9 (trigonometric octahedron): Let there be a coordinate 

packet XY(z=-R÷R). Further, let a T-square(R-|z|) is constructed in the 

each of 2R+1 coordinate layer of the given coordinate packet according 

to the following scheme: XY(z=-R÷R)→(R-|z|)□. The totality of T-squares 

obtained in this way is called the trigonometric octahedron of 

radius R, briefly T-octahedron(R) (Fig. 2), which also can be specified 

by the following two equisignificant schemes: XZ(y=-R÷R)→(R-|y|)□, 

YZ(x=-R÷R)→(R-|x|)□. The coordinates of quanta of the T-octahedron(R) 

constructed on the coordinate packet XY(z=-R÷R) can be specified as 

follows way: {(R-|z|-i,i,z),…,(-i,R-|z|-i,z),…,(-R+|z|+i,-i,z),…,(i,-R+|z|+i,z), …}, 

where i=0÷R-|z|-1 for every z, i≥0. 

Definition 10 (cosine, sine, versine): The quantum's abscissa of the 

main trigonometric rhombus of radius R is called the cosine of number 

n of the given quantum of radius R, and is designated as follows way: 

cosRn. The quantum's ordinate of the main trigonometric rhombus of 

radius R is called the sine of number n of the given quantum of radius 

R, and is designated as follows way: sinRn. The quantum's applicate of 

the main trigonometric rhombus of radius R is called the versine (from 

Latin vertebralis – vertical) of number n of the given quantum of radius 

R, and is designated as follows way: verRn.  

Definition 11 (bypass of the quanta): We put in correspondence to the abstract zero the quantum of 

trigonometric rhombus with the coordinates (R,0,-R), and to each number n=1÷4R-1, where RЄN, the 

quantum, according to the location indicated in Definition 7. The ordered totality of quanta obtained in this 

way is called the positive trigonometric rhombus of radius R, and is designated as follows way: +R◊. In 

the +R◊, without changing the initial quantum, we will perform the reverse streamlining, that is, we change 

the arrangement of quanta as follows way: 1→4R-1, 2→4R-2, …, 4R-1→1. The ordered totality of quanta 

obtained in this way is called the negative trigonometric rhombus of radius R, and is designated as follows 

way: -R◊. Bypass of the quanta in +R◊ is called by bypass counterclockwise, and bypass of the quanta in -R◊ 

is called by bypass clockwise. The quantum (R,0,-R) is the initial quantum of bypass in both cases. 

Definition 12 (periodic sequence): Let's will bypass +R◊ k times (kЄN), numbering the initial quantum 

by abstract zero, and each subsequent quantum by the corresponding number from the natural series. 

Thus, each quantum of +R◊ will be periodically numbered k times with a period equal to 4R. The obtained 

sequence of numbers, which can be specified recurrently – а0=0, аn=аn-1+1 for n=1÷4R-1, аn=4Rk+аn-4Rk 

for n=4Rk÷4R(k+1)-1, is called the positive periodic sequence (PPS), and is designated by аn(+R◊). 

Let's will bypass -R◊ k times (kЄN), numbering the initial quantum by abstract zero, and each subsequent 

quantum by the corresponding number from the series Z-. Each quantum of -R◊ will be periodically 

numbered k times with a period equal to (-4R). The obtained sequence of numbers, which can be specified 

recursively – а0=0, аn=аn+1-1 for n=-1÷-4R+1, аn=-4Rk+аn+4Rk  for n =-4Rk÷-4R(k+1)+1, is called the 

negative periodic sequence (NPS), and is designated by аn(-R◊). The PPS and the NPS of the main 

trigonometric rhombus of radius R and of the trigonometric square of the same radius R are coinciding, that is, 

аn(+R◊)=аn(+R□), аn(-R◊)=аn(-R□). The union of the PPS and the NPS forms a set of integers Z 

Definition 13 (trigonometric functions): To each integer xЄZ={PPS, NPS}, we can associate a certain 

number y, which is the cosine of corresponding quantum of the main trigonometric rhombus of radius R. 

Then y is by the trigonometric function cosine of radius R defined on the set Z, which is designated as 

follows way: y=cosRx. The range of values of the cosine function can be specified graphically on the 

coordinate layer. To each integer xЄZ={PPS, NPS}, we can associate a certain number y, which is the sine 

of corresponding quantum of the main trigonometric rhombus of radius R. Then y is by the trigonometric 

function sine of radius R defined on the set Z, which is designated as follows way: y=sinRx. The range 

of values of the sine function can be specified graphically on the coordinate layer. To each integer 

xЄZ={PPS, NPS}, we can associate a certain number y, which is the versine of corresponding quantum of 

the main trigonometric rhombus of radius R. Then y is by the trigonometric function versine of radius 

R defined on the set Z, which is designated as follows way: y=verRx. The range of values of the versine 

function can be specified graphically on the coordinate layer. To each integer xЄZ={PPS, NPS}, we can 

associate a certain number y=-sinRx. Then y is by the trigonometric function opsine of radius R (from 

the Latin oppositus – opposite) defined on the set Z, which is designated as follows way: y=opsRx. The 

range of values of the opsine function can be specified graphically on the coordinate layer (Fig. 3). 
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The main trigonometric formulas: |cosRn|+|sinRn|=R, |sinRn|+|verRn|=R, cosRn+verRn=0, sinRn+opsRn=0, 

where nЄZ, R≥0. 

Parity and periodicity formulas: cosR(-n)=cosRn, sinR(-n)=opsRn, verR(-n)=verRn, opsR(-n)=sinRn; 

cosR(n+4Rk)=cosRn, sinR(n+4Rk)=sinRn, verR(n+4Rk)=verRn, opsR(n+4Rk)=opsRn, where n,kЄZ; R≥0. 

The basic formulas on quarters: 1 qu. (0≤n≤R): cosRn=R-n, sinRn=n, verRn=n-R, opsRn=-n; 2 qu. 

(R≤n≤2R): cosRn=R-n, sinRn=2R-n, verRn=n-R, opsRn=n-2R; 3 qu. (2R≤n≤3R): cosRn=n-3R, sinRn=2R-n, 

verRn=3R-n, opsRn=n-2R; 4 qu. (3R≤n≤4R): cosRn=n-3R, sinRn=n-4R, verRn=3R-n, opsRn=4R-n. 

 

2. The Solution of Task 1 

 

We shall solve the task 1 by using the main coordinate layer XY. In this case (xi,yi) can be considered 

as the coordinates of the corresponding quantum of space. We will seek solutions located in the first quarter, 

so how the other solutions will easily follow from the obtained solutions. Thus, we can say that xi=cosat, 

yi=sinat, where 0≤t≤a, a=R+j-1, 1≤j≤R is some variable. Then the main condition of the task can be 

written as follows way:     (R-1)
2
<cos

2
at+sin

2
at<(R+1)

2
 or (R-1)

2
<(a-t)

2
+t

2
<(R+1)

2
. 

 
After the disclosure of brackets and the adduction of like summands, we obtain the following expression: 

-b<2t(t-a)<4R-b, where a=R+j-1, b=j
2
+2Rj-2j.        (1) 

 
To solve the resulting double inequality, it is necessary to introduce a new mathematical operation, the 

essence of which is as follows. 

Definition 14 (gissing operation): Let's divide all natural numbers into groups according to the following 

criterion: the equal quantity of numbers that are the square of a natural number are located between any 

element of group and zero, not counting this element, if it itself is the square of a natural number. The 

operation of determining the group of natural number N with respect to the indicated criterion is called 

the operation of gissing (from the Latin gis – group), and is designated as follows way: n=gisN. The 

group's number of a natural number is equals to the base of the square of natural number closest to a 

given number, which is greater than a given number, or equal to it: N≤n
2
; and between N and n

2
 there is 

no number that is the square of a natural number. 

 

For clarity, the numbers from 1 to 25 are grouped by the indicated criterion and reduced into the Table 1: 
 

Table 1. The Gissing of Numbers from 1 to 25. 

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 k 

The quantity of squares 0 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 n-1 

Group's number 0 1 2 3 4 5 n 

The quantity of numbers 

 in a group 
0 1 3 5 7 9 2n-1 

The quantity of numbers up 

to the n-th group inclusively 
0 1 4 9 16 25 n

2 

       For example: gis21=5; gis111=11; gis289=17; gis859=30; gis3975=64… 
 

Inequality (1) is equipollent to the following system of inequalities: 

                                                      2t
2
-2at+b>0            (2) 

                                                   2t
2
-2at-(4R-b)<0.    (3) 

 

Here and below, square brackets mean the union of solutions, and the curly brackets mean the inter-

section of solutions. Inequality (2) is equipollent to the following system of inequalities: 

                                or                       0≤t< (a-gis(a
2
-2b)+1)                                                                

                                                               (a+gis(a
2
-2b)-1)<t≤a.         

Fig. 3. The Graphs of Trigonometric Functions for R=8. 
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The operation of gissing of the expression under the radical leads to a decrease in the right-hand side 

of the first inequality of system and an increase in the left-hand side of the second inequality of system, 

except for the case when the expression under the radical is the square of some natural number. Therefore, 

we are increasing the expression in brackets on the right-hand side of the first inequality of system by 

one, and reducing on the left-hand side of the second inequality of system by 1.  

Inequality (3) is equipollent to the following double inequality: 

 (а-  a
2
+8R-2b)<t< (a+  a

2
+8R-2b)   or 

 (a-gis(a
2
+8R-2b))<t< (a+gis(a

2
+8R-2b)). 

Here the left-hand side of inequality decreases, and the right-hand side increases, and therefore the inequality 

is not violated. Thus, inequality (1) is equipollent to the following system of inequalities: 

                                        0≤t< (a-gis(a
2
-2b)+1) 

                                        (a+gis(a
2
-2b)-1)<t≤a                                                                          (4)                          

                                        (a-gis(a
2
+8R-2b))<t< (a+gis(a

2
+8R-2b)).  

 
Definition 15 (d- and g-functions): Let F(xi) and f(xi), where i=1÷n, nЄN – some mathematical expressions, 

which after substitution of numerical values of xi are some nonnegative numbers. Then: 

         0, if F(xi) is an even number,   

         1, if F(xi) is an odd number, is called the d-function; 

                     0, if f(xi)≠с
2
,     

                       1, if f(xi)=с
2
, where с≥0, is called the g-function.  

 

In the task under consideration, F (x1,x2) is one of the following four expressions: a±gis(a
2
-2b), 

a±gis(a
2
+8R-2b), and f(x1,x2)=a

2
-2b. 

Further we will use the following designation: if a> b, c and f are integers, and а=bхc+f, then c=[a:b] is 

the integer part off the dividing of a by b. With a view to replace the strict inequalities of system (4) by 

non-strict ones, we will write the system (4) in another equipollent format: 

                                  0≤t≤ [a-gis(a
2
-2b)-d:2]-g 

                                                                                 [a+gis(a
2
-2b)+d:2]+g≤t≤a                                                                             (5) 

                                      [a-gis(a
2
+8R-2b)-d:2]+1≤t≤[a+gis(a

2
+8R-2b)+d:2]-1 

                                           0≤t≤a, if a<gis(a
2
+8R-2b).  

 
The equipollent of systems (4) and (5) is clearly shown below, in Fig. 5, which will be more under-

standable after determining the corresponding solutions of system 5. The required pairs of numbers have the 

form: (cosat, sinat),, where a=R+j-1, t are the solutions of system (5). 

For clarity and to find out the essence of the variable j, we will consider a concrete example for R=17. 

1. j=1  b=33, a=17. Inequality (1) takes the form: -33<2t(t-17)<35; and the system (5):   

 0≤t≤ [17-gis223-d:2]-0=[17-15-0:2]=1                                               0≤t≤1       

[17+15+0:2]=16≤t≤17                                                                     16≤t≤17 

 7<gis359=19  0≤t≤17,                                                                    0≤t≤17 . 

We have 4 solutions: t=0;1;16;17, and hence 4 pairs:  

(cos170, sin170)=(17,0); (cos171, sin171)=(16,1);  

(cos1716, sin1716)=(1,16); (cos1717, sin1717)=(0,17). 

2. j=2  b=68, a=18. Inequality (1) takes the form: -68<2t(t-18)<0; and the system (5):  

0≤t≤ [18-gis188-d:2]-0=[18-14-0:2]=2                                                0≤t≤2 

[18+14+0:2]=16≤t≤18                                                                        16≤t≤18 

[18-gis324-d:2]+1=[18-18-0:2]+1=1≤t≤[18+18+0:2]-1=17,              1≤t≤17. 

We have 4 solutions: t=1;2;16;17, and hence 4 pairs:  

(cos181, sin181)=(17,1); (cos182, sin182)=(16,2);  

(cos1816, sin1816)=(2,16); (cos1817, sin1817)=(1,17). 

3. j=3  b=105, a=19. Inequality (1) takes the form: -105<2t(t-19)<-37; and the system (5):           

0≤t≤ [19-gis151-d:2]-0=[19-13-0:2]=3                                                0≤t≤3 

[19+13+0:2]=16≤t≤19                                                                        16≤t≤19 

 [19-gis287-d:2]+1=[19-17-0:2]+1=2≤t≤[19+17+0:2]-1=17,                                                                      2≤t≤17. 

We have 4 solutions: t=2;3;16;17, and hence 4 pairs:  

(cos192,sin192)=(17,2); (cos193,sin193)=(16,3);  

(cos1916,sin1916)=(3,16); (cos1917,sin1917)=(2,17). 

d

g
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4. j=4  b=144, a=20. Inequality (1) takes the form: -144<2t(t-20)<-76; and the system (5):  

0≤t≤ [20-gis112-d:2]-0=[20-11-1:2]=4                                                             0≤t≤4         

[20+11+1:2]=16≤t≤20                                                                         16≤t≤20 

3≤t≤17. [20-gis248-d:2]+1=[20-16-0:2]+1=3≤t≤[20+16+0:2]-1=17,                   
We have 4 solutions: t=3;4;16;17, and hence 4 pairs:  

(cos203,sin203)=(17,3); (cos204,sin204)=(16,4);  

(cos2016,sin2016)=(4,16); (cos2017,sin2017)=(3,17). 

5. j=5  b=185, a=21. Inequality (1) takes the form: -185<2t(t-21)<-117; and the system (5):  

0≤t≤[21-gis71-d:2]-0=[21-9-0:2]=6                                                            0≤t≤6 

[21+9+0:2]=15≤t≤21                                                                                15≤t≤21 

 [21-gis207-d:2]+1=[21-15-0:2]+1=4≤t≤[21+15+0:2]-1=17,                   4≤t≤17. 

We have 6 solutions: t=4;5;6;15;16;17, and hence 6 pairs:  

(cos214,sin214)=(17,4); (cos215,sin215)=(16,5); (cos216,sin216)=(15,6); 

(cos2115,sin2115)=(6,15); (cos2116,sin2116)=(5,16); (cos2117,sin2117)=(4,17). 

6. j=6  b=228, a=22. Inequality (1) takes the form: -228<2t(t-22)<-160; and the system (5):   

0≤t≤ [22-gis28-d:2]-0=[22-6-0:2]=8                                                             0≤t≤8 

[22+6+0:2]=14≤t≤22.                                                                               14≤t≤22 

[22-gis164-d:2]+1=[22-13-1:2]+1=5≤t≤ [22+13+1:2]-1=17,                       5≤t≤17. 

We have 8 solutions: t=5;6;7;8;14;15;16;17, and hence 8 pairs:  

(cos225,sin225)=(17,5); (cos226,sin226)=(16,6); (cos227,sin227)=(15,7); 

(cos228,sin228)=(14,8); (cos2214,sin2214)=(8,14); (cos2215,sin2215)=(7,15);  

(cos2216,sin2216)=(6,16); (cos2217,sin2217)=(5,17). 

7. j=7  b=273, a=23. Inequality (1) takes the form: -273<2t(t-23)<-205; and the system (5):  

0≤t≤ [23-gis(-17)-d:2]-g, gis(-17) not determined,             

[23+gis(-17)+d:2]+g≤t≤23 – not determined,  

[23-gis119-d:2]+1=[23-11-0:2]+1=7≤t≤ [23+11+0:2]-1=16,                                   7≤t≤16. 

We have 10 solutions: t=7;8;9;10;11;12;13;14;15;16, and hence 10 pairs:  

(cos237,sin237)=(16,7); (cos238,sin238)=(15,8); (cos239,sin239)=(14,9); (cos2310,sin2310)=(13,10); 

(cos2311,sin2311)=(12,11); (cos2312,sin2312)=(11,12); (cos2313,sin2313)=(10,13); (cos2314,sin2314)=(9,14); 

(cos2315,sin2315)=(8,15); (cos2316,sin2316)=(7,16). 

8. j=8  b=320, a=24. Inequality (1) takes the form: -320<2t(t-24)<-252; and the system (5):   

0≤t≤ [24-gis(-64)-d:2]+g, gis(-64) not determined,             

[24+gis(-64)+d:2]+g≤t≤24 – not determined,     

 [24-gis72-d:2]+1=[24-9-1:2]+1=8≤t≤ [24+9+1:2]-1=16,                                          8≤t≤16. 

We have 9 solutions: t=8;9;10;11;12;13;14;15;16, and hence 9 pairs:  

(cos248,sin248)=(16,8); (cos249,sin249)=(15,9); (cos2410,sin2410)=(14,10); 

(cos2411,sin2411)=(13,11); (cos2412,sin2412)=(12,12); (cos2413,sin2413)=(11,13); 

(cos2414,sin2414)=(10,14); (cos2415,sin2415)=(9,15); (cos2416,sin2416)=(8,16). 

9. j=9  b=369, a=25. Inequality (1) takes the form: -369<2t(t-25)<-301; and the system (5):  

0≤t≤ [25-gis(-113)-d:2]+g, gis(-113) not determined,             

[25+gis(-113)+d:2]+g≤t≤25 – not determined, 

 [25-gis23-d:2]+1=[25-5-0:2]+1=11≤t≤[25+5+0:2]-1=14,                                         11≤t≤14. 

We have 4 solutions: t=11;12;13;14, and hence 4 pairs:  

(cos2511,sin2511)=(14,11); (cos2512,sin2512)=(13,12);  

(cos2513,sin2513)=(12,13); (cos2514,sin2514)=(11,14). 

10. j=10  b=420, a=26. Inequality (1) takes the form: -420<2t(t-26)<-352; and the system (5):  

0≤t≤ [26-gis(-164)-d:2]-g, gis(-164) not determined,             

[26+gis(-164)+d:2]+g≤t≤26 – not determined,      

 [26-gis(-28)-d:2]+1≤t≤[26+gis(-28)+d:2]-1,  gis(-28) not determined.                     

The solution of system – . 

 

All solutions for the first quarter are found. Total – 53 pairs. Then the quantity of pairs for the entire 

coordinate layer at R=17, after deduction of overlaps, is equals: NR=17=53x4-4=208. 
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From the example considered, it becomes to clear the essence of the variable j. It represents the orbit’s 

number, on which the corresponding solutions of inequality (1) are distributed. And the orbits themselves are 

the T-squares of radius (R+j-1).  

The possible values of j can be determined from the following conditions: 

0≤a
2
-2b≤a

2
 

0≤a
2
+8R-2b≤a

2
.          Substituting into this system the values a=R+j-1 and b=j

2
+2Rj-2j, we will obtain: 

j
2
+2(R-1)j-(R

2
-2R+1)≤0 

j
2
+2(R-1)j≥0 

j
2
+2(R-1)j-(R

2
+6R+1)≤0 

j
2
+2(R-1)j-4R≥0.        The solution of the obtained system has the form: 

j1=1≤j≤gis(2(R-1)
2
)-R=j2 

 j3=gis((R+1)
2
)-R+1=2≤j≤gis(2(R+1)

2
)-R=j4.                   (6) 

 
The values of j1 and j2 indicate on the limits of action of the first and second conditions of system 

(5), and the values of j3 and j4 indicate on the limits of action of the third condition of system (5). For 

j1≤j<j3 the third condition of system (5) does not act, but the fourth condition act. The maximum value of j4 

indicates on the number of T-squares with radius from R to R+j4-1, on which the solutions of inequality (1) 

are dispersed. The expression j4=gis(2(R+1)
2
)-R is the numerical sequence whose R-th term is the quantity 

of T-squares of the dispersal of the solutions of inequality (1), the radius of the first of which is equals to 

R-1.The first 25 terms of this sequence are equal: 1,2,3,3,3,4,4,5,5,6,6,6,7,7,8,8,9,9,9,10,10,11,11,11,12. 

Thus, the general solution of Task 1 for the coordinate layer, in the part of enumeration of pairs, is 

looks as follows way: 

 (cosat, sinat) 

 (verat, sinat), t≠R for j=1                                                     (7) 

 (verat, opsat), t≠0 for j=1  

 (cosat, opsat), t≠0;R for j=1, where 0≤t≤a, a=R+j-1, R≥0,  

j runs through the values from j1 to j4, which are determined from the conditions – 

 j1=1≤j≤gis(2(R-1)
2
)-R=j2 

j3=2≤j≤gis(2(R+1)
2
)-R=j4, 

b=j
2
+2Rj-2j, t – the solutions of inequality -b<2t(t-a)<4R-b for the first quarter, which are determined 

from the conditions – 

0≤t≤ [(a-gis(a
2
-2b)-d:2]-g 

[a+gis(a
2
-2b)+d:2]+g≤t≤a                    

 [a-gis(a
2
+8R-2b)-d:2]+1≤t≤ [(a+gis(a

2
+8R-2b)+d:2]-1 

 0≤t≤a, if a<gis(a
2
+8R-2b). 

 

 The solution of task in part of the enumeration of pairs can be visualized with the help of function 

(yij)=2ti(ti-aj), the graph of which is a cascade of parabolas, the quantity of which is equals to j4. But first I 

will give the necessary definitions of the function, by the argument and value of which are numerical series. 

Definition 16 (1N-, 2N-, 3N-series): The totality of numbered from 1 to i, i≥1, quanta of the coordinate 

axis Y is called the linear natural series i, briefly the 1N-series(i). Let the numbered from -1 to -j, where 

j≥1, quanta of coordinate axis Z are renumbered by the corresponding positive numbers from 1 to j. Then the 

totality of these quanta and quanta of the 1N-series(i) is called the planar natural series ixj, briefly the 

2N-series(ixj). Let the numbered from -1 to -k, where k≥1, quanta of coordinate axis X are renumbered by 

the corresponding positive numbers from 1 to k. Then the totality of these quanta and quanta of the 2N-

series(ixj) is called the spatial natural series ixjxk, briefly the 3N-series(ixjxk). The quantum with 

coordinates (0,0,0) is called the zero quantum of indicated series. The arrangement of these series in the 

space may be other. 

Definition 17 (matrix): We put in correspondence to each quantum located under the 1N-series(i) a 

certain number ni. The totality of numbers obtained in this way is called the linear numeric matrix ni, 

briefly the Matrix(ni). We put in correspondence to  each quantum located at the intersection of the vertical 

unit channel passing through the quantum i and the horizontal unit channel passing through the quantum j of 

the 2N-series(ixj) a certain number nij. The totality of numbers obtained in this way is called the planar 

numeric matrix nij, briefly the Matrix(nij). In doing so the horizontal channels are called the strings, and 

the vertical channels are called the columns of Matrix(nij). We put in correspondence to each quantum 
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located at the intersection of the vertical unit layer passing through the quantum i, the horizontal unit layer 

passing through the quantum j and the frontal unit layer passing through the quantum k of the 3N-

series(ixjxk) a certain number nijk. The totality of numbers obtained in this way is called the spatial numeric 

matrix nijk, briefly the Matrix(nijk). In doing so the vertical layers are called vertical slices, the horizontal 

layers are called horizontal slices, and the frontal layers are called the frontal slices of the Matrix(nijk). The 

numbers ni, nij, nijk are called the values of the corresponding matrices. 

Definition 18 (1F0-, 2F0-, 3F0-matrix): The Matrix(a), together with the empty series of quanta located 

under the series of numbers аi, is called the empty linear functional matrix (аi), briefly the 1F0-matrix(аi). 

We will transform the Matrix(nij) as follows way: the horizontal natural series begins from the quantum 

(0,2,0), under which is located the series of numbers ai; the vertical natural series begins from the quantum 

(0,0,-2), to the right of which is located the series of numbers bj; all other quanta are empty. The Matrix(nij) 

transformed in this way is called the empty planar functional matrix (nij), briefly the 2F0-matrix(nij). 

We will transform the Matrix(nijk) as follows way: the horizontal natural series begins from the quantum 

(0,1,1), under which is located the series of numbers ai; the vertical natural series begins from the quantum 

(0,-1,-1), to the right of which is located the series of numbers bj; the frontal natural series begins from the 

quantum (-1,0,1), under which is located the series of numbers ck; all other quanta are empty. The Matrix(nijk) 

transformed in this way is called the empty spatial functional matrix (nijk), briefly the 3F0-matrix(nijk). 

Definition 19 (function): Let a certain transformation exist, which to each number of the series аi put in 

correspondence another number from the series yi. Then the series yi is called the linear function off the 

series аi with respect to the given transformation, briefly yi=f(аi). The linear function can be specified 

with the help of the 1F0-matrix(аi), the empty quanta of which are filled with the corresponding numbers 

of the series yi. The obtained matrix is called the linear functional matrix yi, briefly the 1F-matrix(yi). 

Let a certain transformation exist, which to each admissible pair of numbers from the series аi and bj put 

in correspondence another number from the values of Matrix(yij). Then the Matrix(yij) is called the 

planar function off the series аi and bj with respect to the given transformation, briefly (yij)=f(аi,bj). 

The planar function can be specified with the help of the 2F0-matrix(nij), the empty quanta of which are 

filled with the corresponding values of the Matrix(yij). The obtained matrix is called the planar functional 

matrix (yij), briefly the 2F-matrix(yij). Let a certain transformation exist, which to each admissible triple 

of numbers from the series аi, bj and сk put in correspondence another number from the values of Matrix(yijk). 

Then the Matrix(yijk) is called the spatial function off the series аi, bj and сk with respect to the given 

transformation, briefly (yijk)=f(аi,bj,сk). The spatial function can be specified with the help of the 3F0-

matrix(nijk), the empty quanta of which are filled with the corresponding values of the Matrix(yijk). The 

obtained matrix is called the spatial functional matrix (yijk), briefly the 3F-matrix(yijk). 

Definition 20 (function's graph): The reflection of the values of functional matrix relative to the corre-

sponding series through the coordinates of a certain totality of quanta of the selected Cartesian coordinate 

system is called the graphical mapping of the functional matrix, and the figure formed by the specified 

totality of quanta is called the function's graph. 

 

So, the graph of function (yij)=2ti(ti-aj) for R=17, i=1÷aj+1, j=1÷9, aj=16+j in the form of the corre-

sponding cascade of parabolas is presented in Fig. 4, and the corresponding 2F-matrix(yij) is given in Table 2. 

 

 

Table 2. 2F-matrix ((yij)=2ti(ti-aj)) for R=17. 
0 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

j ti   aj 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 17 0 -32 -60 -84 -104 -120 -132 -140 -144 -144 -140 -132 -120 -104 -84 -60 -32 0         

2 18 0 -34 -64 -90 -112 -130 -144 -154 -160 -162 -160 -154 -144 -130 -112 -90 -64 -34 0        

3 19 0 -36 -68 -96 -120 -140 -156 -168 -176 -180 -180 -176 -168 -156 -140 -120 -96 -68 -36 0       

4 20 0 -38 -72 -102 -128 -150 -168 -182 -192 -198 -200 -198 -192 -182 -168 -150 -128 -102 -72 -38 0      

5 21 0 -40 -76 -108 -136 -160 -180 -196 -208 -216 -220 -220 -216 -208 -196 -180 -160 -136 -108 -76 -40 0     

6 22 0 -42 -80 -114 -144 -170 -192 -210 -224 -234 -240 -242 -240 -234 -224 -210 -192 -170 -144 114 -80 -42 0    

7 23 0 -44 -84 -120 -152 -180 -204 -224 -240 -252 -260 -264 -264 -260 -252 -240 -224 -204 -180 -152 -120 -84 -44 0   

8 24 0 -46 -88 -126 -160 -190 -216 -238 -256 -270 -280 -286 -288 -286 -280 -270 -256 -238 -216 -190 -160 -126 -88 -46 0  

9 25 0 -48 -92 -132 -168 -200 -228 -252 -272 -288 -300 -308 -312 -312 -308 -300 -288 -272 -252 -228 -200 -168 -132 -92 -48 0 
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All lines on the graph are for illustration only. All quanta of 

graph are the quanta of T-squares with the radiuses from R=17 to R=25, 

having been refracted by the function (yij)=2ti(ti-aj), and the dedicated 

quanta are the solutions of inequality (1) for R=17. It is seen from the 

presented graph that the solutions of inequality (1) are between the 

corresponding channels y=-b and y=4R-b of the corresponding parabola of 

function's graph. The channel y=-b is located relative to the corresponding 

parabola in such a way that the nearest from top two parabola's quanta 

have values t equal to [a-gis(a
2
-2b)-d:2]-g and [a+gis(a

2
-2b)+d:2]+g. The 

channel y=4R-b is located relative to the corresponding parabola in such 

a way that the nearest from below two parabola's quanta have values t 

equal to [a-gis(a
2
+8R-2b)-d:2]+1 and [a+gis(a

2
+8R-2b)+d:2]-1.Then the 

quantity of quanta located on a given orbit j1≤j≤j2 can be determined from 

the following expression:  

nj=[a-gis(a
2
-2b)-d:2]-[a-gis(a

2
+8R-2b)-d:2]+[a+gis(a

2
+8R-2b)+d:2]-[a+gis(a

2
-2b)+d:2]-2g.            (8) 

Formula (8), as well as the equivalence of systems (4) and (5), becomes clearer from Fig. 5. 

The ones shown in Fig. 5 the numbers t1, t2, t3 and t4 have the following values: 

t1=[a-gis(a
2
-2b)-d:2]-g; t2=[a+gis(a

2
-2b)+d:2]+g; t3=[a-gis(a

2
+8R-2b)-d:2]+1; t4=[a+gis(a

2
+8R-2b)+d:2]-1.   

For the j1=1, the fourth condition of system (5) is acting. Then: t3=0, t4=R, a=R, b=2R-1   

n(j1)=t1-0+1+R-t2+1=[R-gis((R-1)
2
-(2R-1))-d:2]+R-[a+gis((R-1)

2
-(2R-1))+d:2]-2g+2. Further we are reasoning 

so: (R-1)
2
-(R-2)

2
=2R-3<2R-1  gis((R-1)

2
-(2R-1))=R-2  n(j1)=1+R-(R-1)-0+2=4.  

0 R+j-1 

y= -b 

y=4R-b 

t3 t1 t2 t4 

  Fig.5.  

  Explanations to the Formula 8. 

Fig. 4. The Graph of the Function (yij)=2ti(ti-aj) for R=17. 



10 

 

If j2+1≤j≤j4, then the distribution of quanta along the orbits can be determined from the following 

expression: nj=[a+gis(a
2
+8R-2b)+d:2]-[a-gis(a

2
+8R-2b)-d:2]-1.       (9) 

Let us verify the validity of formulas (8) and (9) for R=17. For 2≤j≤j2=6 we have: 

j=2. [18-gis188-d:2]-[18-gis324-d:2]+[18+gis324+d:2]-[18+gis188+d:2]-2x0=2-0+18-16-0=4; 

j=3. [19-gis151-d:2]-[19-gis287-d:2]+[19+gis287+d:2]-[19+gis151+d:2]-2x0=3-1+18-16-0=4; 

j=4. [20-gis112-d:2]-[20-gis248-d:2]+[20+gis248+d:2]-[20+gis112+d:2]-2x0=4-2+18-16-0=4; 

j=5. [21-gis71-d:2]-[21-gis207-d:2]+[21+gis207+d:2]-[21+gis71+d:2]-2x0=6-3+18-15-0=6; 

j=6. [22-gis28-d:2]-[22-gis164-d:2]+[22+gis164+d:2]-[22+gis28+d:2]-2x0=8-4+18-14-0=8. 

For j2+1=7≤j≤j4=gis(2(R+1)
2
)-R=gis648-17=26-17=9 we have: 

j=7. [23+gis119+d:2]-[23-gis119-d:2]-1=17-6-1=10;  

j=8. [24+gis72+d:2]-[24-gis72-d:2]-1=17-7-1=9; 

j=9. [25+gis23+d:2]-[25-gis23-d:2]-1=15-10-1=4. 

The obtained result is in full agreement with the previously obtained distribution without applying 

formulas (8) and (9) – (4+4+4+4+6+8+10+9+4=53). 

The total quantity of the pairs of numbers satisfying the conditions of Task 1 can be determined 

from the following formula: 

              

  

      

  

   

                                  

  

      

  

   

          

 

where t1=[a-gis(a
2
-2b)-d:2]-g; t2=[a+gis(a

2
-2b)+d:2]+g; t3=[a-gis(a

2
+8R-2b)-d:2]+1; t4=[a+gis(a

2
+8R-2b)+d:2]-1. 

 

The obtained expression for NR is the numerical sequence, the (R+1)-th term of whose is the total 

quantity of the pairs of numbers satisfying the conditions of task for the given R. The first 25 terms of this 

sequence are equal:  

1,8,20,32,40,60,64,80,100,108, 120,120,140,168,168,180,180,208,216,236,240,256,276,280,288. 

The numerical values of the quantity of pairs N and their distribution along orbits j for R values 

from 0 to 25 are listed in the Table 3. 

 

Table 3. The Quantity of Pairs N and their Distribution  

      along Orbits j for R Values from 0 to 25. 
R N j nj 

   nj=1 nj=2 nj=3 nj=4 nj=5 nj=6 nj=7 nj=8 nj=9 nj=10 nj=11 nj=12 

0 1 1 1            

1 8 2 4 4           

2 20 3 8 8 4          

3 32 3 12 12 8          

4 40 3 12 16 12          

5 60 4 12 20 16 12         

6 64 4 12 16 20 16         

7 80 5 12 16 24 20 8        

8 100 5 12 16 28 24 20        

9 108 6 12 16 24 28 24 4       

10 120 6 12 16 16 32 28 16       

11 120 6 12 16 16 24 32 20       

12 140 7 12 16 16 24 36 24 12      

13 168 7 12 16 16 24 40 36 24      

14 168 8 12 16 16 16 32 40 28 8     

15 180 8 12 16 16 16 24 44 32 20     

16 180 9 12 16 16 16 24 32 36 24 4    

17 208 9 12 16 16 16 24 32 40 36 16    

18 216 9 12 16 16 16 24 24 48 40 28    

19 236 10 12 16 16 16 24 24 40 44 32 12   

20 240 10 12 16 16 16 16 24 28 48 40 24   

21 256 11 12 16 16 16 16 24 32 32 48 36 8  

22 276 11 12 16 16 16 16 24 32 32 52 40 20  

23 280 11 12 16 16 16 16 24 24 24 48 44 40  

24 288 12 12 16 16 16 16 24 24 24 40 48 36 16 

25 312 12 12 16 16 16 16 24 24 32 32 48 48 28 
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Thus, the quantity has been specified, and all pairs of numbers that satisfy the conditions of 

Task 1 are listed.  

The totality of quanta whose coordinates are the solutions of Task 1 for R=17, in the form of the 

circular passage of radius R=17, is shown graphically in Fig.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Definition 21 (the circular passage): The totality of the quanta of space lying in a given coordinate 

layer, the coordinates (xi,yi), i=0÷n, nЄN of whose satisfy the following conditions:                           

                                                 (R-1)
2
<xi

2
+yi

2
<(R+1)

2
 

                                                   -R≤xi≤R 

                                                   -R≤yi≤R, where R≥0, 

 

forms the circular passage of radius R with the center at the origin of coordinates, briefly the C-passage(R). 

The coordinates of the quanta of C-passage(R) can be specified as follows way: 

(cosat, sinat) 

(verat, sinat), t≠R for j=1  

(verat, opsat), t≠0 for j=1  

(cosat, opsat), t≠0;R for j=1, where 0≤t≤a, a=R+j-1, R≥0, 

j runs through the values from j1 to j4, which are determined from the conditions – 

j1=1≤j≤gis(2(R-1)
2
)-R=j2 

j3=2≤j≤gis(2(R+1)
2
)-R=j4,                 

 b=j
2
+2Rj-2j, t – the solutions of inequality -b<2t(t-a)<4R-b for the first quarter, which are determined 

from the conditions – 

0≤t≤[(a-gis(a
2
-2b)-d:2]-g 

[a+gis(a
2
-2b)+d:2]+g≤t≤a                                                           

[a-gis(a
2
+8R-2b)-d:2]+1≤t≤[(a+gis(a

2
+8R-2b)+d:2]-1 

 0≤t≤a, если a<gis(a
2
+8R-2b). 

C-passage(R) is planar, two-dimensional-limited, closed passage. 

 

-17 
-16 
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-5 
-4 
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6 
7 
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10 
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-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fig.6. The Circular Passage of Radius R=17. 
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It necessary be noted that the C-passage(R) is the likeness of a circumference in the Quantum Discrete 

Space. Of course, it is much easier to draw a circumference with the help of compasses in the Euclidean 

Space of points, lines and planes. But this is an abstraction. Here we are talking about reality.  

The obtained solution for a circular "layer", or more precisely for a circular passage, makes it possible, 

if necessary, to determine the number of quanta that are inside the circular passage, that is, to solve the 

Task 1 by the replacing of basic condition on following: xi
2
+yi

2
<(R+1)

2
. But within the framework of this 

article there is no such necessity, therefore I will only indicate one of the possible approaches to solving 

this task, which, in essence, is the task about solving the Gauss's problem in the circle.  

Here it suffices to note that a circular passage of radius R-2, the quanta's coordinates of whose satisfy 

the conditions of Task 1, during replacing the basic strict inequality (R-1)
2
<xi

2
+yi

2
<(R+1)

2 
 on the non-strict 

one – (R-1)
2
≤xi

2
+yi

2
≤(R+1)

2
, briefly C-passag(≤R-2), without overlap, from the inside, closely adjoins to 

the C-passage (R), and the C-passage(R-4) in the same way without overlap, from the inside, closely adjoins 

to the C-passage(≤R-2), etc. Thus, alternating, the corresponding C-passages completely fill all the 

internal quanta of C-passage(R), and the task reduces to the corresponding summation.  

Let R=2k+d(R), where k>n≥0, nЄN, d(R)=0 (if R is even), d(R)=1 (if R is odd), n=0÷[k:2]+d(k), 
d(k)=0 (if k is even), d(k)=1(if k is odd), and let NR-4n be the quantity of quanta of the corresponding C-

passages(R-4n), and   R-2(2n+1) be the quantity of quanta of the corresponding C-passages(≤R-2(2n+1)). 

Then the quantity N of the solutions of Task 1 for the condition xi
2
+yi

2
<(R+1)

2
 is equals: 

 

        

     

   

             

          

   

                             

 

But there is one feature. If R=1+4k, where k≥1, and n=0÷k-1, then formula 11 slightly changes: 

 

        

   

   

             

   

   

                               

 

 

 

3. The Solution of Task 2 

 

We shall solve the Task 2 in the Cartesian coordinate system. Then the triple of numbers (xi,yi,zi) can 

be considered as the coordinates of the corresponding quantum of space. The solutions of task will be 

distributed over the j orbits, which are the T-octahedrons of the radius R+j-1. We will seek the solutions 

located in the first octant, with using of the coordinate package XY(z=0÷R), so how the other solutions 

will easily flow out from the obtained solutions. The coordinates of any quantum of the totality of T-

octahedrons located in the first octant can be represented in the following form: (cosctz, sinctz, z), where 

c=R+j-1-z, z=0÷R, 0≤tz≤c, 1≤j<R. Then the main condition of task can be written as follows way: 

(R-1)
2
<cos

2
c tz + sin

2
c tz+z

2
<(R+1)

2
   or 

(R-1)
2
<(c- tz)

2
+ tz

2
+z

2
<(R+1)

2
. 

 
After the disclosure of brackets and the adduction of like summands, we obtain: 

2сz-b<2tz(tz-с)<4R+2сz-b, где с=R+j-1-z=a-z, b=j
2
+2Rj-2j.     (13) 

 

Inequality (13) is equipollent to the following system of inequalities: 

                                                                       2tz
2
-2ctz-(2cz-b)>0                    (14) 

                                                                       2tz
2
-2ctz-(4R+2cz-b)<0.             (15) 

 

Inequality (14) is equipollent to the following system of inequalities: 

            
                                                                     0≤tz< (c-gis(c

2
-2b+4cz)+1)   

                     or                    (c+gis(c
2
-2b+4cz)-1)<tz≤c.  
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Inequality (15) is equipollent to the following double inequality: 

  с  с                                            

 (c-gis(c
2
+8R-2b))<tz< (c+gis(c

2
+8R-2b)). 

 

Taking into account the reasoning given during solved of the Task 1, we write the obtained result 

in the following form: 

                           0≤tz≤[c-gis(c
2
-2b+4cz)-d:2]-g 

                           [c+gis(c
2
-2b+4cz)+d:2]+g≤tz≤c                                                       (16)                           

             [c-gis(c
2
+8R-2b+4cz)-d:2]+1≤tz≤ [c+gis(c

2
+8R-2b+4cz)+d:2]-1 

                                  0≤tz≤c, if c<gis(c
2
+8R-2b+4cz). 

 

Here F(xi)=c±gis(c
2
-2b+4cz) or c±gis(c

2
+8R-2b+4cz), and f(xi)=c

2
-2b+4cz, i=1÷3. 

 

The conditions from which the values of j can be determined have the follows view: 

0≤c
2
-2b+4cz≤c

2
 

0≤c
2
+8R-2b+4cz≤c

2
.       

 

Substituting in this system the values of c and b, we obtain: 

j
2
+2(R-1-z)j-(R

2
-2R+1+2Rz-2z-3z

2
)≤0 

j
2
+2(R-1-z)j+2(z

2
-Rz+z)≥0 

j
2
+2(R-1-z)j-(R

2
+6R+1+2Rz-2z-3z

2
)≤0 

j
2
+2(R-1-z)j+2(z

2
-Rz-2R+z)≥0.    

 

The solution of the obtained system has the follows view: 

j1z=gis((R-1)
2
-z

2
)-R+z+1+g((R-1)

2
-z

2
)≤j≤gis(2(R-1)

2
-2z

2
)-R+z=j2z,  

j3z=gis((R+1)
2
-z

2
)-R+z+1≤j≤gis(2(R+1)

2
-2z

2
)-R+z=j4z.                                     (17) 

 

The required triples of numbers have the follows view: (cosctz, sinctz, z), where 0≤tz≤c are the 

solutions of system (16), z=0÷R, and the corresponding values of j are determined from the system (17). 

We will consider the specific example for R=7. 

1. z=0, j1=1≤j≤2=j2, j3=2≤j≤5=j4, c=6+j, b=j
2
+14j-2j.  The system (16) takes the form: 

0≤t0≤ [c-gis(c
2
-2b)-d:2]-g 

[c+gis(c
2
-2b)+d:2]+g≤t0≤c                                       

 [c-gis(c
2
+56-2b)-d:2]+1≤t0≤ [c+gis(c

2
+56-2b)+d:2]-1        

   0≤t0≤c, if c<gis(c
2
+56-2b). 

1.1. j=1  c=7, b=13. 

0≤t0≤ [7-gis23-d:2]+0=[7-5-0:2]=1                                                                0≤t0≤1 

[7+5+0:2]=6≤t0≤7                                                                                        6≤t0≤7 

 7<gis79=9  0≤t0≤7,                                                                                                     0≤t0≤7.  

We have 4 solutions: t0=0;1;6;7, and hence 4 triples: 

(cos70,sin70,0)=(7,0,0); (cos71,sin71,0)=(6,1,0);  

(cos76,sin76,0)=(1,6,0); (cos77,sin77,0)=(0, 7,0). 

1.2. j=2  c=8, b=28. 

0≤t0≤ [8-gis8-d:2]-0=[8-3-1:2]=2                                                         0≤t0≤2 

[8+3+1:2]=6≤t0≤8                                                                                 6≤t0≤8 

 [8-gis64-d:2]+1=[8-8-0:2]+1=1≤t0≤ [8+8+0:2]-1=7,                                  1≤t0≤7. 

We have 4 solutions: t0=1;2;6;7, and hence 4 triples:  

(cos81,sin81,0)=(7,1,0); (cos82,sin82,0)=(6,2,0);  

(cos86,sin86,0)=(2,6,0); (cos87,sin87,0)=(1,7,0). 

1.3. j=3  c=9, b=45. 

[9-gis47-d:2]+1=[9-7-0:2]+1=2≤t0≤[9+7+0:2]-1=7,                                           2≤t0≤7. 

We have 6 solutions: t0=2;3;4;5;6;7, and hence 6 triples:  

(cos92,sin92,0)=(7,2,0); (cos93,sin93,0)=(6,3,0); (cos94,sin94,0)=(5,4,0);  

(cos95,sin95,0)=(4,5,0); (cos96,sin96,0)=(3,6,0); (cos97,sin97,0)=(2,7,0). 
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1.4. j=4  c=10, b=64. 

[10-gis28-d:2]+1=[10-6-0:2]+1=3≤t0≤ [10+6+0:2]-1=7,                                     3≤t0≤7. 

We have 5 solutions: t0=3;4;5;6;7, and hence 5 triples:  

(cos103,sin103,0)=(7,3,0); (cos104,sin104,0)=(6,4,0); (cos105,sin105,0)=(5,5,0);  

(cos106,sin106,0)=(4,6,0); (cos107,sin107,0)=(3,7,0). 

1.5. j=5  c=11, b=85. 

[11-gis7-d:2]+1=[11-3-0:2]+1=5≤t0≤ [11+3+0:2]-1=6,                                        5≤t0≤6. 

We have 2 solutions: t0=5;6, and hence 2 triples.  

(cos115,sin115,0)=(6,5,0); (cos116,sin116,0)=(5,6,0).  

Total, we have 21 triples for z=0. 
 
2. z=1, j1=1≤j≤3=j2, j3=3≤j≤6=j4, c=5+j, b=j

2
+14j-2j.  The system (16) takes the form: 

0≤t1≤ [c-gis(c
2
-2b+4a)-d:2]-g                                                                    

[c+gis(c
2
-2b+4c)+d:2]+g≤t1≤c                                                  

 [c-gis(c
2
+56-2b+4c)-d:2]+1≤t1≤[c+gis(c

2
+56-2b+4c)+d:2]-1                     

 0≤t1≤c, if c<gis(c
2
+56-2b+4c).                                                             

2.1. j=1  c=6, b=13. 
0≤t1≤ [6-gis34-d:2]-0=[6-6-0:2]=0                                                      0≤t1≤0 

[6+6+0:2]=6≤t1≤6                                                                                 6≤t1≤6 

 6<gis90=10  0≤t1≤6,                                                                         0≤t1≤6. 

We have 2 solutions: t0=0;6, and hence 2 triples:  

(cos60,sin60,1)=(6,0,1); (cos66,sin66,1)=(0,6,1). 

2.2. j=2  c=7, b=28. 

0≤t1≤ [7-gis21-d:2]-0=[7-5-0:2]=1                                                       0≤t1≤1 

[7+5+0:2]=6≤t1≤7                                                                                  6≤t1≤7 

7<gis77=9  0≤t1≤7,                                                                               0≤t1≤7. 

We have 4 solutions: t0=0;1;6;7, and hence 4 triples:  

(cos70,sin70,1)=(7,0,1); (cos71,sin71,1)=(6,1,1);  

(cos76,sin76,1)=(1,6,1); (cos77,sin77,1)=(0,7,1). 

2.3. j=3  c=8, b=45. 

0≤t1≤ [8-gis6-d:2]-0=[8-3-1:2]=2                                                            0≤t1≤2 

[8+3+1:2]=6≤t1≤8                                                                                     6≤t1≤8 

 [8-gis62-d:2]+1=[8-8-0:2]+1=1≤t1≤ [8+8+0:2]-1=7,                                               1≤t1≤7. 

We have 4 solutions: t0=1;2;6;7, and hence 4 triples:  

(cos81,sin81,1)=(7,1,1); (cos82,sin82,1)=(6,2,1);  

(cos86,sin86,1)=(2,6,1); (cos87,sin87,1)=(1,7,1). 

2.4. j=4  c=9, b=64. 

[9-gis45-d:2]+1=[9-7-0:2]+1=2≤t1≤ [9+7+0:2]-1=7,                                          2≤t1≤7. 

We have 6 solutions: t1=2;3;4;5;6;7, and hence 6 triples:  

(cos92,sin92,1)=(7,2,1); (cos93,sin93,1)=(6,3,1); (cos94,sin94,1)=(5,4,1);  

(cos95,sin95,1)=(4,5,1); (cos96,sin96,1)=(3,6,1); (cos97,sin97,1)=(2,7,1). 

2.5. j=5  c=10, b=85. 

[10-gis26-d:2]+1=[10-6-0:2]+1=3≤t1≤ [10+6+0:2]-1=7,                                     3≤t1≤7. 

We have 5 solutions: t1=3;4;5;6;7, and hence 5 triples:  

(cos103,sin103,1)=(7,3,1); (cos104,sin104,1)=(6,4,1); (cos105,sin105,1)=(5,5,1); 

(cos106,sin106,1)=(4,6,1); (cos107,sin107,1)=(3,7,1).  

2.6. j=6  c=11, b=108. 

[11-gis5-d:2]+1=[11-3-0:2]+1=5≤t1≤[11+3+0:2]-1=6,                                         5≤t1≤6. 
We have 2 solutions: t1=5;6, and hence 2 triples:  
(cos115,sin115,1)=(6,5,1); (cos116,sin116,1)=(5,6,1).  
Total, we have 23 triples for z=1. 
 
3. z=2, j1=2≤j≤4=j2, j3=4≤j≤6=j4, c=4+j, b=j

2
+14j-2j.  The system (16) takes the form: 

0≤t2≤ [c-gis(c
2
-2b+8c)-d:2]-g 

[c+gis(c
2
-2b+8c)+d:2]+g≤t2≤c                                       

[c-gis(c
2
+56-2b+8c)-d:2]+1≤t2≤[c+gis(c

2
+56-2b+8c)+d:2]-1 

 0≤t2≤c, if c<gis(c
2
+56-2b+8c). 
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3.1. j=1  c=5, b=13. 

0≤t2≤ [5-gis39-d:2]-0=[5-7-d:2] – not determined                                         

              [5+7+0:2]=6≤t2≤5 – no solutions                                                 

5<gis95=10  0≤t2≤5,                                                                      0≤t2≤5. 

There are no solutions. 

3.2. j=2  c=6, b=28. 

0≤t2≤ [6-gis28-d:2]-0=[6-6-0:2]=0                                                                 0≤t2≤0 

[6+6+0:2]=6≤t2≤6                                                                                         6≤t2≤6 

 6<gis84=10  0≤t2≤6,                                                                                    0≤t2≤6. 

We have 2 solutions: t2=0;6, and hence 2 triples:  

(cos60,sin60,2)=(6,0,2); (cos66,sin66,2)=(0,6,2). 

3.3. j=3  c=7, b=45. 

0≤t2≤ [7-gis15-d:2]-0=[7-4-1:2]=1                                                                 0≤t2≤1 

[7+4+1:2]=6≤t2≤7                                                                                          6≤t2≤7 

[7<gis71=9  0≤t2≤7,                                                                                       0≤t2≤7. 

We have 4 solutions: t2=0;1;6;7, and hence 4 triples:  

(cos70,sin70,2)=(7,0,2); (cos71,sin71,2)=(6,1,2);  

(cos76,sin76,2)=(1,6,2); (cos77,sin77,2)=(0,7,2). 

3.4. j=4  c=8, b=64. 

0≤t2≤ [8-gis0-d:2]-1=[8-0-0:2]-1=3                                                            0≤t2≤3 

[8+0+0:2]+1=5≤t2≤8                                                                                    5≤t2≤8 

[8-gis56-d:2]+1=[8-8-0:2]+1=1≤t2≤[8+8+0:2]-1=7,                                                      1≤t2≤7. 

We have 6 solutions: t2=1;2;3;5;6;7, and hence 6 triples:  

(cos81,sin81,2)=(7,1,2); (cos82,sin82,2)=(6,2,2); (cos83,sin83,2)=(5,3,2);  

(cos85,sin85,2)=(3,5,2); (cos86,sin86,2)=(2,6,2). (cos87,sin87,2)=(1,7,2). 

3.5. j=5  c=9, b=85. 

[9-gis39-d:2]+1=[9-7-0:2]+1=2≤t2≤[9+7+0:2]-1=7,                                                   2≤t2≤7. 

We have 6 solutions: t2=2;3;4;5;6;7, and hence 6 triples:  

(cos92,sin92,2)=(7,2,2); (cos93,sin93,2)=(6,3,2); (cos94,sin94,2)=(5,4,2);  

(cos95,sin95,2)=(4,5,2); (cos96,sin96,2)=(3,6,2); (cos97,sin97,2)=(2,7,2). 

3.6. j=6  c=10, b=108. 

[10-gis20-d:2]+1=[10-5-1:2]+1=3≤t2≤ [10+5+1:2]-1=7,                                             3≤t2≤7. 

We have 5 solutions: t2=3;4;5;6;7, and hence 5 triples:  

(cos103,sin103,2)=(7,3,2); (cos104,sin104,2)=(6,4,2); (cos105,sin105,2)=(5,5,2);  

(cos106,sin106,2)=(4,6,2); (cos107,sin107,2)=(3,7,2).  

Total, we have 23 triples for z=2. 

 

4. z=3, j1=3≤j≤4=j2, j3=5≤j≤7=j4, c=3+j, b=j
2
+14j-2j.  The system (16) takes the form: 

0≤t3≤[c-gis(c
2
-2b+12c)-d:2]-g 

[c+gis(c
2
-2b+12c)+d:2]+g≤t3≤c                                       

[c-gis(c
2
+56-2b+12c)-d:2]+1≤t3≤[c+gis(c

2
+56-2b+12c)+d:2]-1 

 0≤t3≤c, if c<gis(c
2
+56-2b+12c).  

4.1. j=1  c=4, b=13. 

0≤t3≤ [4-gis38-d:2]-0=[4-7-d:2] – not determined                                                                                     

[4+7+1:2]=6≤t3≤4 – no solutions                                                                             

4<gis94=10  0≤t3≤4,                                                                                            0≤t3≤4.  
There are no solutions. 

4.2. j=2  c=5, b=28. 

0≤t3≤ [5-gis29-d:2]-0=[5-6-d:2] – not determined                                       

 [5+6+1:2]=6≤t3≤5 – no solutions                                                     

0≤t3≤5.  5<gis85=100≤t3≤5,                                                                          

There are no solutions. 
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4.3. j=3c=6, b=45. 

0≤t3≤ [6-gis18-d:2]-0=[6-5-1:2]=0                                                                 0≤t3≤0 

[6+5+1:2]=6≤t3≤6                                                                                            6≤t3≤6 

 6<gis74=80≤t3≤6,                                                                                        0≤t3≤6. 

We have 2 solutions: t3=0;6, and hence 2 triples:   

(cos60,sin60,3)=(6,0,3); (cos66,sin66,3)=(0,6,3). 

4.4. j=4  c=7, b=64. 

0≤t3≤ [7-gis5-d:2]-0=[7-3-0:2]=2                                                                                  0≤t3≤2 

[7+3+0:2]=5≤t3≤7                                                                                                    5≤t3≤7 

 7<gis61=8  0≤t3≤7,                                                                                            0≤t3≤7. 

We have 6 solutions: t3=0;1;2;5;6;7, and hence 6 triples:  

(cos70,sin70,3)=(7,0,3); (cos71,sin71,3)=(6,1,3); (cos72,sin2,3)=(5,2,3);  

(cos75,sin75,3)=(2,5,3); (cos76,sin76,3)=(1,6,3); (cos77,sin77,3)=(0,7,3). 

4.5. j=5  c=8, b=85. 

[8-gis46-d:2]+1=[8-7-1:2]+1=1≤t3≤ [8+7+1:2]-1=7,                                                    1≤t3≤7. 

We have 7 solutions: t3=1;2;3;4;5;6;7, and hence 7 triples:  

(cos81,sin81,3)=(7,1,3); (cos82,sin82,3)=(6,2,3); (cos83,sin83,3)=(5,3,3);  

(cos84,sin84,3)=(4,4,3); (cos85,sin85,3)=(3,5,3); (cos86,sin86,3)=(2,6,3);  

(cos87,sin87,3)=(1,7,3). 

4.6. j=6  c=9, b=108. 

[9-gis29-d:2]+1=[9-6-1:2]+1=2≤t3≤ [9+6+1:2]-1=7,                                                     2≤t3≤7. 

We have 6 solutions: t3=2;3;4;5;6;7, and hence 6 triples:  

(cos92,sin92,3)=(7,2,3); (cos93,sin93,3)=(6,3,3); (cos94,sin94,3)=(5,4,3);  

(cos95,sin95,3)=(4,5,3); (cos96,sin96,3)=(3,6,3); (cos97,sin97,3)=(2,7,3). 

4.7. j=7  c=10, b=133. 

[10-gis10-d:2]+1=[10-4-0:2]+1=4≤t3≤[10+4+0:2]-1=6,                                                4≤t3≤6. 

We have 3 solutions: t3=4;5;6, and hence 3 triples:  

(cos104,sin104,3)=(6,4,3); (cos105,sin105,3)=(5,5,3); (cos106,sin106,3)=(4,6,3).  

Total, we have 24 triples for z=3. 

 

5. z=4, j1=3≤j≤4=j2, j3=5≤j≤7=j4, c=2+j, b=j
2
+14j-2j.  The system (16) takes the form: 

0≤t4≤[c-gis(c
2
-2b+16c)-d:2]-g 

[c+gis(c
2
-2b+16c)+d:2]+g≤t4≤c                                       

[c-gis(c
2
+56-2b+16c)-d:2]+1≤t4≤[c+gis(c

2
+56-2b+16c)+d:2]-1 

 0≤t4≤c, if c<gis(c
2
+56-2b+16c). 

5.1. j=1  c=3, b=13. 

0≤t4≤[3-gis31-d:2]-0=[3-6-d:2] – not determined 

   [3+6+1:2]=5≤t4≤3 – no solutions                                                      

 3<gis87=100≤t4≤3,                                                                                                       0≤t4≤3. 

There are no solutions. 

5.2. j=2  c=4, b=28. 

0≤t4≤[4-gis24-d:2]-0=[4-5-d:2] – not determined 

[4+5+1:2]=5≤t4≤4 – no solutions                                                                                       

4<gis80=9  0≤t4≤4,                                                                                                       0≤t4≤≤4. 

There are no solutions. 

5.3. j=3  c=5, b=45. 

0≤t4≤[5-gis15-d:2]-0=[5-4-1:2]=0                                                                   0≤t4≤0 

[5+4+1:2]=5≤t4≤5                                                                                           5≤t4≤5 

5<gis71=9  0≤t4≤5,                                                                                                     0≤t4≤5. 

We have 2 solutions: t4=0;5, and hence 2 triples:  

(cos50,sin50,4)=(5,0,4); (cos55,sin55,4)=(0,5,4). 
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5.4. j=4  c=6, b=64. 

0≤t4≤[6-gis4-d:2]-1=[6-2-0:2]-1=1                                                                  0≤t4≤1 

[6+2+0:2]+1=5≤t4≤6                                                                                          5≤t4≤6 

6<gis60=8  0≤t4≤6,                                                                                                       0≤t4≤6. 

We have 4 solutions: t4=0;1;5;6, and hence 4 triples:  

(cos60,sin60,4)=(6,0,4); (cos61,sin61,4)=(5,1,4);  

(cos65,sin65,4)=(1,5,4); (cos66,sin66,4)=(0,6,4). 

5.5. j=5  c=7, b=85. 

[7-gis47-d:2]+1=[7-7-0:2]+1=1≤t4≤[7+7+0:2]-1=6,                                                   1≤t4≤6. 

We have 6 solutions: t3=1;2;3;4;5;6, and hence 6 triples:  

(cos71,sin71,4)=(6,1,4); (cos72,sin72,4)=(5,2,4); (cos73,sin73,4)=(4,3,4);  

(cos74,sin74,4)=(3,4,4); cos75,sin75,4)=(2,5,4); (cos76,sin76,4)=(1,6,4). 

5.6. j=6  c=8, b=108. 

[8-gis32-d:2]+1=[8-6-0:2]+1=2≤t4≤[8+6+0:2]-1=6,                                                   2≤t4≤6. 

We have 5 solutions: t4=2;3;4;5;6, and hence 5 triples:  

(cos82,sin82,4)=(6,2,4); (cos83,sin83,4)=(5,3,4); (cos84,sin84,4)=(4,4,4);  

(cos85,sin85,4)=(3,5,4); (cos86,sin86,4)=(2,6,4). 

5.7. j=7  c=9, b=133. 

[9-gis15-d:2]+1=[9-4-1:2]+1=3≤t4≤ [9+4+1:2]-1=6,                                                  3≤t4≤6. 

We have 4 solutions: t4=3;4;5;6, and hence 4 triples:  

(cos93,sin93,4)=(6,3,4); (cos94,sin94,4)=(5,4,4);  

(cos95,sin95,4)=(4,5,4); (cos96,sin96,4)=(3,6,4). 

Total, we have 21 triples for z=4. 
 
6. z=5, j1=3≤j≤3=j2, j3=6≤j≤7=j4, c=1+j, b=j

2
+14j-2j.  The system (16) takes the form: 

0≤t5≤[c-gis(c
2
-2b+20c)-d:2]-g 

[c+gis(c
2
-2b+20c)+d:2]+g≤t5≤c                                       

[c-gis(c
2
+8R-2b+20c)-d:2]+1≤t5≤[c+gis(c

2
+8R-2b+20c)+d:2]-1 

 0≤t5≤c, if a<gis(c
2
+56-2b+20c).   

6.1. j=1  c=2, b=13. 

0≤t5≤[2-gis18-d:2]-0=[2-5-d:2] – not determined                                                  

 [2+5+1:2]=4≤t5≤2 – no solutions                                                    

2<gis74=9  0≤t5≤2,                                                                        0≤t5≤2. 

There are no solutions. 

6.2. j=2  c=3, b=28. 

0≤t5≤[3-gis13-d:2]-0=[3-4-d:2] – not determined                                                  

[3+4+1:2]=4≤t5≤3 – no solutions                                                                           

3<gis69=9  0≤t5≤3,                                                                                            0≤t5≤3. 

There are no solutions. 

6.3. j=3  c=4, b=45. 

0≤t5≤[4-gis6-d:2]-0=[4-3-1:2]=0                                                              0≤t5≤0 

[4+3+1:2]=4≤t5≤4                                                                                      4≤t5≤4 

4<gis62=9  0≤t5≤4,                                                                                 0≤t5≤4. 

We have 2 solutions: t5=0;4, and hence 4 triples:  

(cos40,sin40,5)=(4,0,5); (cos44,sin44,5)=(0,4,5). 

6.4. j=4  c=5, b=64. 

5<gis53=8  0≤t5≤5,                                                                                                0≤t5≤5. 

We have 6 solutions: t5=0;1;2;3;4;5;6, and hence 6 triples:  

(cos50,sin50,5)=(5,0,5); (cos51,sin51,5)=(4,1,5); (cos52,sin52,5)=(3,2,5);  

(cos53,sin53,5)=(2,3,5); (cos54,sin54,5)=(1,4,5); (cos55,sin55,5)=(0,5,5). 

6.5. j=5  c=6, b=85. 

6<gis42=7  0≤t5≤6,                                                                                                 0≤t5≤6. 

We have 7 solutions: t5=0;1;2;3;4;5;6, and hence 7 triples:  

(cos60,sin60,5)=(6,0,5); (cos61,sin61,5)=(5,1,5); (cos62,sin62,5)=(4,2,5); (cos63,sin63,5)=(3,3,5); 

(cos64,sin64,5)=(2,4,5); (cos65,sin65,5)=(1,5,5); (cos66,sin66,5)=(0,6,5). 
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6.6. j=6  c=7, b=108. 

[7-gis(7
2
+8x7-2x108+20x7):2]+1=[7-6:2]+1=1≤t5≤[7+6-1:2]=6,                           1≤t5≤6. 

We have 6 solutions: t5=1;2;3;4;5;6, and hence 6 triples:  

(cos71,sin71,5)=(6,1,5); (cos72,sin72,5)=(5,2,5); (cos73,sin73,5)=(4,3,5);  

(cos74,sin74,5)=(3,4,5); (cos75,sin75,5)=(2,5,5); (cos76,sin76,5)=(1,6,5). 

6.7. j=7  c=8, b=133. 

[8-gis14-d:2]+1=[8-4-0:2]+1=3≤t5≤[8+4+0:2]-1=5,                                                 3≤t5≤5. 

We have 3 solutions: t5=3;4;5, and hence 3 triples:  

(cos83,sin83,5)=(5,3,5); (cos84,sin84,5)=(4,4,5); (cos85,sin85,5)=(3,5,5).  

Total, we have 24 triples for z=5.  
 
7. z=6, j1и j2 – not determined, j3=6≤j≤7=j4, c=j, b=j

2
+14j-2j. The system (16) takes the form:  

[c-gis(c
2
+8R-2b+24c)-d:2]+1≤t6≤[c+gis(c

2
+8R-2b+24c)+d:2]-1 

0≤t5≤c, if c<gis(c
2
+56-2b+24c).   

7.1. j=1  c=1, b=13. 

1<gis55=8   0≤t6≤1,                                                                                                0≤t6≤1. 

We have 2 solutions: t6=0;1, and hence 2 triples:  

(cos10,sin10,6)=(1,0,6); (cos11,sin11,6)=(0,1,6). 

7.2. j=2  c=2, b=28. 

2<gis52=8  0≤t6≤2,                                                                                                 0≤t6≤2. 

We have 3 solutions: t6=0;1;2, and hence 3 triples:  

(cos20,sin20,6)=(2,0,6); (cos21,sin21,6)=(1,1,6); (cos22,sin22,6)=(0,2,6).  

7.3. j=3  c=3, b=45. 

3<gis47=7  0≤t6≤3,                                                                                                 0≤t6≤3. 

We have 4 solutions: t6=0;1;2;3, and hence 4 triples:  

(cos30,sin30,6)=(3,0,6); (cos31,sin31,6)=(2,1,6);  

(cos32,sin32,6)=(1,2,6); (cos33,sin33,6)=(0,3,6).  

7.4. j=4  c=4, b=64. 

4<gis40=7  0≤t6≤4,                                                                                                 0≤t6≤4. 

We have 5 solutions: t6=0;1;2;3;4;5, and hence 5 triples:  

(cos40,sin40,6)=(4,0,6); (cos41,sin41,6)=(3,1,6); (cos42,sin42,6)=(2,2,6);  

(cos43,sin43,6)=(1,3,6); (cos44,sin44,6)=(0,4,6). 

7.5. j=5  c=5, b=85. 

5<gis31=6  0≤t6≤5,                                                                                                 0≤t6≤5. 

We have 6 solutions: t6=0;1;2;3;4;5, and hence 6 triples:  

(cos50,sin50,6)=(5,0,6); (cos51,sin51,6)=(4,1,6); (cos52,sin52,6)=(3,2,6);  

(cos53,sin53,6)=(2,3,6); (cos54,sin54,6)=(1,4,6); (cos55,sin55,6)=(0,5,6). 

7.6. j=6  c=6, b=108. 

[6-gis20-d:2]+1=[6-5-1:2]+1=1≤t6≤ [6+5+1:2]-1=5,                                                 1≤t6≤5. 

We have 5 solutions: t6=1;2;3;4;5, and hence 5 triples:  

(cos61,sin61,6)=(5,1,6); (cos62,sin62,6)=(4,2,6); (cos63,sin63,6)=(3,3,6);  

(cos64,sin64,6)=(2,4,6); (cos65,sin65,6)=(1,5,6). 

7.7. j=7  c=7, b=133. 

[7-gis7-d:2]+1=[7-3-0:2]+1=3≤t6≤ [7+3+0:2]-1=4,                                                   3≤t6≤4. 

We have 2 solutions: t6=3;4, and hence 2 triples:  

(cos73,sin73,6)=(4,3,6); (cos74,sin74,6)=(3,4,6).  

Total, we have 27 triples for z=6.  
 
8. z=7, j1 и j2 – not determined, j3=2≤j≤5=j4, c=j-1, b=j

2
+14j-2j. The system (16) takes the form: 

 [c-gis(c
2
+8R-2b+28c)-d:2]+1≤t7≤[c +gis(c

2
+8R-2b+24c)+d:2]-1 

 0≤t5≤c, if c<gis(c
2
+56-2b+24c). 

8.1. j=1  c=0, b=13. 

0<gis26=6  0≤t7≤0,                                                                                                  0≤t7≤0. 

We have 1 solutions: t7=0, and hence 1 triples:  

(cos00,sin00,7)=(0,0,7). 
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8.2. j=2  c=1, b=28. 

1<gis29=6  0≤t7≤1,                                                                                                  0≤t7≤1. 

We have 2 solutions: t7=0;1, and hence 2 triples:  

(cos10,sin10,7)=(1,0,7); (cos11,sin11,7)=(0,1,7).  

8.3. j=3  c=2, b=45. 

2<gis54=8  0≤t7≤2,                                                                                                  0≤t7≤2. 

We have 3 solutions: t7=0;1;2, and hence 3 triples:  

(cos20,sin20,7)=(2,0,7); (cos21,sin21,7)=(1,1,7); (cos22,sin22,7)=(0,2,7).  

8.4. j=4  c=3, b=64. 

3<gis21=5  0≤t7≤3,                                                                                                  0≤t7≤3. 

We have 4 solutions: t7=0;1;2;3;4, and hence 4 triples:  

(cos30,sin30,7)=(3,0,7); (cos31,sin31,7)=(2,1,7);  

(cos32,sin32,7)=(1,2,7); (cos33,sin33,7)=(0,3,7). 

8.5. j=5  c=4, b=85. 

[4-gis14-d:2]+1=[4-4-0:2]+1=1≤t7≤[4+4+0:2]-1=3,                                                  1≤t7≤3. 

We have 3 solutions: t7=1;2;3, and hence 3 triples:  

(cos41,sin41,7)=(3,1,7); (cos42,sin42,7)=(2,2,7); (cos43,sin43,7)=(1,3,7).  

8.6. j=6  c=5, b=108. 

[5-gis5-d:2]+1=[5-3-0:2]+1=2≤t7≤ [5+3+0:2]-1=3,                                                   2≤t7≤3. 

We have 2 solutions: t7=2;3, and hence 2 triples:  

(cos52,sin52,7)=(3,2,7); (cos53,sin53,7)=(2,3,7).  

Total, we have 15 triples for z=7.  

 
All solutions for the first octant are found. Total – 178 triples. Then the quantity of triples for the entire 

space at R=7, after deduction of overlaps, is equals: NR=7=178x8-(80x3-6)=1190. 

The general solution of Task 2 for the space, in the part of enumeration of triples, is looks as 

follows way: 

(cosctz, sinctz, z), z=0÷R, 0≤tz≤c 

(verctz, sinctz, z), z=0÷R, 0≤tz≤c-1  

(verctz, opsctz, z), z=0÷R, 1≤tz≤c 

(cosctz, opsctz, z), z=0÷R, 1≤tz≤c-1                                     (18) 

(cosctz, sinctz, -z), z=1÷R, 0≤tz≤c 

(verctz, sinctz, -z), z=1÷R, 0≤tz≤c-1 

(verctz, opsctz, -z), z=1÷R, 1≤tz≤c 

(cosctz, opsctz, -z), z=1÷R, 1≤tz≤c-1,  

 

where R≥0; for each z, j runs through values from j1z to j4z, which are determined from the conditions – 

j1z=gis ((R-1)
2
-z

2
)-R+z+1+g((R-1)

2
-z

2
)≤j≤gis(2(R-1)

2
-2z

2
)-R+z=j2z 

j3z=gis((R+1)
2
-z

2
)-R+z+1≤j≤gis(2(R+1)

2
-2z

2
)-R+z=j4z,             

c=R+j-1-z, b=j
2
+2Rj-2j, tz – the solutions of inequality 2cz-b<2tz(tz-c)<4R+2cz-b for the first octant, 

which are determined from the conditions – 

0≤tz≤[c-gis(c
2
-2b+4cz)-d:2]-g 

[c+gis(c
2
-2b+4cz)+d:2]+g≤tz≤c                                                           

[c-gis(c
2
+8R-2b+4cz)-d:2]+1≤tz≤[c+gis(c

2
+8R-2b+4cz)+d:2]-1 

  0≤tz≤c, if c<gis(c
2
+8R-2b+4cz).                           

 
If the value c=a-z to substitute into inequality (13), then we obtain an equisignificant inequality:  

-b<2t(t+z-a)+2z(z-a)<4R-b. Then, the solutions of system (16) can be visualized with the help of function 

(yijk)=2ti(ti+zk-aj)+2zk(zk-aj), by the graph of which is a cascade of paraboloids. The frontal slices of 3F-

matrix(yijk) of the indicated function, considered above for the case of R=7, are presented in Tables 4-10. 

Partially, the graph of the indicated function, corresponding to the 3F-matrix(yijk) for j=1, is represented 

in Fig. 7 in the form of paraboloid's mockup. The entire graph will consist of seven similar paraboloids, 

which are the graphic reflection of represented frontal slices. All lines and surfaces are for illustration only. 

In contrast to the planar case, the solutions of inequality (13) will be not between two channels, but 

between two corresponding layers.  
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                   Table 4. The Frontal Slice                                                      Table 5. The Frontal Slice 

                     of 3F-matrix(yijk) for j=1.                                                        of 3F-matrix(yijk) for j=2.      

 
 
 
 
 
 
 
 
 
 
 
 

                   

                           Table 6. The Frontal Slice                                              Table 7. The Frontal Slice 

                             of 3F-matrix(yijk) for j=3.                                                of 3F-matrix(yijk) for j=4.      

                                                       
                                                                                                            
                        
 
 
 
 
 
 
 
 
 
 
 
 

                   

             Table 8. The Frontal Slice                                                 Table 9. The Frontal Slice 

               of 3F-matrix(yijk) for j=5.                                                   of 3F-matrix(yijk) for j=6.      

                                                  
                                                                                                              
                                                                                                               
 
 
     
 
 
 
    
 
 
 
 
 
 

 
 
 
 
 

0 i 1 2 3 4 5 6 7 8 

k zk  ti 0 1 2 3 4 5 6 7 

1 0 0 -12 -20 -24 -24 -20 -12 0 

2 1 -12 -22 -28 -30 -28 -22 -12 2 

3 2 -20 -28 -32 -32 -28 -20 -8 8 

4 3 -24 -30 -32 -30 -24 -14 0 18 

5 4 -24 -28 -28 -24 -16 -4 12 32 

5 5 -20 -22 -20 -14 -4 10 28 50 

7 6 -12 -12 -8 0 12 28 48 72 

8 7 0 2 8 18 32 50 72 98 

0 i 1 2 3 4 5 6 7 8 9 

k zk  t 0 1 2 3 4 5 6 7 8 

1 0 0 -14 -24 -30 -32 -30 -24 -14 0 

2 1 -14 -26 -34 -38 -38 -34 -26 -14 2 

3 2 -24 -34 -40 -42 -40 -34 -24 -10 8 

4 3 -30 -38 -42 -42 -38 -30 -18 -2 18 

5 4 -32 -38 -40 -38 -32 -22 -8 10 32 

6 5 -30 -34 -34 -30 -22 -10 6 26 50 

7 6 -24 -26 -24 -18 -8 6 24 46 72 

8 7 -14 -14 -10 -2 10 26 46 70 98 

9 8 0 2 8 18 32 50 72 98 128 

0 i 1 2 3 4 5 6 7 8 9 10 

k zk ti 0 1 2 3 4 5 6 7 8 9 

1 0 0 -16 -28 -36 -40 -40 -36 -28 -16 0 

2 1 -16 -30 -40 -46 -48 -46 -40 -30 -16 2 

3 2 -28 -40 -48 -52 -52 -48 -40 -28 -12 8 

4 3 -36 -46 -52 -54 -52 -46 -36 -22 -4 18 

5 4 -40 -48 -52 -52 -48 -40 -28 -12 8 32 

6 5 -40 -46 -48 -46 -40 -30 -16 2 24 50 

7 6 -36 -40 -40 -36 -28 -16 0 20 44 72 

8 7 -28 -30 -28 -22 -12 2 20 42 68 98 

9 8 -16 -16 -12 -4 8 24 44 68 96 128 

10 9 0 2 8 18 32 50 72 98 128 162 

0 i 1 2 3 4 5 6 7 8 9 10 11 

k zk  ti 0 1 2 3 4 5 6 7 8 9 10 

1 0 0 -18 -32 -42 -48 -50 -48 -42 -32 -18 0 

2 1 -18 -34 -46 -54 -58 -58 -54 -46 -34 -18 2 

3 2 -32 -46 -56 -62 -64 -62 -56 -46 -32 -14 8 

4 3 -42 -54 -62 -66 -66 -62 -54 -42 -26 -6 18 

5 4 -48 -58 -64 -66 -64 -58 -48 -34 -16 6 32 

6 5 -50 -58 -62 -62 -58 -50 -38 -22 -2 22 50 

7 6 -48 -54 -56 -54 -48 -38 -12 -6 16 42 72 

8 7 -42 -46 -46 -42 -34 -22 -6 14 38 66 98 

9 8 -32 -34 -32 -26 -16 -2 16 38 64 94 128 

10 9 -18 -18 -14 -6 6 22 42 66 94 126 162 

11 10 0 2 8 18 32 50 72 98 128 162 200 

0 i 1 2 3 4 5 6 7 8 9 10 11 12 

k zk  ti 0 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 -20 -36 -48 -56 -60 -60 -56 -48 -36 -20 0 

2 1 -20 -38 -52 -62 -68 -70 -68 -62 -52 -38 -20 2 

3 2 -36 -52 -64 -72 -76 -76 -72 -64 -52 -36 -16 8 

4 3 -48 -62 -72 -78 -80 -78 -72 -62 -48 -30 -8 18 

5 4 -56 -68 -76 -80 -80 -76 -68 -56 -40 -20 4 32 

6 5 -60 -70 -76 -78 -76 -70 -60 -46 -28 -6 20 50 

7 6 -60 -68 -72 -72 -68 -60 -36 -32 -12 12 40 72 

8 7 -56 -62 -64 -62 -56 -46 -32 -14 8 34 64 98 

9 8 -48 -52 -52 -48 -40 -28 -12 8 32 60 92 128 

10 9 -36 -38 -36 -30 -20 -6 12 34 60 90 124 162 

11 10 -20 -20 -16 -8 4 20 40 64 92 124 160 200 

12 11 0 2 8 18 32 50 72 98 128 162 200 242 

0 i 1 2 3 4 5 6 7 8 9 10 11 12 13 

k zk  ti 0 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 -22 -40 -54 -64 -70 -72 -70 -64 -54 -40 -22 0 

2 1 -22 -42 -58 -70 -78 -82 -82 -78 -70 -58 -42 -22 2 

3 2 -40 -58 -72 -82 -88 -90 -88 -82 -72 -58 -40 -18 8 

4 3 -54 -70 -82 -90 -94 -94 -90 -82 -70 -54 -34 -10 18 

5 4 -64 -78 -88 -94 -96 -94 -88 -78 -64 -46 -24 2 32 

6 5 -70 -82 -90 -94 -94 -90 -82 -70 -54 -34 -10 18 50 

7 6 -72 -82 -88 -90 -88 -82 -72 -58 -40 -18 8 38 72 

8 7 -70 -78 -82 -82 -78 -70 -58 -42 -22 2 30 62 98 

9 8 -64 -70 -72 -70 -64 -54 -40 -22 0 26 56 90 128 

10 9 -54 -58 -58 -54 -46 -34 -18 2 26 54 86 122 162 

11 10 -40 -42 -40 -34 -24 -10 8 30 56 86 120 158 200 

12 11 -22 -22 -18 -10 2 18 38 62 90 122 158 198 242 

13 12 0 2 8 18 32 50 72 98 128 162 200 242 288 
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Fig. 7.  

The Mockup of the Graph of Function  

(yijk)=2ti(ti+zk-aj)+2zk(zk-aj)  

for R=7 and j=1. 
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                                       Table 10. The Frontal Slice of 3F-matrix(yijk) for j=7.                                                            

 

                                  
     

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For indication the quantity of triples satisfying the 

conditions of task, we will make use the following considerations 

relatively for the first octant: 

1. For z=0, the formula (10) is acting; 

2. For z=1÷R-2, depending on j, we have: 

a) If j1z≤j≤j2z, then the conditions 1, 2 and 4 of system (16) 

are satisfied, and hence, it is acting the following condition: 

nj1=[c-gis(c
2
-2b+4cz)-d:2]+c-[c+gis(c

2
-2b+4cz)+d:2]-2g;  

b) If j2z+1≤j≤j3z-1, then only the fourth condition of system 

(16) is satisfied, and hence, it is acting the following condition: 

nj2=c+1; 

c) If j3z≤j≤j4z, then only the third condition of system (16) is 

satisfied, and hence, the formula (9) is acting; 

3. For z=R-1 and z=R, j1 and j2 are not defined, and depending 

on j, we have: 

a) If 1≤j≤j3z-1, then only the fourth condition of system (16) 

is satisfied, and hence, it is acting the condition: nj2=c+1;  

b) If j3z≤j≤j4z, then only the third condition of system (16) is 

satisfied, and hence, the formula (9) is acting. 

The quantity of triples for the whole space will be equals to the eight times the number of triples 

of the first octant without repeats, the quantity of which is equals to the three times quantity of triples of 

the layer z=0 without six repeats. 

What has been said can be reflected with the help of following formula: 

     

            

   

   

     

   

       

                 

   

     

     

       

   

     

  

   

   

 

            

   

     

     

   

 

 

     

             

   

   

     

   

       

         

                                                              
After little transformations, we finally obtain: 

 

0 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

k zk  ti 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0 0 -24 -44 -60 -72 -80 -84 -84 -80 -72 -60 -44 -24 0 

2 1 -24 -46 -64 -78 -88 -94 -96 -94 -88 -78 -64 -46 -24 2 

3 2 -44 -64 -80 -92 -100 -104 -104 -100 -92 -80 -64 -44 -20 8 

4 3 -60 -78 -92 -102 -108 -110 -108 -102 -92 -78 -60 -38 -12 18 

5 4 -72 -88 -100 -108 -112 -112 -108 -100 -88 -72 -52 -28 0 32 

6 5 -80 -94 -104 -110 -112 -110 -104 -94 -80 -62 -40 -14 16 50 

7 6 -84 -96 -104 -108 -108 -104 -96 -84 -68 -48 -24 4 36 72 

8 7 -84 -94 -100 -102 -100 -94 -84 -70 -52 -30 -4 26 60 98 

9 8 -80 -88 -92 -92 -88 -80 -68 -52 -32 -8 20 52 88 128 

10 9 -72 -78 -80 -78 -72 -62 -48 -30 -8 18 48 82 120 162 

11 10 -60 -64 -64 -60 -52 -450 -24 -4 20 48 80 116 156 200 

12 11 -44 -46 -44 -38 -28 -14 4 36 52 82 116 154 196 242 

13 12 -24 -24 -18 -10 2 18 38 62 90 122 158 198 242 288 

14 13 0 2 8 18 32 50 72 98 128 162 200 242 288 338 
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where R≥0, nj0=[c-gis(c
2
-2b)-d:2]-[c-gis(c

2
+8R-2b)-d:2]+[c+gis(c

2
+8R-2b)+d:2]-[c+gis(c

2
-2b)+d:2]-2g;  

nj1=[c-gis(c
2
-2b+4cz)-d:2]+c-[c+gis(c

2
-2b+4cz)+d:2]-2g;  

nj2=c+1; nj3=[c+gis(c
2
+8R-2b+4cz)+d:2]-[c-gis(c

2
+8R-2b+4cz)-d:2]-1; с=R+j-1-z, b=j

2
+2Rj-2j;  

j1z=gis((R-1)
2
-z

2
)-R+z+1+g; j2z=gis(2(R-1)

2
-2z

2
)-R+z+g; 

j3z=gis((R+1)
2
-z

2
)-R+z+1; j4z=gis(2(R+1)

2
-2z

2
)-R+z. 

 

Thus, the quantity has been specified, and all triples of numbers that satisfy the conditions of 

Task 2 are listed. 

The part of quanta, whose coordinates are the solutions of Task 2, is represented in Fig. 8 in the form 

of the model of upper half of the spherical passage of radius R=7 (zi=0÷R). 

 

Definition 22 (spherical passage): The totality of the quanta 

of space whose coordinates (xi,yi,zi), where i=0÷n, nЄN, 

satisfy the following conditions: 

(R-1)
2
<xi

2
+yi

2
+zi

2
<(R+1)

2
 

-R≤xi≤R 

-R≤yi≤R 

-R≤zi≤R, where R≥0, 

forms the spherical passage of radius R with the center at 

the origin of coordinates, briefly the S-passage(R). 

The coordinates of the quanta of S-passage(R) can be specified 

as follows way: 

(cosctz, sinctz, z), z=0÷R, 0≤tz≤c 

(verctz, sinctz, z), z=0÷R, 0≤tz≤c-1  

(verctz, opsctz, z), z=0÷R, 1≤tz≤c 

(cosctz, opsctz, z), z=0÷R, 1≤tz≤c-1  

(cosctz, sinctz, -z), z=1÷R, 0≤tz≤c 

(verctz, sinctz, -z), z=1÷R, 0≤tz≤c-1 

(verctz, opsctz, -z), z=1÷R, 1≤tz≤c 

(cosctz, opsctz, -z), z=1÷R, 1≤tz≤c-1,  

where c=R+j-1-z, R≥0; for each z, j runs through values from 

j1z to j4z, which are determined from the conditions – 

j1z=gis((R-1)
2
-z

2
)-R+z+1+g((R-1)

2
-z

2
)≤j≤gis(2(R-1)

2
-2z

2
)-R+z=j2z 

j3z=gis((R+1)
2
-z

2
)-R+z+1≤j≤gis(2(R+1)

2
-2z

2
)-R+z=j4z,  

b=j
2
+2Rj-2j, tz – the solutions of inequality 2cz-b<2tz(tz-c)<4R+2cz-b for the first octant, which are 

determined from the conditions – 

0≤tz≤ [c-gis(c
2
-2b+4cz)-d:2]-g 

[c+gis(c
2
-2b+4cz)+d:2]+g≤tz≤c 

[c-gis(c
2
+8R-2b+4cz)-d:2]+1≤tz≤[c+gis(c

2
+8R-2b+4cz)+d:2]-1 

  0≤tz≤c, if c<gis(c
2
+8R-2b+4cz). 

S-passage(R) is spatial, three-dimensional-limited, closed passage. 

 

 S-passage(R) is the likeness of a sphere in the Quantum Discrete Space. 

The obtained solution for a spherical "layer", or more precisely for a spherical passage, makes it 

possible, if necessary, to determine the number of quanta that are inside the circular passage, that is, to 

solve the Task 2 by the replacing of basic condition on following: xi
2
+yi

2
+zi

2
<(R+1)

2
. But within the 

framework of this article there is no such necessity, therefore it can be noted only that the possible 

approach to solving this task, which, in essence, is the task about solving the Gauss's problem in a ball, is 

analogous to the approach that was proposed to solve the Gauss's problem in the circle. 

 

 

Fig. 8. Spherical Passage of Radius R=7  

(exterior view for zi=0÷R).  
The model has been composed up of  

wooden cubes with the edge of 2 cm. 



23 

 

Conclusion 

 

The above given definitions of circular and spherical passages are the best proof that the exact solution 

of Gauss's problem exists, and this solution is possible only within the framework of the Quantum Discrete 

Space. Indeed, if you are looking for a specific book in one of the two bookcases, and having carefully sorted 

all the books in one of them, you did not find the book that you are looking for, then, consequently, it is in the 

other. Exactly in the same way in the case with the Gauss's problem. Many remarkable mathematicians have 

far and wide ploughed the continuous abstract-analytic mathematical field, and found no exact solution to the 

Gauss's problem. The maximum, what they have achieved, it's of the unimprovable asymptotic estimates. 

Consequently, it's need to move on another field. It seems to me that the Gauss's problem is not an accident, 

but it is some unconscious Gauss's message to future mathematicians concerning the existence of an alterna-

tive mathematical field. I think that the Quantum Discrete Space, the general representation about of which is 

briefly reflected above, is a huge unploughed mathematical field. And on this field, we have already managed 

to construct the likenesses of circumference and sphere in the form of C-passage(R) and S-passage(R), 

respectively. And after all there is else an ellipse, cone, cylinder, ellipsoid, hyperboloid and many other 

interesting mathematical objects. It remains only to wish good luck to " ploughers" and "sowers". 
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